FreeLing: From a multilingual open-source analyzer suite to an
EBMT platform

David Farwell Lluis Padré
Dept. Llenguatges i Sistemes Informatics Dept. Llenguatges i Sistemes Informatics
TALP Research Centre TALP Research Centre
Universitat Politécnica de Catalunya Universitat Politécnica de Catalunya
Barcelona, Spain Barcelona, Spain
farwell@lsi.upc.edu padro@lsi.upc.edu
Abstract

FreeLing is an open-source library providing a wide range of language analysis utilities for
several different languages. It is intended to provide NLP application developers with any text
processing and language annotation tools they may need in order to simplify their development task.

Moreover, FreeLing is customizable and extensible. Developers can use the default linguistic
resources (dictionaries, lexicons, grammars, etc.), or extend them, adapt to particular domains, or
even develop new resources for specific languages.

Being open-source has enabled FreeLing to grow far beyond its original capabilities, especially
with regard to linguistic data: contributions from its community of users, for instance, include
morphological dictionaries and PoS tagger training data for Galician, Italian, Portuguese, Asturian,
and Welsh.

In this paper we present the basic architecture and the main services in FreeLing, and we outline
how developers might use it to build competitive NLP systems and indicate how it might be
extended to support the development of Example-Based Machine Translation systems.

1 Introduction

Basic language processing such as tokenizing, morphological analysis, lemmatizing, PoS tagging,
word sense disambiguation, dependency parsing, etc., is essential for most natural language
processing applications such as Machine Translation, Text Summarization, Dialogue processing, and
SO on.

This dependence turns language analysis technologies into very valuable resources for any NLP
research or development task, and the lack of availability of state-of-the-art systems constitutes a
severe bottleneck to greater progress in the area, whether for research or development.

In additional, a large part of the effort required to develop NLP systems is devoted to the
adaptation of existing software resources to the platform, programming language, format or API of
the final application.

Thus, the objective of the FreeLing environment is to provide an environment in which basic NLP
tools and resources are generally available and may be used without restrictions, so as to enhance the
rapid development of advanced, more portable, NLP technologies.

We suggest that this same approach, if not FreeLing itself, can serve as a basis for developing an
environment for the efficient implementation of advanced, state-of-the-art EBMT systems. Taking
FreeLing as a point of departure, the focus of such an effort would be on providing greater support for
the development of transfer and generation modules, for corpus alignment and mark up, and for
equivalency discovery (that is to say, terminology and example induction). We assume that much of
this software is already freely available from existing open-source research and development
platforms and would mainly require interchange formats and possibly “rationalization,” that is to say,
the division of complex, interactive software components into simpler more focused utilities. By
integrating such resources into an existing NLP applications development environment such as
FreeLing, research and development of EBMT systems would be greatly enhanced.

Mikel L. Forcada, Andy Way (eds.)
Proceedings of the 8rd Workshop on Example-Based Machine Translation, p. 37-43
Dublin, Ireland, November 2009

2 FreeLing

In the remainder of this paper we describe version 2.1 of the FreeLing suite of NLP tools and
resources. FreeLing was first released in February 2004 providing morphological analysis and PoS
tagging for Catalan, Spanish, and English. From then on, the package has been improved and enlarged
to cover more languages (Italian, Galician, Welsh, Portuguese and Asturian) and to offer more
services: Named entity recognition and classification, chunking, dependency parsing, WordNet-based
semantic annotation, UKB word sense disambiguation, and coreference resolution.

FreeLing is not conceived as an end-user oriented tool, but as library on top of which powerful
NLP applications can be developed.

A remarkable feature of FreeLing is that it is distributed under a free-software GPL license, thus
enabling any developer to adapt the package to his needs in order to get the most suitable behaviour
for the application being developed.

Also, the library is designed to separate algorithms from linguistic data to the largest possible
extent, making it possible to port most of the functionalities to new languages by simply supplying
linguistic data files.

3 FreeLing 2.1 Features

Version 2.1 of the suite provides the following features:

e Tokenization.

e Sentence splitting.

Morphological analysis, with advanced suffix and prefix handling (diminutive, appreciative,

clitic pronouns, etc.).

Date/time expression recognition.

Currency expression recognition.

