Transactions of the Association for Computational Linguistics, Volume 5


Anthology ID:
Q17-1
Month:
Year:
2017
Address:
Venue:
TACL
SIG:
Publisher:
URL:
https://aclanthology.org/Q17-1
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

bib
Transactions of the Association for Computational Linguistics, Volume 5

pdf bib
Evaluating Visual Representations for Topic Understanding and Their Effects on Manually Generated Topic Labels
Alison Smith | Tak Yeon Lee | Forough Poursabzi-Sangdeh | Jordan Boyd-Graber | Niklas Elmqvist | Leah Findlater

Probabilistic topic models are important tools for indexing, summarizing, and analyzing large document collections by their themes. However, promoting end-user understanding of topics remains an open research problem. We compare labels generated by users given four topic visualization techniques—word lists, word lists with bars, word clouds, and network graphs—against each other and against automatically generated labels. Our basis of comparison is participant ratings of how well labels describe documents from the topic. Our study has two phases: a labeling phase where participants label visualized topics and a validation phase where different participants select which labels best describe the topics’ documents. Although all visualizations produce similar quality labels, simple visualizations such as word lists allow participants to quickly understand topics, while complex visualizations take longer but expose multi-word expressions that simpler visualizations obscure. Automatic labels lag behind user-created labels, but our dataset of manually labeled topics highlights linguistic patterns (e.g., hypernyms, phrases) that can be used to improve automatic topic labeling algorithms.

pdf bib
Visually Grounded and Textual Semantic Models Differentially Decode Brain Activity Associated with Concrete and Abstract Nouns
Andrew J. Anderson | Douwe Kiela | Stephen Clark | Massimo Poesio

Important advances have recently been made using computational semantic models to decode brain activity patterns associated with concepts; however, this work has almost exclusively focused on concrete nouns. How well these models extend to decoding abstract nouns is largely unknown. We address this question by applying state-of-the-art computational models to decode functional Magnetic Resonance Imaging (fMRI) activity patterns, elicited by participants reading and imagining a diverse set of both concrete and abstract nouns. One of the models we use is linguistic, exploiting the recent word2vec skipgram approach trained on Wikipedia. The second is visually grounded, using deep convolutional neural networks trained on Google Images. Dual coding theory considers concrete concepts to be encoded in the brain both linguistically and visually, and abstract concepts only linguistically. Splitting the fMRI data according to human concreteness ratings, we indeed observe that both models significantly decode the most concrete nouns; however, accuracy is significantly greater using the text-based models for the most abstract nouns. More generally this confirms that current computational models are sufficiently advanced to assist in investigating the representational structure of abstract concepts in the brain.

pdf bib
Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction
Ashutosh Modi | Ivan Titov | Vera Demberg | Asad Sayeed | Manfred Pinkal

Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.

pdf bib
Shift-Reduce Constituent Parsing with Neural Lookahead Features
Jiangming Liu | Yue Zhang

Transition-based models can be fast and accurate for constituent parsing. Compared with chart-based models, they leverage richer features by extracting history information from a parser stack, which consists of a sequence of non-local constituents. On the other hand, during incremental parsing, constituent information on the right hand side of the current word is not utilized, which is a relative weakness of shift-reduce parsing. To address this limitation, we leverage a fast neural model to extract lookahead features. In particular, we build a bidirectional LSTM model, which leverages full sentence information to predict the hierarchy of constituents that each word starts and ends. The results are then passed to a strong transition-based constituent parser as lookahead features. The resulting parser gives 1.3% absolute improvement in WSJ and 2.3% in CTB compared to the baseline, giving the highest reported accuracies for fully-supervised parsing.

pdf bib
A Polynomial-Time Dynamic Programming Algorithm for Phrase-Based Decoding with a Fixed Distortion Limit
Yin-Wen Chang | Michael Collins

Decoding of phrase-based translation models in the general case is known to be NP-complete, by a reduction from the traveling salesman problem (Knight, 1999). In practice, phrase-based systems often impose a hard distortion limit that limits the movement of phrases during translation. However, the impact on complexity after imposing such a constraint is not well studied. In this paper, we describe a dynamic programming algorithm for phrase-based decoding with a fixed distortion limit. The runtime of the algorithm is O(nd!lhd+1) where n is the sentence length, d is the distortion limit, l is a bound on the number of phrases starting at any position in the sentence, and h is related to the maximum number of target language translations for any source word. The algorithm makes use of a novel representation that gives a new perspective on decoding of phrase-based models.

