Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing

Joakim Nivre, Leon Derczynski, Filip Ginter, Bjørn Lindi, Stephan Oepen, Anders Søgaard, Jörg Tidemann (Editors)


Anthology ID:
W19-62
Month:
September
Year:
2019
Address:
Turku, Finland
Venue:
NoDaLiDa
SIG:
Publisher:
Linköping University Electronic Press
URL:
https://aclanthology.org/W19-62/
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/W19-62.pdf

pdf bib
Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing
Joakim Nivre | Leon Derczynski | Filip Ginter | Bjørn Lindi | Stephan Oepen | Anders Søgaard | Jörg Tidemann

pdf bib
Mark my Word: A Sequence-to-Sequence Approach to Definition Modeling
Timothee Mickus | Denis Paperno | Matthieu Constant

Defining words in a textual context is a useful task both for practical purposes and for gaining insight into distributed word representations. Building on the distributional hypothesis, we argue here that the most natural formalization of definition modeling is to treat it as a sequence-to-sequence task, rather than a word-to-sequence task: given an input sequence with a highlighted word, generate a contextually appropriate definition for it. We implement this approach in a Transformer-based sequence-to-sequence model. Our proposal allows to train contextualization and definition generation in an end-to-end fashion, which is a conceptual improvement over earlier works. We achieve state-of-the-art results both in contextual and non-contextual definition modeling.

pdf bib
Improving Semantic Dependency Parsing with Syntactic Features
Robin Kurtz | Daniel Roxbo | Marco Kuhlmann

We extend a state-of-the-art deep neural architecture for semantic dependency parsing with features defined over syntactic dependency trees. Our empirical results show that only gold-standard syntactic information leads to consistent improvements in semantic parsing accuracy, and that the magnitude of these improvements varies with the specific combination of the syntactic and the semantic representation used. In contrast, automatically predicted syntax does not seem to help semantic parsing. Our error analysis suggests that there is a significant overlap between syntactic and semantic representations.

pdf bib
To Lemmatize or Not to Lemmatize: How Word Normalisation Affects ELMo Performance in Word Sense Disambiguation
Andrey Kutuzov | Elizaveta Kuzmenko

In this paper, we critically evaluate the widespread assumption that deep learning NLP models do not require lemmatized input. To test this, we trained versions of contextualised word embedding ELMo models on raw tokenized corpora and on the corpora with word tokens replaced by their lemmas. Then, these models were evaluated on the word sense disambiguation task. This was done for the English and Russian languages. The experiments showed that while lemmatization is indeed not necessary for English, the situation is different for Russian. It seems that for rich-morphology languages, using lemmatized training and testing data yields small but consistent improvements: at least for word sense disambiguation. This means that the decisions about text pre-processing before training ELMo should consider the linguistic nature of the language in question.

pdf bib
Is Multilingual BERT Fluent in Language Generation?
Samuel Rönnqvist | Jenna Kanerva | Tapio Salakoski | Filip Ginter

The multilingual BERT model is trained on 104 languages and meant to serve as a universal language model and tool for encoding sentences. We explore how well the model performs on several languages across several tasks: a diagnostic classification probing the embeddings for a particular syntactic property, a cloze task testing the language modelling ability to fill in gaps in a sentence, and a natural language generation task testing for the ability to produce coherent text fitting a given context. We find that the currently available multilingual BERT model is clearly inferior to the monolingual counterparts, and cannot in many cases serve as a substitute for a well-trained monolingual model. We find that the English and German models perform well at generation, whereas the multilingual model is lacking, in particular, for Nordic languages. The code of the experiments in the paper is available at: https://github.com/TurkuNLP/bert-eval

pdf bib
Multilingual Probing of Deep Pre-Trained Contextual Encoders
Vinit Ravishankar | Memduh Gökırmak | Lilja Øvrelid | Erik Velldal

Encoders that generate representations based on context have, in recent years, benefited from adaptations that allow for pre-training on large text corpora. Earlier work on evaluating fixed-length sentence representations has included the use of ‘probing’ tasks, that use diagnostic classifiers to attempt to quantify the extent to which these encoders capture specific linguistic phenomena. The principle of probing has also resulted in extended evaluations that include relatively newer word-level pre-trained encoders. We build on probing tasks established in the literature and comprehensively evaluate and analyse – from a typological perspective amongst others – multilingual variants of existing encoders on probing datasets constructed for 6 non-English languages. Specifically, we probe each layer of a multiple monolingual RNN-based ELMo models, the transformer-based BERT’s cased and uncased multilingual variants, and a variant of BERT that uses a cross-lingual modelling scheme (XLM).

pdf bib
Cross-Domain Sentiment Classification using Vector Embedded Domain Representations
Nicolaj Filrup Rasmussen | Kristian Nørgaard Jensen | Marco Placenti | Thai Wang

Due to the differences between reviews in different product categories, creating a general model for cross-domain sentiment classification can be a difficult task. This paper proposes an architecture that incorporates domain knowledge into a neural sentiment classification model. In addition to providing a cross-domain model, this also provides a quantifiable representation of the domains as numeric vectors. We show that it is possible to cluster the domain vectors and provide qualitative insights into the inter-domain relations. We also a) present a new data set for sentiment classification that includes a domain parameter and preprocessed data points, and b) perform an ablation study in order to determine whether some word groups impact performance.

pdf bib
Multiclass Text Classification on Unbalanced, Sparse and Noisy Data
Tillmann Dönicke | Matthias Damaschk | Florian Lux

This paper discusses methods to improve the performance of text classification on data that is difficult to classify due to a large number of unbalanced classes with noisy examples. A variety of features are tested, in combination with three different neural-network-based methods with increasing complexity. The classifiers are applied to a songtext–artist dataset which is large, unbalanced and noisy. We come to the conclusion that substantial improvement can be obtained by removing unbalancedness and sparsity from the data. This fulfils a classification task unsatisfactorily—however, with contemporary methods, it is a practical step towards fairly satisfactory results.