Numerical expression recognition (numbers, quantities, percentages, ratios, etc.).

Physical magnitude expression recognition: Speed (e.g. 120 Km/h), length (e.g. 23 cm.),

pressure (e.g. 12.3 in/ft2), frequency, density, power, etc.

e Part-of-Speech tagging. Two algorithms are provided: an HMM trigram model following [4],
and a relaxation labelling model based on [6] which enables the use of handwritten rules
together with the statistical models.

e Named Entity detection and classification. The classification module is based on Machine
Learning techniques, namely, the AdaBoost-based system winner of CoNLL’02 [5].

e Re-tokenization after PoS tagging. Some words in the Romance languages can be split once
their Part-of-speech is known. For instance, the word vela in Spanish may be a noun (candle)
but it also may mean “see her” if it is interpreted as an imperative form of the verb ver (to
see) plus the enclitic pronoun /a (her). The suffix handler is able to detect such cases and
enrich the analysis with the relevant information. After tagging, when the category is known,
the word may be split to ease syntactic analysis, or simply left whole with the information
explicitly indicated.

e Chart Parser, a reimplementation of [3].

e Dependency parser, as described in [2].

e Sense annotator for English, Spanish, and Catalan based on WordNet1.6, along with most-
frequent-sense word sense disambiguation.

e Seamless integration of the UKB word sense disambiguation [1] for any language having a
freely available WordNet.

e (Coreference resolution module based on [7].

Given the community-generated nature of the software, not all services are available for all
languages. Coreference resolution and Named Entity classification are available only for Spanish.
Shallow and dependency parsing is not available for Welsh, Portuguese, and Italian, and only
morphological analysis is available for Asturian.

38

4 FreeLing Architecture

FreeLing is a C++ library, with APIs for java, perl and python. It is based on a client-server
architecture, oriented to NLP developers aiming to ease the integration of language analysis services
into the development of higher level applications.

This architecture consists of a simple two-layer, client-server approach: A basic linguistic service
layer which provides core analysis procedures (morphological analysis, tagging, parsing, etc.), and an
application layer which, acting as a client, which requests the desired services from the basic service
layer.

In this scenario, integrating the basic analyzers in a new NLP application is reduced to three
simple steps:

e Convert the data from application internal representation to the service API data structures.

e (all the service and obtain the results.

e Convert the results to the application internal representation.

Obviously, if the application is developed natively over FreeLing, it can use its data structures in a
straightforward manner, reducing the interaction to a simple function call.

The advantages of this architecture are:

e [t enables to use the analysis routines as a function call from any NLP application, not as a
separate software package. This is a crucial issue for modern NLP, especially for high level
application development.

e The clients requesting analysis services may be not only NLP applications, but also other
service providing modules (e.g. a parsing module might request a PoS tagging service). This
enables the construction of increasingly more complex language analysis servers.

e Conversions are performed between client application data structures and server library data
structures, being unnecessary to define data interchange formats between analyzers, and
dramatically reducing the overhead caused by the reading, writing, parsing, and transmitting
of text-based representations such as XML, SGML. Note that this does not mean that the
client application has to adapt its input/output formats or internal representations. So long as
the library is accessed via its API, the client application may handle the data at will.

e The linguistic processors do not need to be initialized for each piece of text to be analyzed.

e The application may decide how and when to invoke each analyzer, and on which text
segment (i.e. there is no need for whole-text pipelined processing).

e The client-server approach enables the interaction between objects via some standard
distributed object middleware (e.g. setting them as web services) which makes it possible to
distribute applications over a network, activate several instances of the same service, if
necessary, as well as executing on any platform client applications written in any
programming language.

5 Some Internal Details

The internal architecture of FreeLing is based on two kinds of objects: linguistic data objects and
processing objects.

5.1 Linguistic Data Classes

The basic classes in the library are used to contain linguistic data (such as a word, a PoS tag, a
sentence, a document, etc.). Any client application must be aware of these classes in order to be able
to provide to each processing module the right data, and to correctly interpret the module results.

The linguistic classes supported by the current version are:

e analyses: A tuple <lemma, PoS tag, probability, senses>.

e words: A word form with a list of possible analysis.

e sentences: A list of words known to be a complete sentence, it may include also a parse tree
and/or a dependency tree.

e paragraphs: A list of sentences known to be an independent paragraph.