pdf bib
A Generative Model of Phonotactics
Richard Futrell | Adam Albright | Peter Graff | Timothy J. O’Donnell

We present a probabilistic model of phonotactics, the set of well-formed phoneme sequences in a language. Unlike most computational models of phonotactics (Hayes and Wilson, 2008; Goldsmith and Riggle, 2012), we take a fully generative approach, modeling a process where forms are built up out of subparts by phonologically-informed structure building operations. We learn an inventory of subparts by applying stochastic memoization (Johnson et al., 2007; Goodman et al., 2008) to a generative process for phonemes structured as an and-or graph, based on concepts of feature hierarchy from generative phonology (Clements, 1985; Dresher, 2009). Subparts are combined in a way that allows tier-based feature interactions. We evaluate our models’ ability to capture phonotactic distributions in the lexicons of 14 languages drawn from the WOLEX corpus (Graff, 2012). Our full model robustly assigns higher probabilities to held-out forms than a sophisticated N-gram model for all languages. We also present novel analyses that probe model behavior in more detail.

pdf bib
Context Gates for Neural Machine Translation
Zhaopeng Tu | Yang Liu | Zhengdong Lu | Xiaohua Liu | Hang Li

In neural machine translation (NMT), generation of a target word depends on both source and target contexts. We find that source contexts have a direct impact on the adequacy of a translation while target contexts affect the fluency. Intuitively, generation of a content word should rely more on the source context and generation of a functional word should rely more on the target context. Due to the lack of effective control over the influence from source and target contexts, conventional NMT tends to yield fluent but inadequate translations. To address this problem, we propose context gates which dynamically control the ratios at which source and target contexts contribute to the generation of target words. In this way, we can enhance both the adequacy and fluency of NMT with more careful control of the information flow from contexts. Experiments show that our approach significantly improves upon a standard attention-based NMT system by +2.3 BLEU points.

pdf bib
Cross-Sentence N-ary Relation Extraction with Graph LSTMs
Nanyun Peng | Hoifung Poon | Chris Quirk | Kristina Toutanova | Wen-tau Yih

Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper, we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unified way of exploring different LSTM approaches and incorporating various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier. This simplifies handling of relations with arbitrary arity, and enables multi-task learning with related relations. We evaluate this framework in two important precision medicine settings, demonstrating its effectiveness with both conventional supervised learning and distant supervision. Cross-sentence extraction produced larger knowledge bases. and multi-task learning significantly improved extraction accuracy. A thorough analysis of various LSTM approaches yielded useful insight the impact of linguistic analysis on extraction accuracy.

pdf bib
Automatically Tagging Constructions of Causation and Their Slot-Fillers
Jesse Dunietz | Lori Levin | Jaime Carbonell

This paper explores extending shallow semantic parsing beyond lexical-unit triggers, using causal relations as a test case. Semantic parsing becomes difficult in the face of the wide variety of linguistic realizations that causation can take on. We therefore base our approach on the concept of constructions from the linguistic paradigm known as Construction Grammar (CxG). In CxG, a construction is a form/function pairing that can rely on arbitrary linguistic and semantic features. Rather than codifying all aspects of each construction’s form, as some attempts to employ CxG in NLP have done, we propose methods that offload that problem to machine learning. We describe two supervised approaches for tagging causal constructions and their arguments. Both approaches combine automatically induced pattern-matching rules with statistical classifiers that learn the subtler parameters of the constructions. Our results show that these approaches are promising: they significantly outperform naïve baselines for both construction recognition and cause and effect head matches.

pdf bib
Enriching Word Vectors with Subword Information
Piotr Bojanowski | Edouard Grave | Armand Joulin | Tomas Mikolov

Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks.

pdf bib
Fine-Grained Prediction of Syntactic Typology: Discovering Latent Structure with Supervised Learning
Dingquan Wang | Jason Eisner

We show how to predict the basic word-order facts of a novel language given only a corpus of part-of-speech (POS) sequences. We predict how often direct objects follow their verbs, how often adjectives follow their nouns, and in general the directionalities of all dependency relations. Such typological properties could be helpful in grammar induction. While such a problem is usually regarded as unsupervised learning, our innovation is to treat it as supervised learning, using a large collection of realistic synthetic languages as training data. The supervised learner must identify surface features of a language’s POS sequence (hand-engineered or neural features) that correlate with the language’s deeper structure (latent trees). In the experiment, we show: 1) Given a small set of real languages, it helps to add many synthetic languages to the training data. 2) Our system is robust even when the POS sequences include noise. 3) Our system on this task outperforms a grammar induction baseline by a large margin.

