Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)

Eben Holderness, Antonio Jimeno Yepes, Alberto Lavelli, Anne-Lyse Minard, James Pustejovsky, Fabio Rinaldi (Editors)


Anthology ID:
D19-62
Month:
November
Year:
2019
Address:
Hong Kong
Venues:
EMNLP | Louhi | WS
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/D19-62
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/D19-62.pdf

pdf bib
Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)
Eben Holderness | Antonio Jimeno Yepes | Alberto Lavelli | Anne-Lyse Minard | James Pustejovsky | Fabio Rinaldi

pdf bib
Cross-document coreference: An approach to capturing coreference without context
Kristin Wright-Bettner | Martha Palmer | Guergana Savova | Piet de Groen | Timothy Miller

This paper discusses a cross-document coreference annotation schema that was developed to further automatic extraction of timelines in the clinical domain. Lexical senses and coreference choices are determined largely by context, but cross-document work requires reasoning across contexts that are not necessarily coherent. We found that an annotation approach that relies less on context-guided annotator intuitions and more on schematic rules was most effective in creating meaningful and consistent cross-document relations.

pdf bib
Comparing the Intrinsic Performance of Clinical Concept Embeddings by Their Field of Medicine
John-Jose Nunez | Giuseppe Carenini

Pre-trained word embeddings are becoming increasingly popular for natural language processing tasks. This includes medical applications, where embeddings are trained for clinical concepts using specific medical data. Recent work continues to improve on these embeddings. However, no one has yet sought to determine whether these embeddings work as well for one field of medicine as they do in others. In this work, we use intrinsic methods to evaluate embeddings from the various fields of medicine as defined by their ICD-9 systems. We find significant differences between fields, and motivate future work to investigate whether extrinsic tasks will follow a similar pattern.

pdf bib
On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning
Tuan Ngo Nguyen | Franck Dernoncourt | Thien Huu Nguyen

Deep learning models have achieved state-of-the-art performances on many relation extraction datasets. A common element in these deep learning models involves the pooling mechanisms where a sequence of hidden vectors is aggregated to generate a single representation vector, serving as the features to perform prediction for RE. Unfortunately, the models in the literature tend to employ different strategies to perform pooling for RE, leading to the challenge to determine the best pooling mechanism for this problem, especially in the biomedical domain. In order to answer this question, in this work, we conduct a comprehensive study to evaluate the effectiveness of different pooling mechanisms for the deep learning models in biomedical RE. The experimental results suggest that dependency-based pooling is the best pooling strategy for RE in the biomedical domain, yielding the state-of-the-art performance on two benchmark datasets for this problem.

pdf bib
Syntax-aware Multi-task Graph Convolutional Networks for Biomedical Relation Extraction
Diya Li | Heng Ji

In this paper we tackle two unique challenges in biomedical relation extraction. The first challenge is that the contextual information between two entity mentions often involves sophisticated syntactic structures. We propose a novel graph convolutional networks model that incorporates dependency parsing and contextualized embedding to effectively capture comprehensive contextual information. The second challenge is that most of the benchmark data sets for this task are quite imbalanced because more than 80% mention pairs are negative instances (i.e., no relations). We propose a multi-task learning framework to jointly model relation identification and classification tasks to propagate supervision signals from each other and apply a focal loss to focus training on ambiguous mention pairs. By applying these two strategies, experiments show that our model achieves state-of-the-art F-score on the 2013 drug-drug interaction extraction task.

pdf bib
BioReddit: Word Embeddings for User-Generated Biomedical NLP
Marco Basaldella | Nigel Collier

Word embeddings, in their different shapes and iterations, have changed the natural language processing research landscape in the last years. The biomedical text processing field is no stranger to this revolution; however, scholars in the field largely trained their embeddings on scientific documents only, even when working on user-generated data. In this paper we show how training embeddings from a corpus collected from user-generated text from medical forums heavily influences the performance on downstream tasks, outperforming embeddings trained both on general purpose data or on scientific papers when applied on user-generated content.

pdf bib
Leveraging Hierarchical Category Knowledge for Data-Imbalanced Multi-Label Diagnostic Text Understanding
Shang-Chi Tsai | Ting-Yun Chang | Yun-Nung Chen