39

e documents: A list of paragraphs that form a complete document. It may also contain
coreference information about the entity mentions in the document.

Figure 1 presents a UML diagram with the linguistic data classes

document

- fg a vector ofm
-title: paragraph

-group2node: multimap
-node2qroup: map

paragraph <i§- a vector ofm

a MN is composed bym

; 415 a vector of
word - <> sentence
ais a list -form: string has a|-Pt: parse_tree
-multiword: listewords= -dt: dep tree
-selected: iterator
analysis -start: int
-finish: int dep tree
-lemma: string [|-1n_dict: bool = has aw
-parole: string -user: yoid ¥
-probability: double
-5enses: 1ist<string> parse tree
-retok: listeword= =
Amale of
depnode
made ofm
-source: string
-target: string
-resylt: string node
co-responds to am -
-label: string
-« corresponds to a -wi word *
-head: bool
-chunk: int

Figure 1: FreeLing-2.1 Linguistic Data Classes.

5.2 Processing Classes

Apart from classes containing the linguistic data, the library provides classes able to transform this
data:

e tokenizer: Receives plain text and returns a list of word objects.

e gplitter: Receives a list of word objects and returns a list of sentence objects.

e morfo: Receives a list of sentences and morphologically annotates each word object in each
sentence. In fact, this class applies a cascade of specialized processors (number detection,
date/time detection, multiword detection, dictionary search, etc.) each of which is in turn a
processing class:

o locutions: Multiword recognizer.
dictionary: Dictionary lookup and suffix handling.
numbers: Numerical expressions recognizer.
dates: Date/time expressions recognizer.
quantities: Ratio and percentage expressions and monetary amount recognizer.
punts: Punctuation symbol annotator.
probabilities: Lexical probabilities annotator and unknown words handler.
np: Proper noun recognizer.

O O O OO O O

40

e tagger: Receives a list of sentence objects and disambiguates the PoS of each word object in
each sentence. If the selected analysis carries re-tokenization information, the word may be
split in two or more new words.

® NE classifier: Receives a list of sentence objects and classifies all word objects tagged as
proper nouns in each sentence.

e Sense annotator: Receives a list of sentence objects and enriches with synset information the
analysis chosen by the tagger for each word object.

e Word sense disambiguator: Receives a list of sentence objects and ranks the possible senses
for the analysis chosen by the tagger for each word object.

e chunk parser: Receives a list of sentence objects and enriches each of them with a parsed tree
object.

e dependency parser: Receives a list of parsed sentence objects and enriches each of them with
a dependency tree object.

e coreference solver: Receives a document formed by parsed sentence objects and enriches the
document with coreference information.

Figure 2 below presents a UML diagram with the processing classes.

The client application is free to decide in which format to input, output or store its linguistic data,
and only needs to translate it into the classes described above when interacting with the library. Also,
the client application is free to decide which processing steps the library is going to be used for —e.g.
the application may require a tagger for Spanish but not for Catalan, or it may want to call the
morphological analyzer directly skipping tokenization and sentence splitting, or it may only want to
apply a date/time expressions recognizer, without using any other functionality, and so on.

6 Extending FreeLing to support EBMT

While what counts as EBMT is not immediately obvious, a classic model, which grew out of the need
to improve the non-fluent target language output of rule-based Japanese-English translation systems,
is based on a standard transfer approach between syntactic dependency representations for source and
target languages. Roughly the idea is to match the input string against the source language expressions
of an example-base and, if a match is successful, the example, syntactically annotated, is used to
identify the target language equivalent, thereby circumventing the actual application of the rule base.
If no match is found, then the input is analysed using the rule base and the results of the two
procedures are merged. In general, the more the translation process is able to take advantage of the
example base, the more accurate and fluent the translation.

Given this classic model, then in addition to the basic utilities for language analysis described
above, utilities to support the development of transfer and generation procedures will need to be
integrated into the FreeLing environment. Many of these utilities may already be publically available
(e.g., from Apertium [8], the NLG tools [9] from GATE [10], etc.), particularly for the relatively
shallow representations typical of MT. They need only be adapted to the FreeLing environment.
Given the general trend today toward the development of open-source software, other utilities no
doubt may be added as they become available. Still others might be taken from existing open-source
transfer and generation components or systems by decomposing them into their component
procedures.

