Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Alexandra Balahur, Roman Klinger, Veronique Hoste, Carlo Strapparava, Orphee De Clercq (Editors)

Anthology ID:
Minneapolis, USA
Association for Computational Linguistics
Bib Export formats:

pdf bib
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
Alexandra Balahur | Roman Klinger | Veronique Hoste | Carlo Strapparava | Orphee De Clercq

pdf bib
Stance Detection in Code-Mixed Hindi-English Social Media Data using Multi-Task Learning
Sushmitha Reddy Sane | Suraj Tripathi | Koushik Reddy Sane | Radhika Mamidi

Social media sites like Facebook, Twitter, and other microblogging forums have emerged as a platform for people to express their opinions and views on different issues and events. It is often observed that people tend to take a stance; in favor, against or neutral towards a particular topic. The task of assessing the stance taken by the individual became significantly important with the emergence in the usage of online social platforms. Automatic stance detection system understands the user’s stance by analyzing the standalone texts against a target entity. Due to the limited contextual information a single sentence provides, it is challenging to solve this task effectively. In this paper, we introduce a Multi-Task Learning (MTL) based deep neural network architecture for automatically detecting stance present in the code-mixed corpus. We apply our approach on Hindi-English code-mixed corpus against the target entity - “Demonetisation.” Our best model achieved the result with a stance prediction accuracy of 63.2% which is a 4.5% overall accuracy improvement compared to the current supervised classification systems developed using the benchmark dataset for code-mixed data stance detection.

pdf bib
A Soft Label Strategy for Target-Level Sentiment Classification
Da Yin | Xiao Liu | Xiuyu Wu | Baobao Chang

In this paper, we propose a soft label approach to target-level sentiment classification task, in which a history-based soft labeling model is proposed to measure the possibility of a context word as an opinion word. We also apply a convolution layer to extract local active features, and introduce positional weights to take relative distance information into consideration. In addition, we obtain more informative target representation by training with context tokens together to make deeper interaction between target and context tokens. We conduct experiments on SemEval 2014 datasets and the experimental results show that our approach significantly outperforms previous models and gives state-of-the-art results on these datasets.

pdf bib
Online abuse detection: the value of preprocessing and neural attention models
Dhruv Kumar | Robin Cohen | Lukasz Golab

We propose an attention-based neural network approach to detect abusive speech in online social networks. Our approach enables more effective modeling of context and the semantic relationships between words. We also empirically evaluate the value of text pre-processing techniques in addressing the challenge of out-of-vocabulary words in toxic content. Finally, we conduct extensive experiments on the Wikipedia Talk page datasets, showing improved predictive power over the previous state-of-the-art.

pdf bib
Exploring Fine-Tuned Embeddings that Model Intensifiers for Emotion Analysis
Laura Ana Maria Bostan | Roman Klinger

Adjective phrases like “a little bit surprised”, “completely shocked”, or “not stunned at all” are not handled properly by current state-of-the-art emotion classification and intensity prediction systems. Based on this finding, we analyze differences between embeddings used by these systems in regard to their capability of handling such cases and argue that intensifiers in context of emotion words need special treatment, as is established for sentiment polarity classification, but not for more fine-grained emotion prediction. To resolve this issue, we analyze different aspects of a post-processing pipeline which enriches the word representations of such phrases. This includes expansion of semantic spaces at the phrase level and sub-word level followed by retrofitting to emotion lexicons. We evaluate the impact of these steps with ‘A La Carte and Bag-of-Substrings extensions based on pretrained GloVe,Word2vec, and fastText embeddings against a crowd-sourced corpus of intensity annotations for tweets containing our focus phrases. We show that the fastText-based models do not gain from handling these specific phrases under inspection. For Word2vec embeddings, we show that our post-processing pipeline improves the results by up to 8% on a novel dataset densly populated with intensifiers while it does not decrease the performance on the established EmoInt dataset.

pdf bib
Enhancing the Measurement of Social Effects by Capturing Morality
Rezvaneh Rezapour | Saumil H. Shah | Jana Diesner

We investigate the relationship between basic principles of human morality and the expression of opinions in user-generated text data. We assume that people’s backgrounds, culture, and values are associated with their perceptions and expressions of everyday topics, and that people’s language use reflects these perceptions. While personal values and social effects are abstract and complex concepts, they have practical implications and are relevant for a wide range of NLP applications. To extract human values (in this paper, morality) and measure social effects (morality and stance), we empirically evaluate the usage of a morality lexicon that we expanded via a quality controlled, human in the loop process. As a result, we enhanced the Moral Foundations Dictionary in size (from 324 to 4,636 syntactically disambiguated entries) and scope. We used both lexica for feature-based and deep learning classification (SVM, RF, and LSTM) to test their usefulness for measuring social effects. We find that the enhancement of the original lexicon led to measurable improvements in prediction accuracy for the selected NLP tasks.

pdf bib
Using Structured Representation and Data: A Hybrid Model for Negation and Sentiment in Customer Service Conversations
Amita Misra | Mansurul Bhuiyan | Jalal Mahmud | Saurabh Tripathy