pdf bib
Head-Lexicalized Bidirectional Tree LSTMs
Zhiyang Teng | Yue Zhang

Sequential LSTMs have been extended to model tree structures, giving competitive results for a number of tasks. Existing methods model constituent trees by bottom-up combinations of constituent nodes, making direct use of input word information only for leaf nodes. This is different from sequential LSTMs, which contain references to input words for each node. In this paper, we propose a method for automatic head-lexicalization for tree-structure LSTMs, propagating head words from leaf nodes to every constituent node. In addition, enabled by head lexicalization, we build a tree LSTM in the top-down direction, which corresponds to bidirectional sequential LSTMs in structure. Experiments show that both extensions give better representations of tree structures. Our final model gives the best results on the Stanford Sentiment Treebank and highly competitive results on the TREC question type classification task.

pdf bib
Nonparametric Bayesian Semi-supervised Word Segmentation
Ryo Fujii | Ryo Domoto | Daichi Mochihashi

This paper presents a novel hybrid generative/discriminative model of word segmentation based on nonparametric Bayesian methods. Unlike ordinary discriminative word segmentation which relies only on labeled data, our semi-supervised model also leverages a huge amounts of unlabeled text to automatically learn new “words”, and further constrains them by using a labeled data to segment non-standard texts such as those found in social networking services. Specifically, our hybrid model combines a discriminative classifier (CRF; Lafferty et al. (2001) and unsupervised word segmentation (NPYLM; Mochihashi et al. (2009)), with a transparent exchange of information between these two model structures within the semi-supervised framework (JESS-CM; Suzuki and Isozaki (2008)). We confirmed that it can appropriately segment non-standard texts like those in Twitter and Weibo and has nearly state-of-the-art accuracy on standard datasets in Japanese, Chinese, and Thai.

pdf bib
Joint Modeling of Topics, Citations, and Topical Authority in Academic Corpora
Jooyeon Kim | Dongwoo Kim | Alice Oh

Much of scientific progress stems from previously published findings, but searching through the vast sea of scientific publications is difficult. We often rely on metrics of scholarly authority to find the prominent authors but these authority indices do not differentiate authority based on research topics. We present Latent Topical-Authority Indexing (LTAI) for jointly modeling the topics, citations, and topical authority in a corpus of academic papers. Compared to previous models, LTAI differs in two main aspects. First, it explicitly models the generative process of the citations, rather than treating the citations as given. Second, it models each author’s influence on citations of a paper based on the topics of the cited papers, as well as the citing papers. We fit LTAI into four academic corpora: CORA, Arxiv Physics, PNAS, and Citeseer. We compare the performance of LTAI against various baselines, starting with the latent Dirichlet allocation, to the more advanced models including author-link topic model and dynamic author citation topic model. The results show that LTAI achieves improved accuracy over other similar models when predicting words, citations and authors of publications.

pdf bib
Pushing the Limits of Translation Quality Estimation
André F. T. Martins | Marcin Junczys-Dowmunt | Fabio N. Kepler | Ramón Astudillo | Chris Hokamp | Roman Grundkiewicz

Translation quality estimation is a task of growing importance in NLP, due to its potential to reduce post-editing human effort in disruptive ways. However, this potential is currently limited by the relatively low accuracy of existing systems. In this paper, we achieve remarkable improvements by exploiting synergies between the related tasks of word-level quality estimation and automatic post-editing. First, we stack a new, carefully engineered, neural model into a rich feature-based word-level quality estimation system. Then, we use the output of an automatic post-editing system as an extra feature, obtaining striking results on WMT16: a word-level FMULT1 score of 57.47% (an absolute gain of +7.95% over the current state of the art), and a Pearson correlation score of 65.56% for sentence-level HTER prediction (an absolute gain of +13.36%).

pdf bib
Winning on the Merits: The Joint Effects of Content and Style on Debate Outcomes
Lu Wang | Nick Beauchamp | Sarah Shugars | Kechen Qin