Just as importantly, however, the FreeLing environment must be extended to support the
development of bilingual and multilingual corpus annotation procedures as well as the development of
discovery procedures for finding translation equivalents, i.e., bilingual or multilingual term banks and
example bases. Indeed, by one interpretation of EBMT, the source language expression is segmented
entirely on the basis of the source language expressions in the example base possibly without any
recourse to syntactic or other annotation. In addition, tools for matching the input against the example
base and for recombining the target language equivalents during generation all must be integrated into
the FreelLing platform as well. Assuming that such tools are statistical, there may be little to
distinguish what is needed for EBMT from what is needed for standard phrase-base statistical MT
such as corpus alignment and translation model induction procedures. Again, much of this software is
already freely available from existing open-source research platforms (e.g., Egypt tookit [11], the
CMU-Cambridge Toolkit [12], Moses [13], openTMS, etc.) and will mainly require adaptation to the

41

Buiyaauyg

1211298
ion (3 sedy estedyers) duoo]

EES T (1T T ¥

PION :[9 <8UPIUBE»L5C)) a2k Bue-|

PIOA :[§ <@IUBILAS1STY)S24BUES
13sied Heyd

PIOA G (3 <Baumuas>lsT)azkieue+)

pros c([J31anop & duesa) (L 185E72-

PIOA (3 <30uB}Uss>351)] azky Bl
1ojenBiquesip

[or0x (3 < <iassies-ioyony souewas)epn
_ JopeINe Sinea)

Fon (3 <osueyuass oL sah eued]

ran -, | sesuss |e o ______
PToA (31qN0p AT JUT)IUTRIY f '
pron ¢ (8 e qoud)yasale] ' ’
e - = — Jyton (3 <souspuessystyiszinewer] [oton (3 <causiuessystyazheuer] “
_ 12b6hey xepi _ _ 126683 Wy _ i
'
| | '
Av '
= '
PTOA © (3 <30UBILBS1ST] | BZTUSY0LA K]
IEIep sjusaoe 16 sajep PTOA (5 <82UB3UIE>}ST]) 82k RuE+ 4
= Jebbe; e o oo '
ua sajep
_ [Sorns-sorsan (9 Furis-a035an juarsennase s+ 25 sa1ep
e sajuenb _ sjuae _ X
= ry 53 sajep
i , —
— nejap saje|
U3 saqnuEnD | hlkaddhad iy uonen|ddy
! ! !

s3 sapnuenb [prer 15 dswonatp snzesait wpuonas Ty sarmins 10 o]

a1

'
'
'
'
'
'
'
'
'
- _ SaxLINS _ v "
Jnejap sapuenb \r IO ST S e P 0
futis s '
! WeTpT N '
||||| .“ ST '
'
'
' '
0 P o '
' futis ueais '
<Buts Butiissden :iavasimog] Py T TP YRy Buays Haniaoe) '
PLOA © (5 8IUEIUIE) FLELOULEH <Lur BunIS>den 403 i pIOA (3 #OURLUES)FIELOUUEH) <UL Burs>de : saug PIGN (9 20UBLUFS) B1BLOUUEF "
_ sanijiqeqoid 7 sanijuenb .m_..o_—=uo__ fieuonoip sajep _ syund '
'
) A)) A A '
LD _v\ ||||||| L O P Ao e e o _v\ |||||||||||||||||| e - '
! '
'
'

A01EJ3YT: 13081038 (7 BOUELUAS)PIOATLIFHPLIMG -
PTOA : (J0JEDIT:2I03]U3S) STSHIPUKPIONTI]NMIBS
PTOA :(JO3PIIIT7 ANINGS * UL T 10T JSUOT 1IWILEIS
PTON :({)SHOTIINRSAY*

QT (P 3RINAS ‘ 10JEIRIT 5 iU IS J0T Juay0 aLndo) -
T (% T T)uayoy _ .ﬂu.__ﬁm —A

JuTr3Es (R
[SDOL %K] [51L¥LS

T EuRAYE '
ajeysdugss 1
'
'

FreeLing environment.

