Proceedings of the Third Workshop on Representation Learning for NLP

Isabelle Augenstein, Kris Cao, He He, Felix Hill, Spandana Gella, Jamie Kiros, Hongyuan Mei, Dipendra Misra (Editors)

Anthology ID:
Melbourne, Australia
Association for Computational Linguistics
Bib Export formats:

pdf bib
Proceedings of the Third Workshop on Representation Learning for NLP
Isabelle Augenstein | Kris Cao | He He | Felix Hill | Spandana Gella | Jamie Kiros | Hongyuan Mei | Dipendra Misra

pdf bib
Corpus Specificity in LSA and Word2vec: The Role of Out-of-Domain Documents
Edgar Altszyler | Mariano Sigman | Diego Fernández Slezak

Despite the popularity of word embeddings, the precise way by which they acquire semantic relations between words remain unclear. In the present article, we investigate whether LSA and word2vec capacity to identify relevant semantic relations increases with corpus size. One intuitive hypothesis is that the capacity to identify relevant associations should increase as the amount of data increases. However, if corpus size grows in topics which are not specific to the domain of interest, signal to noise ratio may weaken. Here we investigate the effect of corpus specificity and size in word-embeddings, and for this, we study two ways for progressive elimination of documents: the elimination of random documents vs. the elimination of documents unrelated to a specific task. We show that word2vec can take advantage of all the documents, obtaining its best performance when it is trained with the whole corpus. On the contrary, the specialization (removal of out-of-domain documents) of the training corpus, accompanied by a decrease of dimensionality, can increase LSA word-representation quality while speeding up the processing time. From a cognitive-modeling point of view, we point out that LSA’s word-knowledge acquisitions may not be efficiently exploiting higher-order co-occurrences and global relations, whereas word2vec does.

pdf bib
Hierarchical Convolutional Attention Networks for Text Classification
Shang Gao | Arvind Ramanathan | Georgia Tourassi

Recent work in machine translation has demonstrated that self-attention mechanisms can be used in place of recurrent neural networks to increase training speed without sacrificing model accuracy. We propose combining this approach with the benefits of convolutional filters and a hierarchical structure to create a document classification model that is both highly accurate and fast to train – we name our method Hierarchical Convolutional Attention Networks. We demonstrate the effectiveness of this architecture by surpassing the accuracy of the current state-of-the-art on several classification tasks while being twice as fast to train.

pdf bib
Extrofitting: Enriching Word Representation and its Vector Space with Semantic Lexicons
Hwiyeol Jo | Stanley Jungkyu Choi

We propose post-processing method for enriching not only word representation but also its vector space using semantic lexicons, which we call extrofitting. The method consists of 3 steps as follows: (i) Expanding 1 or more dimension(s) on all the word vectors, filling with their representative value. (ii) Transferring semantic knowledge by averaging each representative values of synonyms and filling them in the expanded dimension(s). These two steps make representations of the synonyms close together. (iii) Projecting the vector space using Linear Discriminant Analysis, which eliminates the expanded dimension(s) with semantic knowledge. When experimenting with GloVe, we find that our method outperforms Faruqui’s retrofitting on some of word similarity task. We also report further analysis on our method in respect to word vector dimensions, vocabulary size as well as other well-known pretrained word vectors (e.g., Word2Vec, Fasttext).

pdf bib
Chat Discrimination for Intelligent Conversational Agents with a Hybrid CNN-LMTGRU Network
Dennis Singh Moirangthem | Minho Lee

Recently, intelligent dialog systems and smart assistants have attracted the attention of many, and development of novel dialogue agents have become a research challenge. Intelligent agents that can handle both domain-specific task-oriented and open-domain chit-chat dialogs are one of the major requirements in the current systems. In order to address this issue and to realize such smart hybrid dialogue systems, we develop a model to discriminate user utterance between task-oriented and chit-chat conversations. We introduce a hybrid of convolutional neural network (CNN) and a lateral multiple timescale gated recurrent units (LMTGRU) that can represent multiple temporal scale dependencies for the discrimination task. With the help of the combined slow and fast units of the LMTGRU, our model effectively determines whether a user will have a chit-chat conversation or a task-specific conversation with the system. We also show that the LMTGRU structure helps the model to perform well on longer text inputs. We address the lack of dataset by constructing a dataset using Twitter and Maluuba Frames data. The results of the experiments demonstrate that the proposed hybrid network outperforms the conventional models on the chat discrimination task as well as performed comparable to the baselines on various benchmark datasets.