Debate and deliberation play essential roles in politics and government, but most models presume that debates are won mainly via superior style or agenda control. Ideally, however, debates would be won on the merits, as a function of which side has the stronger arguments. We propose a predictive model of debate that estimates the effects of linguistic features and the latent persuasive strengths of different topics, as well as the interactions between the two. Using a dataset of 118 Oxford-style debates, our model’s combination of content (as latent topics) and style (as linguistic features) allows us to predict audience-adjudicated winners with 74% accuracy, significantly outperforming linguistic features alone (66%). Our model finds that winning sides employ stronger arguments, and allows us to identify the linguistic features associated with strong or weak arguments.

pdf bib
Domain-Targeted, High Precision Knowledge Extraction
Bhavana Dalvi Mishra | Niket Tandon | Peter Clark

Our goal is to construct a domain-targeted, high precision knowledge base (KB), containing general (subject,predicate,object) statements about the world, in support of a downstream question-answering (QA) application. Despite recent advances in information extraction (IE) techniques, no suitable resource for our task already exists; existing resources are either too noisy, too named-entity centric, or too incomplete, and typically have not been constructed with a clear scope or purpose. To address these, we have created a domain-targeted, high precision knowledge extraction pipeline, leveraging Open IE, crowdsourcing, and a novel canonical schema learning algorithm (called CASI), that produces high precision knowledge targeted to a particular domain - in our case, elementary science. To measure the KB’s coverage of the target domain’s knowledge (its “comprehensiveness” with respect to science) we measure recall with respect to an independent corpus of domain text, and show that our pipeline produces output with over 80% precision and 23% recall with respect to that target, a substantially higher coverage of tuple-expressible science knowledge than other comparable resources. We have made the KB publicly available.

pdf bib
Sparse Coding of Neural Word Embeddings for Multilingual Sequence Labeling
Gábor Berend

In this paper we propose and carefully evaluate a sequence labeling framework which solely utilizes sparse indicator features derived from dense distributed word representations. The proposed model obtains (near) state-of-the art performance for both part-of-speech tagging and named entity recognition for a variety of languages. Our model relies only on a few thousand sparse coding-derived features, without applying any modification of the word representations employed for the different tasks. The proposed model has favorable generalization properties as it retains over 89.8% of its average POS tagging accuracy when trained at 1.2% of the total available training data, i.e. 150 sentences per language.

pdf bib
Learning to Prune: Exploring the Frontier of Fast and Accurate Parsing
Tim Vieira | Jason Eisner

Pruning hypotheses during dynamic programming is commonly used to speed up inference in settings such as parsing. Unlike prior work, we train a pruning policy under an objective that measures end-to-end performance: we search for a fast and accurate policy. This poses a difficult machine learning problem, which we tackle with the lols algorithm. lols training must continually compute the effects of changing pruning decisions: we show how to make this efficient in the constituency parsing setting, via dynamic programming and change propagation algorithms. We find that optimizing end-to-end performance in this way leads to a better Pareto frontier—i.e., parsers which are more accurate for a given runtime.

pdf bib
Cross-Lingual Syntactic Transfer with Limited Resources
Mohammad Sadegh Rasooli | Michael Collins

We describe a simple but effective method for cross-lingual syntactic transfer of dependency parsers, in the scenario where a large amount of translation data is not available. This method makes use of three steps: 1) a method for deriving cross-lingual word clusters, which can then be used in a multilingual parser; 2) a method for transferring lexical information from a target language to source language treebanks; 3) a method for integrating these steps with the density-driven annotation projection method of Rasooli and Collins (2015). Experiments show improvements over the state-of-the-art in several languages used in previous work, in a setting where the only source of translation data is the Bible, a considerably smaller corpus than the Europarl corpus used in previous work. Results using the Europarl corpus as a source of translation data show additional improvements over the results of Rasooli and Collins (2015). We conclude with results on 38 datasets from the Universal Dependencies corpora.

pdf bib
Overcoming Language Variation in Sentiment Analysis with Social Attention
Yi Yang | Jacob Eisenstein

Variation in language is ubiquitous, particularly in newer forms of writing such as social media. Fortunately, variation is not random; it is often linked to social properties of the author. In this paper, we show how to exploit social networks to make sentiment analysis more robust to social language variation. The key idea is linguistic homophily: the tendency of socially linked individuals to use language in similar ways. We formalize this idea in a novel attention-based neural network architecture, in which attention is divided among several basis models, depending on the author’s position in the social network. This has the effect of smoothing the classification function across the social network, and makes it possible to induce personalized classifiers even for authors for whom there is no labeled data or demographic metadata. This model significantly improves the accuracies of sentiment analysis on Twitter and on review data.