UML diagram with the processing classes.
42

Figure 2

Finally, access to publically available bilingual and multilingual resources such as dictionaries,
term banks, gazetteers, translation memories and at least some core parallel bilingual as well as
multilingual corpora should be made available as well. Of particular interest here are the Europarl
[14], the Canadian Hansard [15], and Hong Kong Hansard [16] corpora. Beyond these there is a
wealth of publically available parallel corpora which could be integrated as needed as well into the
FreeLing environment in a relatively straightforward manner. In time, depending on the contributions
of the user community, annotated corpora should also be made available.

7 Conclusion

With extensions such those sketched above, FreeLing, or some similar NLP development platform,
could function as a productive open-source environment for the development of state-of-the-art
EBMT systems, providing the basic utilities for the implementation of a wide range of EBMT
software and resources. As such, it would significantly reduce the software bottleneck faced by
EBMT developers today and make an important contribution to the long term success of example-
based machine translation

8 References

[1] E. Agirre, A. Soroa: Personalizing pagerank for word sense disambiguation, in Proceedings of the 12th
Conference of the European chapter of the Association for Computational Linguistics (EACL-2009),
Athens, Greece, 2009.

[2] J. Atserias, E. Comelles, A. Mayor: Txala — un analizador libre de dependencias para el castellano,
Procesamiento del Lenguaje Natural, (35):455-456, September 2005.

[3] J. Atserias, H. Rodriguez: Tacat — Tagged corpus analyzer tool, Technical report LSI-98-2-t,
Departament de LSI. Universitat Politécnica de Catalunya, 1998.

[4] T. Brants: Tnt — a statistical part-of-speech tagger, in Proceedings of the 6th Conference on Applied
Natural Language Processing, ANLP, 2000.

[5] X. Carreras, L. Marquez, L. Padrd: Named entity extraction using adaboost, in Proceedings of CoNLL
Shared Task, pp. 167-170, Taipei, Taiwan, 2002.

[6] L. Padr6é: A Hybrid Environment for Syntax—Semantic Tagging, PhD thesis, Dept. Llenguatges i
Sistemes Informatics. Universitat Politécnica de Catalunya, February 1998. http://www.lIsi.upc.es/ padro.

[71 W.M. Soon, H. T. Ng, and D.C.Y. Lim: A machine learning approach to coreference resolution of noun
phrases. Computational Linguistics, 27(4):521-544, 2001.

[8] F. Sanchez-Martinez, J. A. Pérez-Ortiz, M. L. Forcada: Integrating corpus-based and rule-based
approaches in an open-source machine translation system, in Proceedings of METIS-II Workshop: New
Approaches to Machine Translation, Computational Linguistics in the Netherlands 17, p. 73—S8, 2007.

[9] K. Bontcheva: Open-source Tools for Creation, Maintenance, and Storage of Lexical Resources for
Language Generation from Ontologies, Fourth International Conference on Language Resources and
Evaluation. 2004.

[10] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan: GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and Applications, in Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics, 2002.

[11] The EGYPT toolkit. Developed by the Statistical Machine Translation team, WS'99, CLSP/JHU.
http://www.clsp.jhu.edu/ws99/projects/mt

[12] P.R. Clarkson, R. Rosenfeld:.Statistical Language Modeling Using the CMU-Cambridge Toolkit, in
Proceedings of the ESCA Eurospeech, 1997. http://mi.eng.cam.ac.uk/~prc14/toolkit.html

[13] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, Marcello, N. Bertoldi, B. Cowan, W.
Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, E. Herbst: Moses: Open Source Toolkit for
Statistical Machine Translation, in Proceedings of the 47" ACL, Demo and Poster Sessions. 177—180,
2007

[14] P. Koehn: Europarl — A Parallel Corpus for Statistical Machine Translation, in Proceeding of the MT
Summit, 2005.

[15] S. Roukos, D. Graff, D. Melamed: Hansard French/English, Linguistic Data Consortium, Philadelphia,
1995.

[16] X.Ma: Hong Kong Hansards Parallel Text, Linguistic Data Consortium, Philadelphia, 2000

43