pdf bib
Text Completion using Context-Integrated Dependency Parsing
Amr Rekaby Salama | Özge Alaçam | Wolfgang Menzel

Incomplete linguistic input, i.e. due to a noisy environment, is one of the challenges that a successful communication system has to deal with. In this paper, we study text completion with a data set composed of sentences with gaps where a successful completion cannot be achieved through a uni-modal (language-based) approach. We present a solution based on a context-integrating dependency parser incorporating an additional non-linguistic modality. An incompleteness in one channel is compensated by information from another one and the parser learns the association between the two modalities from a multiple level knowledge representation. We examined several model variations by adjusting the degree of influence of different modalities in the decision making on possible filler words and their exact reference to a non-linguistic context element. Our model is able to fill the gap with 95.4% word and 95.2% exact reference accuracy hence the successful prediction can be achieved not only on the word level (such as mug) but also with respect to the correct identification of its context reference (such as mug 2 among several mug instances).

pdf bib
Quantum-Inspired Complex Word Embedding
Qiuchi Li | Sagar Uprety | Benyou Wang | Dawei Song

A challenging task for word embeddings is to capture the emergent meaning or polarity of a combination of individual words. For example, existing approaches in word embeddings will assign high probabilities to the words “Penguin” and “Fly” if they frequently co-occur, but it fails to capture the fact that they occur in an opposite sense - Penguins do not fly. We hypothesize that humans do not associate a single polarity or sentiment to each word. The word contributes to the overall polarity of a combination of words depending upon which other words it is combined with. This is analogous to the behavior of microscopic particles which exist in all possible states at the same time and interfere with each other to give rise to new states depending upon their relative phases. We make use of the Hilbert Space representation of such particles in Quantum Mechanics where we subscribe a relative phase to each word, which is a complex number, and investigate two such quantum inspired models to derive the meaning of a combination of words. The proposed models achieve better performances than state-of-the-art non-quantum models on binary sentence classification tasks.

pdf bib
Natural Language Inference with Definition Embedding Considering Context On the Fly
Kosuke Nishida | Kyosuke Nishida | Hisako Asano | Junji Tomita

Natural language inference (NLI) is one of the most important tasks in NLP. In this study, we propose a novel method using word dictionaries, which are pairs of a word and its definition, as external knowledge. Our neural definition embedding mechanism encodes input sentences with the definitions of each word of the sentences on the fly. It can encode the definition of words considering the context of input sentences by using an attention mechanism. We evaluated our method using WordNet as a dictionary and confirmed that our method performed better than baseline models when using the full or a subset of 100d GloVe as word embeddings.

pdf bib
Comparison of Representations of Named Entities for Document Classification
Lidia Pivovarova | Roman Yangarber

We explore representations for multi-word names in text classification tasks, on Reuters (RCV1) topic and sector classification. We find that: the best way to treat names is to split them into tokens and use each token as a separate feature; NEs have more impact on sector classification than topic classification; replacing NEs with entity types is not an effective strategy; representing tokens by different embeddings for proper names vs. common nouns does not improve results. We highlight the improvements over state-of-the-art results that our CNN models yield.

pdf bib
Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding
Shuai Tang | Hailin Jin | Chen Fang | Zhaowen Wang | Virginia de Sa

We propose an asymmetric encoder-decoder structure, which keeps an RNN as the encoder and has a CNN as the decoder, and the model only explores the subsequent context information as the supervision. The asymmetry in both model architecture and training pair reduces a large amount of the training time. The contribution of our work is summarized as 1. We design experiments to show that an autoregressive decoder or an RNN decoder is not necessary for the encoder-decoder type of models in terms of learning sentence representations, and based on our results, we present 2 findings. 2. The two interesting findings lead to our final model design, which has an RNN encoder and a CNN decoder, and it learns to encode the current sentence and decode the subsequent contiguous words all at once. 3. With a suite of techniques, our model performs good on downstream tasks and can be trained efficiently on a large unlabelled corpus.

pdf bib
Connecting Supervised and Unsupervised Sentence Embeddings
Gil Levi

Representing sentences as numerical vectors while capturing their semantic context is an important and useful intermediate step in natural language processing. Representations that are both general and discriminative can serve as a tool for tackling various NLP tasks. While common sentence representation methods are unsupervised in nature, recently, an approach for learning universal sentence representation in a supervised setting was presented in (Conneau et al.,2017). We argue that although promising results were obtained, an improvement can be reached by adding various unsupervised constraints that are motivated by auto-encoders and by language models. We show that by adding such constraints, superior sentence embeddings can be achieved. We compare our method with the original implementation and show improvements in several tasks.