Clinical notes are essential medical documents to record each patient’s symptoms. Each record is typically annotated with medical diagnostic codes, which means diagnosis and treatment. This paper focuses on predicting diagnostic codes given the descriptive present illness in electronic health records by leveraging domain knowledge. We investigate various losses in a convolutional model to utilize hierarchical category knowledge of diagnostic codes in order to allow the model to share semantics across different labels under the same category. The proposed model not only considers the external domain knowledge but also addresses the issue about data imbalance. The MIMIC3 benchmark experiments show that the proposed methods can effectively utilize category knowledge and provide informative cues to improve the performance in terms of the top-ranked diagnostic codes which is better than the prior state-of-the-art. The investigation and discussion express the potential of integrating the domain knowledge in the current machine learning based models and guiding future research directions.

pdf bib
Experiments with ad hoc ambiguous abbreviation expansion
Agnieszka Mykowiecka | Malgorzata Marciniak

The paper addresses experiments to expand ad hoc ambiguous abbreviations in medical notes on the basis of morphologically annotated texts, without using additional domain resources. We work on Polish data but the described approaches can be used for other languages too. We test two methods to select candidates for word abbreviation expansions. The first one automatically selects all words in text which might be an expansion of an abbreviation according to the language rules. The second method uses clustering of abbreviation occurrences to select representative elements which are manually annotated to determine lists of potential expansions. We then train a classifier to assign expansions to abbreviations based on three training sets: automatically obtained, consisting of manual annotation, and concatenation of the two previous ones. The results obtained for the manually annotated training data significantly outperform automatically obtained training data. Adding the automatically obtained training data to the manually annotated data improves the results, in particular for less frequent abbreviations. In this context the proposed a priori data driven selection of possible extensions turned out to be crucial.

pdf bib
Multi-Task, Multi-Channel, Multi-Input Learning for Mental Illness Detection using Social Media Text
Prasadith Kirinde Gamaarachchige | Diana Inkpen

We investigate the impact of using emotional patterns identified by the clinical practitioners and computational linguists to enhance the prediction capabilities of a mental illness detection (in our case depression and post-traumatic stress disorder) model built using a deep neural network architecture. Over the years, deep learning methods have been successfully used in natural language processing tasks, including a few in the domain of mental illness and suicide ideation detection. We illustrate the effectiveness of using multi-task learning with a multi-channel convolutional neural network as the shared representation and use additional inputs identified by researchers as indicatives in detecting mental disorders to enhance the model predictability. Given the limited amount of unstructured data available for training, we managed to obtain a task-specific AUC higher than 0.90. In comparison to methods such as multi-class classification, we identified multi-task learning with multi-channel convolution neural network and multiple-inputs to be effective in detecting mental disorders.

pdf bib
Extracting relevant information from physician-patient dialogues for automated clinical note taking
Serena Jeblee | Faiza Khan Khattak | Noah Crampton | Muhammad Mamdani | Frank Rudzicz

We present a system for automatically extracting pertinent medical information from dialogues between clinicians and patients. The system parses each dialogue and extracts entities such as medications and symptoms, using context to predict which entities are relevant. We also classify the primary diagnosis for each conversation. In addition, we extract topic information and identify relevant utterances. This serves as a baseline for a system that extracts information from dialogues and automatically generates a patient note, which can be reviewed and edited by the clinician.

pdf bib
Biomedical Relation Classification by single and multiple source domain adaptation
Sinchani Chakraborty | Sudeshna Sarkar | Pawan Goyal | Mahanandeeshwar Gattu

Relation classification is crucial for inferring semantic relatedness between entities in a piece of text. These systems can be trained given labelled data. However, relation classification is very domain-specific and it takes a lot of effort to label data for a new domain. In this paper, we explore domain adaptation techniques for this task. While past works have focused on single source domain adaptation for bio-medical relation classification, we classify relations in an unlabeled target domain by transferring useful knowledge from one or more related source domains. Our experiments with the model have shown to improve state-of-the-art F1 score on 3 benchmark biomedical corpora for single domain and on 2 out of 3 for multi-domain scenarios. When used with contextualized embeddings, there is further boost in performance outperforming neural-network based domain adaptation baselines for both the cases.

pdf bib
Assessing the Efficacy of Clinical Sentiment Analysis and Topic Extraction in Psychiatric Readmission Risk Prediction
Elena Alvarez-Mellado | Eben Holderness | Nicholas Miller | Fyonn Dhang | Philip Cawkwell | Kirsten Bolton | James Pustejovsky | Mei-Hua Hall

Predicting which patients are more likely to be readmitted to a hospital within 30 days after discharge is a valuable piece of information in clinical decision-making. Building a successful readmission risk classifier based on the content of Electronic Health Records (EHRs) has proved, however, to be a challenging task. Previously explored features include mainly structured information, such as sociodemographic data, comorbidity codes and physiological variables. In this paper we assess incorporating additional clinically interpretable NLP-based features such as topic extraction and clinical sentiment analysis to predict early readmission risk in psychiatry patients.