pdf bib
Semantic Specialization of Distributional Word Vector Spaces using Monolingual and Cross-Lingual Constraints
Nikola Mrkšić | Ivan Vulić | Diarmuid Ó Séaghdha | Ira Leviant | Roi Reichart | Milica Gašić | Anna Korhonen | Steve Young

We present Attract-Repel, an algorithm for improving the semantic quality of word vectors by injecting constraints extracted from lexical resources. Attract-Repel facilitates the use of constraints from mono- and cross-lingual resources, yielding semantically specialized cross-lingual vector spaces. Our evaluation shows that the method can make use of existing cross-lingual lexicons to construct high-quality vector spaces for a plethora of different languages, facilitating semantic transfer from high- to lower-resource ones. The effectiveness of our approach is demonstrated with state-of-the-art results on semantic similarity datasets in six languages. We next show that Attract-Repel-specialized vectors boost performance in the downstream task of dialogue state tracking (DST) across multiple languages. Finally, we show that cross-lingual vector spaces produced by our algorithm facilitate the training of multilingual DST models, which brings further performance improvements.

pdf bib
Colors in Context: A Pragmatic Neural Model for Grounded Language Understanding
Will Monroe | Robert X.D. Hawkins | Noah D. Goodman | Christopher Potts

We present a model of pragmatic referring expression interpretation in a grounded communication task (identifying colors from descriptions) that draws upon predictions from two recurrent neural network classifiers, a speaker and a listener, unified by a recursive pragmatic reasoning framework. Experiments show that this combined pragmatic model interprets color descriptions more accurately than the classifiers from which it is built, and that much of this improvement results from combining the speaker and listener perspectives. We observe that pragmatic reasoning helps primarily in the hardest cases: when the model must distinguish very similar colors, or when few utterances adequately express the target color. Our findings make use of a newly-collected corpus of human utterances in color reference games, which exhibit a variety of pragmatic behaviors. We also show that the embedded speaker model reproduces many of these pragmatic behaviors.

pdf bib
Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation
Melvin Johnson | Mike Schuster | Quoc V. Le | Maxim Krikun | Yonghui Wu | Zhifeng Chen | Nikhil Thorat | Fernanda Viégas | Martin Wattenberg | Greg Corrado | Macduff Hughes | Jeffrey Dean

We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no changes to the model architecture from a standard NMT system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT systems using a single model. On the WMT’14 benchmarks, a single multilingual model achieves comparable performance for English→French and surpasses state-of-theart results for English→German. Similarly, a single multilingual model surpasses state-of-the-art results for French→English and German→English on WMT’14 and WMT’15 benchmarks, respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. Our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and also show some interesting examples when mixing languages.

pdf bib
Unsupervised Learning of Morphological Forests
Jiaming Luo | Karthik Narasimhan | Regina Barzilay

This paper focuses on unsupervised modeling of morphological families, collectively comprising a forest over the language vocabulary. This formulation enables us to capture edge-wise properties reflecting single-step morphological derivations, along with global distributional properties of the entire forest. These global properties constrain the size of the affix set and encourage formation of tight morphological families. The resulting objective is solved using Integer Linear Programming (ILP) paired with contrastive estimation. We train the model by alternating between optimizing the local log-linear model and the global ILP objective. We evaluate our system on three tasks: root detection, clustering of morphological families, and segmentation. Our experiments demonstrate that our model yields consistent gains in all three tasks compared with the best published results.

pdf bib
Fully Character-Level Neural Machine Translation without Explicit Segmentation
Jason Lee | Kyunghyun Cho | Thomas Hofmann

Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Our character-to-character model outperforms a recently proposed baseline with a subword-level encoder on WMT’15 DE-EN and CS-EN, and gives comparable performance on FI-EN and RU-EN. We then demonstrate that it is possible to share a single character-level encoder across multiple languages by training a model on a many-to-one translation task. In this multilingual setting, the character-level encoder significantly outperforms the subword-level encoder on all the language pairs. We observe that on CS-EN, FI-EN and RU-EN, the quality of the multilingual character-level translation even surpasses the models specifically trained on that language pair alone, both in terms of the BLEU score and human judgment.

