Controlled Language and the Implementation of Machine Translation for Technical Documentation

Laura Ramírez Polo

Contents

- 1. Motivation and Goal
- 2. Background: Controlled German and CL Checkers: MULTILINT
- 3. Evaluating CL Checkers
- 4. Method Outline
- Selection of resources
- 6. Conclusions and Outlook

Motivation and Goal

Evaluation of the Controlled Language Checker MULTILINT

Goal

Develop a method to assess the effectiveness of the implementation of a Controlled Language Checker

Background

- Efforts to establish guidelines for writing technical documentation have resulted in the development of Controlled Languages (CL)
- Their implementation has been frequent in industrial contexts for the past decade

Background

- Benefits of CL:

- Improvement of Readability and Comprehensibility
- Improvement of Translatability (human and machine)

- Problems:

- Difficult to make general statements (for all languages, for all contexts)
- Lack of standard methods for evaluation

Controlled German and CL Checkers: MULTILINT

Projects MULTILINT and TETRIS (1995-2002):

- Main Partners: IAI, BMW AG
- Goal: "Development of an intelligent linguistic system for the production and administration of technical documentation" (Haller, 01)

Controlled German and CL Checkers: MULTILINT

- MULTILINT aims at controlling the language by helping the authors to write according to a definite set of rules
 - Spelling
 - Grammar
 - Style
 - Vocabulary
 - Terminology

Evaluating CL Checkers

- What should be tested and how it is to be tested (interaction of modules, precision and recall, noise, etc) depends on the context
- Results of tests do not always correlate with effectiveness of CL

Evaluating MULTILINT TETRIS Project Documentation

- Scenario 1: Human Proof-reading vs.
 MULTILINT
 - Measurement of Precision and Recall
 - Results: MULTILINT not developed enough to fully substitute human proof-reading
- Scenario 2: Hit Rate in Translation Memory Systems
 - Measurement of increasement of hit rate
 - Results: lack of statistical value, subjective factors

New Evaluation Scenario

- Effectiveness of MTranslatability
 - Evaluate MULTILINT by evaluating the quality of machine translated texts
 - Source text checked with MULTILINT
 - Source text not-checked with MULTILINT
- Context Evaluation: Use of the CL Checker MULTILINT in an industrial context.

Method Outline

1. Selection of resources

- Selection of the most suitable text type
- Selection of the most suitable MT system

2. Evaluation

- Analysis of MULTILINT translatability features for MT
- 2. Assessment of effectiveness of MULTILINT's implementation

The FEMTI-Framework

- Developed within the ISLE-Project (International Standards for Language Engineering)
- Framework for the design of evaluations of MT systems
- Based on the principles of context-based evaluation (Arnold et al. 94)
- Divided in two parts:
 - Evaluation Requirements
 - System characteristics
- Presents evaluation features and different metrics, but proposes no standard metrics

Selection of resources Context definition

- Industrial environment: e.g. Automotive company
- MULTILINT is applied for the production of technical documentation
- Source language: German
- Target languages: English and probably other languages
- Study MT as a complementary solution to human translation
- Translation task: dissemination (internal and external publication)
- Users: internal users with atomotive background

Selection of resources Text type

- Some types of texts are more suitable for MT than others
- Technical documents from automobile domain (repair instructions, training documentation, owner's manuals...) were analysed
- Requirements:
 - Text length
 - Security aspects
 - Compliance with CL (Translatability indicators)
- Results: Selection of repair instructions

Selection of resources Text corpus

- Text corpus with real texts, 3000 segments for automatic evaluation
- Reduced text-corpus with 250 selected segments for human evaluation, containing:
 - Questionnaire
 - 125 segments for comprehensibility
 - 125 segments for post-editability
 - Final questionnaire

Selection of resources MT system

- Pre-selection of 3 commercial systems according to
- following criteria:
- Internal characteristics
 - Translation model: rule-based systems
 - Language pairs (Languages)I
 - Terminology (Dictionaries)
 - Status of Vendor
 - Previous evaluation studies
- External characteristics
 - Evaluation with adjustment
 - Output Quality
 - Comprehensibility and Post-Editability (Human evaluation)
 - Fidelity through BLEU (as proposed by FEMTI)