pdf bib
A Hybrid Learning Scheme for Chinese Word Embedding
Wenfan Chen | Weiguo Sheng

To improve word embedding, subword information has been widely employed in state-of-the-art methods. These methods can be classified to either compositional or predictive models. In this paper, we propose a hybrid learning scheme, which integrates compositional and predictive model for word embedding. Such a scheme can take advantage of both models, thus effectively learning word embedding. The proposed scheme has been applied to learn word representation on Chinese. Our results show that the proposed scheme can significantly improve the performance of word embedding in terms of analogical reasoning and is robust to the size of training data.

pdf bib
Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline
Kawin Ethayarajh

Using a random walk model of text generation, Arora et al. (2017) proposed a strong baseline for computing sentence embeddings: take a weighted average of word embeddings and modify with SVD. This simple method even outperforms far more complex approaches such as LSTMs on textual similarity tasks. In this paper, we first show that word vector length has a confounding effect on the probability of a sentence being generated in Arora et al.’s model. We propose a random walk model that is robust to this confound, where the probability of word generation is inversely related to the angular distance between the word and sentence embeddings. Our approach beats Arora et al.’s by up to 44.4% on textual similarity tasks and is competitive with state-of-the-art methods. Unlike Arora et al.’s method, ours requires no hyperparameter tuning, which means it can be used when there is no labelled data.

pdf bib
Evaluating Word Embeddings in Multi-label Classification Using Fine-Grained Name Typing
Yadollah Yaghoobzadeh | Katharina Kann | Hinrich Schütze

Embedding models typically associate each word with a single real-valued vector, representing its different properties. Evaluation methods, therefore, need to analyze the accuracy and completeness of these properties in embeddings. This requires fine-grained analysis of embedding subspaces. Multi-label classification is an appropriate way to do so. We propose a new evaluation method for word embeddings based on multi-label classification given a word embedding. The task we use is fine-grained name typing: given a large corpus, find all types that a name can refer to based on the name embedding. Given the scale of entities in knowledge bases, we can build datasets for this task that are complementary to the current embedding evaluation datasets in: they are very large, contain fine-grained classes, and allow the direct evaluation of embeddings without confounding factors like sentence context.

pdf bib
Exploiting Common Characters in Chinese and Japanese to Learn Cross-Lingual Word Embeddings via Matrix Factorization
Jilei Wang | Shiying Luo | Weiyan Shi | Tao Dai | Shu-Tao Xia

Learning vector space representation of words (i.e., word embeddings) has recently attracted wide research interests, and has been extended to cross-lingual scenario. Currently most cross-lingual word embedding learning models are based on sentence alignment, which inevitably introduces much noise. In this paper, we show in Chinese and Japanese, the acquisition of semantic relation among words can benefit from the large number of common characters shared by both languages; inspired by this unique feature, we design a method named CJC targeting to generate cross-lingual context of words. We combine CJC with GloVe based on matrix factorization, and then propose an integrated model named CJ-Glo. Taking two sentence-aligned models and CJ-BOC (also exploits common characters but is based on CBOW) as baseline algorithms, we compare them with CJ-Glo on a series of NLP tasks including cross-lingual synonym, word analogy and sentence alignment. The result indicates CJ-Glo achieves the best performance among these methods, and is more stable in cross-lingual tasks; moreover, compared with CJ-BOC, CJ-Glo is less sensitive to the alteration of parameters.

pdf bib
WordNet Embeddings
Chakaveh Saedi | António Branco | João António Rodrigues | João Silva

Semantic networks and semantic spaces have been two prominent approaches to represent lexical semantics. While a unified account of the lexical meaning relies on one being able to convert between these representations, in both directions, the conversion direction from semantic networks into semantic spaces started to attract more attention recently. In this paper we present a methodology for this conversion and assess it with a case study. When it is applied over WordNet, the performance of the resulting embeddings in a mainstream semantic similarity task is very good, substantially superior to the performance of word embeddings based on very large collections of texts like word2vec.

pdf bib
Knowledge Graph Embedding with Numeric Attributes of Entities
Yanrong Wu | Zhichun Wang