pdf bib
What does the language of foods say about us?
Hoang Van | Ahmad Musa | Hang Chen | Stephen Kobourov | Mihai Surdeanu

In this work we investigate the signal contained in the language of food on social media. We experiment with a dataset of 24 million food-related tweets, and make several observations. First,thelanguageoffoodhaspredictive power. We are able to predict if states in the United States (US) are above the medianratesfortype2diabetesmellitus(T2DM), income, poverty, and education – outperforming previous work by 4–18%. Second, we investigate the effect of socioeconomic factors (income, poverty, and education) on predicting state-level T2DM rates. Socioeconomic factors do improve T2DM prediction, with the greatestimprovementcomingfrompovertyinformation(6%),but,importantly,thelanguage of food adds distinct information that is not captured by socioeconomics. Third, we analyze how the language of food has changed over a five-year period (2013 – 2017), which is indicative of the shift in eating habits in the US during that period. We find several food trends, and that the language of food is used differently by different groups such as differentgenders. Last,weprovideanonlinevisualization tool for real-time queries and semantic analysis.

pdf bib
Dreaddit: A Reddit Dataset for Stress Analysis in Social Media
Elsbeth Turcan | Kathy McKeown

Stress is a nigh-universal human experience, particularly in the online world. While stress can be a motivator, too much stress is associated with many negative health outcomes, making its identification useful across a range of domains. However, existing computational research typically only studies stress in domains such as speech, or in short genres such as Twitter. We present Dreaddit, a new text corpus of lengthy multi-domain social media data for the identification of stress. Our dataset consists of 190K posts from five different categories of Reddit communities; we additionally label 3.5K total segments taken from 3K posts using Amazon Mechanical Turk. We present preliminary supervised learning methods for identifying stress, both neural and traditional, and analyze the complexity and diversity of the data and characteristics of each category.

pdf bib
Towards Understanding of Medical Randomized Controlled Trials by Conclusion Generation
Alexander Te-Wei Shieh | Yung-Sung Chuang | Shang-Yu Su | Yun-Nung Chen

Randomized controlled trials (RCTs) represent the paramount evidence of clinical medicine. Using machines to interpret the massive amount of RCTs has the potential of aiding clinical decision-making. We propose a RCT conclusion generation task from the PubMed 200k RCT sentence classification dataset to examine the effectiveness of sequence-to-sequence models on understanding RCTs. We first build a pointer-generator baseline model for conclusion generation. Then we fine-tune the state-of-the-art GPT-2 language model, which is pre-trained with general domain data, for this new medical domain task. Both automatic and human evaluation show that our GPT-2 fine-tuned models achieve improved quality and correctness in the generated conclusions compared to the baseline pointer-generator model. Further inspection points out the limitations of this current approach and future directions to explore.

pdf bib
Building a De-identification System for Real Swedish Clinical Text Using Pseudonymised Clinical Text
Hanna Berg | Taridzo Chomutare | Hercules Dalianis

This article presents experiments with pseudonymised Swedish clinical text used as training data to de-identify real clinical text with the future aim to transfer non-sensitive training data to other hospitals. Conditional Random Fields (CFR) and Long Short-Term Memory (LSTM) machine learning algorithms were used to train de-identification models. The two models were trained on pseudonymised data and evaluated on real data. For benchmarking, models were also trained on real data, and evaluated on real data as well as trained on pseudonymised data and evaluated on pseudonymised data. CRF showed better performance for some PHI information like Date Part, First Name and Last Name; consistent with some reports in the literature. In contrast, poor performances on Location and Health Care Unit information were noted, partially due to the constrained vocabulary in the pseudonymised training data. It is concluded that it is possible to train transferable models based on pseudonymised Swedish clinical data, but even small narrative and distributional variation could negatively impact performance.

pdf bib
Automatic rubric-based content grading for clinical notes
Wen-wai Yim | Ashley Mills | Harold Chun | Teresa Hashiguchi | Justin Yew | Bryan Lu

Clinical notes provide important documentation critical to medical care, as well as billing and legal needs. Too little information degrades quality of care; too much information impedes care. Training for clinical note documentation is highly variable, depending on institutions and programs. In this work, we introduce the problem of automatic evaluation of note creation through rubric-based content grading, which has the potential for accelerating and regularizing clinical note documentation training. To this end, we describe our corpus creation methods as well as provide simple feature-based and neural network baseline systems. We further provide tagset and scaling experiments to inform readers of plausible expected performances. Our baselines show promising results with content point accuracy and kappa values at 0.86 and 0.71 on the test set.