Output Quality: Evaluation Metrics

Automatic Metrics

- n-gram based metrics (BLEU, NIST)
- Advantages: cost-effective, objective, reproducibility and comparability
- Pitfalls: not always reliable, callibration with human results required, interpretation not clear, only for evaluating homogeneous systems

- Human Metrics

- Scales, Questionnaires
- Advantages: results pretty significant
- Pitfalls: costly, time-consuming, hardly reusable, subjective

Automatic Evaluation

- MT evaluation kit (NIST)
- BLEU and NIST metrics
- Evaluation of whole and reduced corpora
- Only one human reference translation (free human translation)

NIST Results Complete Corpus

BLEU Results Complete Corpus

Interpretation of Results Whole Corpus

- NIST

- Results of systems B and C are close together, though B leads the classification.
- The case-sensitive analysis stresses the differences between all systems
- System A clearly falls behind in both cases

- BLEU

- System B leads the classification.
- Results of systems A and C are close together, with a slight advantage for A, both for casesensitive and non case-sensitive analysis

NIST Results Reduced Corpus

BLEU Results Reduced Corpus

Interpretation of Results BLEU Scores

- NIST

- System B leads the classification
- System C follows, closely followed by system A
- The case sensitive analysis, there is a classification switch between systems A and C (now system C is behind)

- BLEU

- System B leads the classification
- System C follows, closely followed by system A
- The case sensitive analysis, there is a classification switch between systems A and C (now system C is behind)

Conclusions

- Clear advantage of system B in all cases and for all scores
- Unclear scores for A and C
- Difficult to state what these results mean for a real translation workflow

Human Evaluation Reduced Corpus

- Evaluation of following criteria:
 - Comprehensibility: 4-point Scale from "Very Intelligible" to "Non-Intelligible"
 - Post-Editability: 4-point scale from "No postedition needed" to "Total post-edition"
- Properties of criteria (based on Rodrigo & Braun Chen 01 and derived from FEMTI)
 - K4IN: Key for Information Purposes -> Comprehensibility
 - K4TR: Key for Dissemination Purposes -> Post-Editability

Human Evaluation Comprehensibility Results

Interpretation of Results Comprehensibility

- System B leads in the categories "Totally and very intelligible" and occupies a middle range in the "non-intelligible" category
- System A has a middle score in "Totally intelligible", but a high score in "no intelligible";
- System C has a middle score in "very intelligible", and the highest scores in "intelligible" as well as the lowest in "non-intelligible".
 - Assumption: improvement of middle scores by implementing imperative construction rule (German -> English)

Human Evaluation Post-Editability Results

POST-EDITABILITY (GROUPED) 70,00% 60.00% 50,00% System a 40,00% ■ System b 30,00% ■ System c 20,00% 10,00% 0.00% No post-editing or slightly Much or completel postpost-editing needed editing needed

Human Evaluation Post-Editability Results

- System A offers the highest number of totalpostedition and, despite the middle range in "no post-edition", the low score in minimal postedition makes it fall behind
- System B offers the highest result in "non postedition needed" and middle results in the rest categories
- System C offers the lowest no post-edition needed result, but also the lowest "total postedition", as well as the highest minimal postedition results.
 - Assumption: improvement of "total post-edition" scores by implementing imperative construction rule (German -> English)

Conclusions

- System A does not offer the desired output quality and falls behind systems B and C. This can be clearly seen both in the human evaluation and in the automatic evaluation.
- System B offers the best overall results, both in the human evaluation and in the automatic evaluation.
- Systems C offers middle results, though sometimes better results than the other two systems. This is especially significant in the human evaluation of posteditability, where results of B and C are very close together.
 - New Hypothesis: implementation of new grammar rule (imperative structure rule German into English) could improve the quality of system C
 - Trennschloss entriegeln -> Release belt lock
 - V
 - Trennschloss entriegeln -> **B**elt lock **r**elease

Outlook

- Optional: Prove hypothesis with system C
- Evaluation of the CL Checker MULTILINT
 - Translation of texts conforming to CL vs. non-conforming texts.
 - Analysis of MULTILINT rules to assess degree of translatability
 - Comparison of rules for human and for machine translatability
 - Study which new rules could improve machine translatability
 - Task-performance evaluation