Knowledge Graph (KG) embedding projects entities and relations into low dimensional vector space, which has been successfully applied in KG completion task. The previous embedding approaches only model entities and their relations, ignoring a large number of entities’ numeric attributes in KGs. In this paper, we propose a new KG embedding model which jointly model entity relations and numeric attributes. Our approach combines an attribute embedding model with a translation-based structure embedding model, which learns the embeddings of entities, relations, and attributes simultaneously. Experiments of link prediction on YAGO and Freebase show that the performance is effectively improved by adding entities’ numeric attributes in the embedding model.

pdf bib
Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation
Ivan Vulić

Word vector space specialisation models offer a portable, light-weight approach to fine-tuning arbitrary distributional vector spaces to discern between synonymy and antonymy. Their effectiveness is drawn from external linguistic constraints that specify the exact lexical relation between words. In this work, we show that a careful selection of the external constraints can steer and improve the specialisation. By simply selecting appropriate constraints, we report state-of-the-art results on a suite of tasks with well-defined benchmarks where modeling lexical contrast is crucial: 1) true semantic similarity, with highest reported scores on SimLex-999 and SimVerb-3500 to date; 2) detecting antonyms; and 3) distinguishing antonyms from synonyms.

pdf bib
Characters or Morphemes: How to Represent Words?
Ahmet Üstün | Murathan Kurfalı | Burcu Can

In this paper, we investigate the effects of using subword information in representation learning. We argue that using syntactic subword units effects the quality of the word representations positively. We introduce a morpheme-based model and compare it against to word-based, character-based, and character n-gram level models. Our model takes a list of candidate segmentations of a word and learns the representation of the word based on different segmentations that are weighted by an attention mechanism. We performed experiments on Turkish as a morphologically rich language and English with a comparably poorer morphology. The results show that morpheme-based models are better at learning word representations of morphologically complex languages compared to character-based and character n-gram level models since the morphemes help to incorporate more syntactic knowledge in learning, that makes morpheme-based models better at syntactic tasks.

pdf bib
Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences
Athul Paul Jacob | Zhouhan Lin | Alessandro Sordoni | Yoshua Bengio

We propose a hierarchical model for sequential data that learns a tree on-the-fly, i.e. while reading the sequence. In the model, a recurrent network adapts its structure and reuses recurrent weights in a recursive manner. This creates adaptive skip-connections that ease the learning of long-term dependencies. The tree structure can either be inferred without supervision through reinforcement learning, or learned in a supervised manner. We provide preliminary experiments in a novel Math Expression Evaluation (MEE) task, which is created to have a hierarchical tree structure that can be used to study the effectiveness of our model. Additionally, we test our model in a well-known propositional logic and language modelling tasks. Experimental results have shown the potential of our approach.

pdf bib
Limitations of Cross-Lingual Learning from Image Search
Mareike Hartmann | Anders Søgaard

Cross-lingual representation learning is an important step in making NLP scale to all the world’s languages. Previous work on bilingual lexicon induction suggests that it is possible to learn cross-lingual representations of words based on similarities between images associated with these words. However, that work focused (almost exclusively) on the translation of nouns only. Here, we investigate whether the meaning of other parts-of-speech (POS), in particular adjectives and verbs, can be learned in the same way. Our experiments across five language pairs indicate that previous work does not scale to the problem of learning cross-lingual representations beyond simple nouns.

pdf bib
Learning Semantic Textual Similarity from Conversations
Yinfei Yang | Steve Yuan | Daniel Cer | Sheng-yi Kong | Noah Constant | Petr Pilar | Heming Ge | Yun-Hsuan Sung | Brian Strope | Ray Kurzweil

We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational responses. The resulting sentence embeddings perform well on the Semantic Textual Similarity (STS) Benchmark and SemEval 2017’s Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training, combining conversational response prediction and natural language inference. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS Benchmark and is competitive with the state-of-the-art feature engineered and mixed systems for both tasks.

pdf bib
Multilingual Seq2seq Training with Similarity Loss for Cross-Lingual Document Classification
Katherine Yu | Haoran Li | Barlas Oguz