pdf bib
Ordinal Common-sense Inference
Sheng Zhang | Rachel Rudinger | Kevin Duh | Benjamin Van Durme

Humans have the capacity to draw common-sense inferences from natural language: various things that are likely but not certain to hold based on established discourse, and are rarely stated explicitly. We propose an evaluation of automated common-sense inference based on an extension of recognizing textual entailment: predicting ordinal human responses on the subjective likelihood of an inference holding in a given context. We describe a framework for extracting common-sense knowledge from corpora, which is then used to construct a dataset for this ordinal entailment task. We train a neural sequence-to-sequence model on this dataset, which we use to score and generate possible inferences. Further, we annotate subsets of previously established datasets via our ordinal annotation protocol in order to then analyze the distinctions between these and what we have constructed.

pdf bib
Learning Distributed Representations of Texts and Entities from Knowledge Base
Ikuya Yamada | Hiroyuki Shindo | Hideaki Takeda | Yoshiyasu Takefuji

We describe a neural network model that jointly learns distributed representations of texts and knowledge base (KB) entities. Given a text in the KB, we train our proposed model to predict entities that are relevant to the text. Our model is designed to be generic with the ability to address various NLP tasks with ease. We train the model using a large corpus of texts and their entity annotations extracted from Wikipedia. We evaluated the model on three important NLP tasks (i.e., sentence textual similarity, entity linking, and factoid question answering) involving both unsupervised and supervised settings. As a result, we achieved state-of-the-art results on all three of these tasks. Our code and trained models are publicly available for further academic research.

pdf bib
In-Order Transition-based Constituent Parsing
Jiangming Liu | Yue Zhang

Both bottom-up and top-down strategies have been used for neural transition-based constituent parsing. The parsing strategies differ in terms of the order in which they recognize productions in the derivation tree, where bottom-up strategies and top-down strategies take post-order and pre-order traversal over trees, respectively. Bottom-up parsers benefit from rich features from readily built partial parses, but lack lookahead guidance in the parsing process; top-down parsers benefit from non-local guidance for local decisions, but rely on a strong encoder over the input to predict a constituent hierarchy before its construction. To mitigate both issues, we propose a novel parsing system based on in-order traversal over syntactic trees, designing a set of transition actions to find a compromise between bottom-up constituent information and top-down lookahead information. Based on stack-LSTM, our psycholinguistically motivated constituent parsing system achieves 91.8 F1 on the WSJ benchmark. Furthermore, the system achieves 93.6 F1 with supervised reranking and 94.2 F1 with semi-supervised reranking, which are the best results on the WSJ benchmark.

pdf bib
Evaluating Low-Level Speech Features Against Human Perceptual Data
Caitlin Richter | Naomi H. Feldman | Harini Salgado | Aren Jansen

We introduce a method for measuring the correspondence between low-level speech features and human perception, using a cognitive model of speech perception implemented directly on speech recordings. We evaluate two speaker normalization techniques using this method and find that in both cases, speech features that are normalized across speakers predict human data better than unnormalized speech features, consistent with previous research. Results further reveal differences across normalization methods in how well each predicts human data. This work provides a new framework for evaluating low-level representations of speech on their match to human perception, and lays the groundwork for creating more ecologically valid models of speech perception.

pdf bib
Parsing with Traces: An O(n4) Algorithm and a Structural Representation
Jonathan K. Kummerfeld | Dan Klein

General treebank analyses are graph structured, but parsers are typically restricted to tree structures for efficiency and modeling reasons. We propose a new representation and algorithm for a class of graph structures that is flexible enough to cover almost all treebank structures, while still admitting efficient learning and inference. In particular, we consider directed, acyclic, one-endpoint-crossing graph structures, which cover most long-distance dislocation, shared argumentation, and similar tree-violating linguistic phenomena. We describe how to convert phrase structure parses, including traces, to our new representation in a reversible manner. Our dynamic program uniquely decomposes structures, is sound and complete, and covers 97.3% of the Penn English Treebank. We also implement a proof-of-concept parser that recovers a range of null elements and trace types.

pdf bib
Unsupervised Acquisition of Comprehensive Multiword Lexicons using Competition in an n-gram Lattice
Julian Brooke | Jan Šnajder | Timothy Baldwin