pdf bib
Dilated LSTM with attention for Classification of Suicide Notes
Annika M Schoene | George Lacey | Alexander P Turner | Nina Dethlefs

In this paper we present a dilated LSTM with attention mechanism for document-level classification of suicide notes, last statements and depressed notes. We achieve an accuracy of 87.34% compared to competitive baselines of 80.35% (Logistic Model Tree) and 82.27% (Bi-directional LSTM with Attention). Furthermore, we provide an analysis of both the grammatical and thematic content of suicide notes, last statements and depressed notes. We find that the use of personal pronouns, cognitive processes and references to loved ones are most important. Finally, we show through visualisations of attention weights that the Dilated LSTM with attention is able to identify the same distinguishing features across documents as the linguistic analysis.

pdf bib
Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings
Denis Newman-Griffis | Eric Fosler-Lussier

Natural language processing techniques are being applied to increasingly diverse types of electronic health records, and can benefit from in-depth understanding of the distinguishing characteristics of medical document types. We present a method for characterizing the usage patterns of clinical concepts among different document types, in order to capture semantic differences beyond the lexical level. By training concept embeddings on clinical documents of different types and measuring the differences in their nearest neighborhood structures, we are able to measure divergences in concept usage while correcting for noise in embedding learning. Experiments on the MIMIC-III corpus demonstrate that our approach captures clinically-relevant differences in concept usage and provides an intuitive way to explore semantic characteristics of clinical document collections.

pdf bib
Recognizing UMLS Semantic Types with Deep Learning
Isar Nejadgholi | Kathleen C. Fraser | Berry De Bruijn | Muqun Li | Astha LaPlante | Khaldoun Zine El Abidine

Entity recognition is a critical first step to a number of clinical NLP applications, such as entity linking and relation extraction. We present the first attempt to apply state-of-the-art entity recognition approaches on a newly released dataset, MedMentions. This dataset contains over 4000 biomedical abstracts, annotated for UMLS semantic types. In comparison to existing datasets, MedMentions contains a far greater number of entity types, and thus represents a more challenging but realistic scenario in a real-world setting. We explore a number of relevant dimensions, including the use of contextual versus non-contextual word embeddings, general versus domain-specific unsupervised pre-training, and different deep learning architectures. We contrast our results against the well-known i2b2 2010 entity recognition dataset, and propose a new method to combine general and domain-specific information. While producing a state-of-the-art result for the i2b2 2010 task (F1 = 0.90), our results on MedMentions are significantly lower (F1 = 0.63), suggesting there is still plenty of opportunity for improvement on this new data.

pdf bib
Ontological attention ensembles for capturing semantic concepts in ICD code prediction from clinical text
Matus Falis | Maciej Pajak | Aneta Lisowska | Patrick Schrempf | Lucas Deckers | Shadia Mikhael | Sotirios Tsaftaris | Alison O’Neil

We present a semantically interpretable system for automated ICD coding of clinical text documents. Our contribution is an ontological attention mechanism which matches the structure of the ICD ontology, in which shared attention vectors are learned at each level of the hierarchy, and combined into label-dependent ensembles. Analysis of the attention heads shows that shared concepts are learned by the lowest common denominator node. This allows child nodes to focus on the differentiating concepts, leading to efficient learning and memory usage. Visualisation of the multi-level attention on the original text allows explanation of the code predictions according to the semantics of the ICD ontology. On the MIMIC-III dataset we achieve a 2.7% absolute (11% relative) improvement from 0.218 to 0.245 macro-F1 score compared to the previous state of the art across 3,912 codes. Finally, we analyse the labelling inconsistencies arising from different coding practices which limit performance on this task.

pdf bib
Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text
Elena Sergeeva | Henghui Zhu | Amir Tahmasebi | Peter Szolovits

Since the introduction of context-aware token representation techniques such as Embeddings from Language Models (ELMo) and Bidirectional Encoder Representations from Transformers (BERT), there has been numerous reports on improved performance on a variety of natural language tasks. Nevertheless, the degree to which the resulting context-aware representations encode information about morpho-syntactic properties of the word/token in a sentence remains unclear. In this paper, we investigate the application and impact of state-of-the-art neural token representations for automatic cue-conditional speculation and negation scope detection coupled with the independently computed morpho-syntactic information. Through this work, We establish a new state-of-the-art for the BioScope and NegPar corpus. More importantly, we provide a thorough analysis of neural representations and additional features interactions, cue-representation for conditioning, discuss model behavior on different datasets and address the annotation-induced biases in the learned representations.