Twitter customer service interactions have recently emerged as an effective platform to respond and engage with customers. In this work, we explore the role of ”negation” in customer service interactions, particularly applied to sentiment analysis. We define rules to identify true negation cues and scope more suited to conversational data than existing general review data. Using semantic knowledge and syntactic structure from constituency parse trees, we propose an algorithm for scope detection that performs comparable to state of the art BiLSTM. We further investigate the results of negation scope detection for the sentiment prediction task on customer service conversation data using both a traditional SVM and a Neural Network. We propose an antonym dictionary based method for negation applied to a combination CNN-LSTM for sentiment analysis. Experimental results show that the antonym-based method outperforms the previous lexicon-based and Neural Network methods.

pdf bib
Deep Learning Techniques for Humor Detection in Hindi-English Code-Mixed Tweets
Sushmitha Reddy Sane | Suraj Tripathi | Koushik Reddy Sane | Radhika Mamidi

We propose bilingual word embeddings based on word2vec and fastText models (CBOW and Skip-gram) to address the problem of Humor detection in Hindi-English code-mixed tweets in combination with deep learning architectures. We focus on deep learning approaches which are not widely used on code-mixed data and analyzed their performance by experimenting with three different neural network models. We propose convolution neural network (CNN) and bidirectional long-short term memory (biLSTM) (with and without Attention) models which take the generated bilingual embeddings as input. We make use of Twitter data to create bilingual word embeddings. All our proposed architectures outperform the state-of-the-art results, and Attention-based bidirectional LSTM model achieved an accuracy of 73.6% which is an increment of more than 4% compared to the current state-of-the-art results.

pdf bib
How do we feel when a robot dies? Emotions expressed on Twitter before and after hitchBOT’s destruction
Kathleen C. Fraser | Frauke Zeller | David Harris Smith | Saif Mohammad | Frank Rudzicz

In 2014, a chatty but immobile robot called hitchBOT set out to hitchhike across Canada. It similarly made its way across Germany and the Netherlands, and had begun a trip across the USA when it was destroyed by vandals. In this work, we analyze the emotions and sentiments associated with words in tweets posted before and after hitchBOT’s destruction to answer two questions: Were there any differences in the emotions expressed across the different countries visited by hitchBOT? And how did the public react to the demise of hitchBOT? Our analyses indicate that while there were few cross-cultural differences in sentiment towards hitchBOT, there was a significant negative emotional reaction to its destruction, suggesting that people had formed an emotional connection with hitchBOT and perceived its destruction as morally wrong. We discuss potential implications of anthropomorphism and emotional attachment to robots from the perspective of robot ethics.

pdf bib
“When Numbers Matter!”: Detecting Sarcasm in Numerical Portions of Text
Abhijeet Dubey | Lakshya Kumar | Arpan Somani | Aditya Joshi | Pushpak Bhattacharyya

Research in sarcasm detection spans almost a decade. However a particular form of sarcasm remains unexplored: sarcasm expressed through numbers, which we estimate, forms about 11% of the sarcastic tweets in our dataset. The sentence ‘Love waking up at 3 am’ is sarcastic because of the number. In this paper, we focus on detecting sarcasm in tweets arising out of numbers. Initially, to get an insight into the problem, we implement a rule-based and a statistical machine learning-based (ML) classifier. The rule-based classifier conveys the crux of the numerical sarcasm problem, namely, incongruity arising out of numbers. The statistical ML classifier uncovers the indicators i.e., features of such sarcasm. The actual system in place, however, are two deep learning (DL) models, CNN and attention network that obtains an F-score of 0.93 and 0.91 on our dataset of tweets containing numbers. To the best of our knowledge, this is the first line of research investigating the phenomenon of sarcasm arising out of numbers, culminating in a detector thereof.

pdf bib
Cross-lingual Subjectivity Detection for Resource Lean Languages
Ida Amini | Samane Karimi | Azadeh Shakery

Wide and universal changes in the web content due to the growth of web 2 applications increase the importance of user-generated content on the web. Therefore, the related research areas such as sentiment analysis, opinion mining and subjectivity detection receives much attention from the research community. Due to the diverse languages that web-users use to express their opinions and sentiments, research areas like subjectivity detection should present methods which are practicable on all languages. An important prerequisite to effectively achieve this aim is considering the limitations in resource-lean languages. In this paper, cross-lingual subjectivity detection on resource lean languages is investigated using two different approaches: a language-model based and a learning-to-rank approach. Experimental results show the impact of different factors on the performance of subjectivity detection methods using English resources to detect the subjectivity score of Persian documents. The experiments demonstrate that the proposed learning-to-rank method outperforms the baseline method in ranking documents based on their subjectivity degree.

pdf bib
Analyzing Incorporation of Emotion in Emoji Prediction
Shirley Anugrah Hayati | Aldrian Obaja Muis

In this work, we investigate the impact of incorporating emotion classes on the task of predicting emojis from Twitter texts. More specifically, we first show that there is a correlation between the emotion expressed in the text and the emoji choice of Twitter users. Based on this insight we propose a few simple methods to incorporate emotion information in traditional classifiers. Through automatic metrics, human evaluation, and error analysis, we show that the improvement obtained by incorporating emotion is significant and correlate better with human preferences compared to the baseline models. Through the human ratings that we obtained, we also argue for preference metric to better evaluate the usefulness of an emoji prediction system.