We present a new model for acquiring comprehensive multiword lexicons from large corpora based on competition among n-gram candidates. In contrast to the standard approach of simple ranking by association measure, in our model n-grams are arranged in a lattice structure based on subsumption and overlap relationships, with nodes inhibiting other nodes in their vicinity when they are selected as a lexical item. We show how the configuration of such a lattice can be optimized tractably, and demonstrate using annotations of sampled n-grams that our method consistently outperforms alternatives by at least 0.05 F-score across several corpora and languages.

pdf bib
Replicability Analysis for Natural Language Processing: Testing Significance with Multiple Datasets
Rotem Dror | Gili Baumer | Marina Bogomolov | Roi Reichart

With the ever growing amount of textual data from a large variety of languages, domains, and genres, it has become standard to evaluate NLP algorithms on multiple datasets in order to ensure a consistent performance across heterogeneous setups. However, such multiple comparisons pose significant challenges to traditional statistical analysis methods in NLP and can lead to erroneous conclusions. In this paper we propose a Replicability Analysis framework for a statistically sound analysis of multiple comparisons between algorithms for NLP tasks. We discuss the theoretical advantages of this framework over the current, statistically unjustified, practice in the NLP literature, and demonstrate its empirical value across four applications: multi-domain dependency parsing, multilingual POS tagging, cross-domain sentiment classification and word similarity prediction.

pdf bib
Phrase Table Induction Using In-Domain Monolingual Data for Domain Adaptation in Statistical Machine Translation
Benjamin Marie | Atsushi Fujita

We present a new framework to induce an in-domain phrase table from in-domain monolingual data that can be used to adapt a general-domain statistical machine translation system to the targeted domain. Our method first compiles sets of phrases in source and target languages separately and generates candidate phrase pairs by taking the Cartesian product of the two phrase sets. It then computes inexpensive features for each candidate phrase pair and filters them using a supervised classifier in order to induce an in-domain phrase table. We experimented on the language pair English–French, both translation directions, in two domains and obtained consistently better results than a strong baseline system that uses an in-domain bilingual lexicon. We also conducted an error analysis that showed the induced phrase tables proposed useful translations, especially for words and phrases unseen in the parallel data used to train the general-domain baseline system.

pdf bib
Joint Prediction of Word Alignment with Alignment Types
Anahita Mansouri Bigvand | Te Bu | Anoop Sarkar

Current word alignment models do not distinguish between different types of alignment links. In this paper, we provide a new probabilistic model for word alignment where word alignments are associated with linguistically motivated alignment types. We propose a novel task of joint prediction of word alignment and alignment types and propose novel semi-supervised learning algorithms for this task. We also solve a sub-task of predicting the alignment type given an aligned word pair. In our experimental results, the generative models we introduce to model alignment types significantly outperform the models without alignment types.

pdf bib
Aspect-augmented Adversarial Networks for Domain Adaptation
Yuan Zhang | Regina Barzilay | Tommi Jaakkola

We introduce a neural method for transfer learning between two (source and target) classification tasks or aspects over the same domain. Rather than training on target labels, we use a few keywords pertaining to source and target aspects indicating sentence relevance instead of document class labels. Documents are encoded by learning to embed and softly select relevant sentences in an aspect-dependent manner. A shared classifier is trained on the source encoded documents and labels, and applied to target encoded documents. We ensure transfer through aspect-adversarial training so that encoded documents are, as sets, aspect-invariant. Experimental results demonstrate that our approach outperforms different baselines and model variants on two datasets, yielding an improvement of 27% on a pathology dataset and 5% on a review dataset.

pdf bib
Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge
Ryan J. Gallagher | Kyle Reing | David Kale | Greg Ver Steeg

While generative models such as Latent Dirichlet Allocation (LDA) have proven fruitful in topic modeling, they often require detailed assumptions and careful specification of hyperparameters. Such model complexity issues only compound when trying to generalize generative models to incorporate human input. We introduce Correlation Explanation (CorEx), an alternative approach to topic modeling that does not assume an underlying generative model, and instead learns maximally informative topics through an information-theoretic framework. This framework naturally generalizes to hierarchical and semi-supervised extensions with no additional modeling assumptions. In particular, word-level domain knowledge can be flexibly incorporated within CorEx through anchor words, allowing topic separability and representation to be promoted with minimal human intervention. Across a variety of datasets, metrics, and experiments, we demonstrate that CorEx produces topics that are comparable in quality to those produced by unsupervised and semi-supervised variants of LDA.