In this paper we continue experiments where neural machine translation training is used to produce joint cross-lingual fixed-dimensional sentence embeddings. In this framework we introduce a simple method of adding a loss to the learning objective which penalizes distance between representations of bilingually aligned sentences. We evaluate cross-lingual transfer using two approaches, cross-lingual similarity search on an aligned corpus (Europarl) and cross-lingual document classification on a recently published benchmark Reuters corpus, and we find the similarity loss significantly improves performance on both. Furthermore, we notice that while our Reuters results are very competitive, our English results are not as competitive, showing room for improvement in the current cross-lingual state-of-the-art. Our results are based on a set of 6 European languages.

pdf bib
LSTMs Exploit Linguistic Attributes of Data
Nelson F. Liu | Omer Levy | Roy Schwartz | Chenhao Tan | Noah A. Smith

While recurrent neural networks have found success in a variety of natural language processing applications, they are general models of sequential data. We investigate how the properties of natural language data affect an LSTM’s ability to learn a nonlinguistic task: recalling elements from its input. We find that models trained on natural language data are able to recall tokens from much longer sequences than models trained on non-language sequential data. Furthermore, we show that the LSTM learns to solve the memorization task by explicitly using a subset of its neurons to count timesteps in the input. We hypothesize that the patterns and structure in natural language data enable LSTMs to learn by providing approximate ways of reducing loss, but understanding the effect of different training data on the learnability of LSTMs remains an open question.

pdf bib
Learning Distributional Token Representations from Visual Features
Samuel Broscheit

In this study, we compare token representations constructed from visual features (i.e., pixels) with standard lookup-based embeddings. Our goal is to gain insight about the challenges of encoding a text representation from low-level features, e.g. from characters or pixels. We focus on Chinese, which—as a logographic language—has properties that make a representation via visual features challenging and interesting. To train and evaluate different models for the token representation, we chose the task of character-based neural machine translation (NMT) from Chinese to English. We found that a token representation computed only from visual features can achieve competitive results to lookup embeddings. However, we also show different strengths and weaknesses in the models’ performance in a part-of-speech tagging task and also a semantic similarity task. In summary, we show that it is possible to achieve a text representation only from pixels. We hope that this is a useful stepping stone for future studies that exclusively rely on visual input, or aim at exploiting visual features of written language.

pdf bib
Jointly Embedding Entities and Text with Distant Supervision
Denis Newman-Griffis | Albert M Lai | Eric Fosler-Lussier

Learning representations for knowledge base entities and concepts is becoming increasingly important for NLP applications. However, recent entity embedding methods have relied on structured resources that are expensive to create for new domains and corpora. We present a distantly-supervised method for jointly learning embeddings of entities and text from an unnanotated corpus, using only a list of mappings between entities and surface forms. We learn embeddings from open-domain and biomedical corpora, and compare against prior methods that rely on human-annotated text or large knowledge graph structure. Our embeddings capture entity similarity and relatedness better than prior work, both in existing biomedical datasets and a new Wikipedia-based dataset that we release to the community. Results on analogy completion and entity sense disambiguation indicate that entities and words capture complementary information that can be effectively combined for downstream use.

pdf bib
A Sequence-to-Sequence Model for Semantic Role Labeling
Angel Daza | Anette Frank

We explore a novel approach for Semantic Role Labeling (SRL) by casting it as a sequence-to-sequence process. We employ an attention-based model enriched with a copying mechanism to ensure faithful regeneration of the input sequence, while enabling interleaved generation of argument role labels. We apply this model in a monolingual setting, performing PropBank SRL on English language data. The constrained sequence generation set-up enforced with the copying mechanism allows us to analyze the performance and special properties of the model on manually labeled data and benchmarking against state-of-the-art sequence labeling models. We show that our model is able to solve the SRL argument labeling task on English data, yet further structural decoding constraints will need to be added to make the model truly competitive. Our work represents the first step towards more advanced, generative SRL labeling setups.

pdf bib
Predicting Concreteness and Imageability of Words Within and Across Languages via Word Embeddings
Nikola Ljubešić | Darja Fišer | Anita Peti-Stantić

The notions of concreteness and imageability, traditionally important in psycholinguistics, are gaining significance in semantic-oriented natural language processing tasks. In this paper we investigate the predictability of these two concepts via supervised learning, using word embeddings as explanatory variables. We perform predictions both within and across languages by exploiting collections of cross-lingual embeddings aligned to a single vector space. We show that the notions of concreteness and imageability are highly predictable both within and across languages, with a moderate loss of up to 20% in correlation when predicting across languages. We further show that the cross-lingual transfer via word embeddings is more efficient than the simple transfer via bilingual dictionaries.