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Abstract
This paper presents MISTRAL, an open source statistical machine translation decoder dedicated to spoken language translation. While
typical machine translation systems take a written text as input, MISTRAL translates word lattices produced by automatic speech recog-
nition systems. The lattices are translated in two passes using a phrase-based model. Our experiments reveal an improvement in BLEU

when translating lattices instead of sentences returned by a speech recognition system.

1. Introduction
Automatic Speech Recognition systems (ASR) are intended
to recognize a text that was spoken by a performer and Ma-
chine Translation systems (MT) are intended to translate
written texts from one language to the other. It thus seems
natural to put those systems together when translating spo-
ken languages.
It is unfortunately not always that simple because written
and spoken texts are not as similar as we may think. Spoken
language transcriptions present many problems to a tradi-
tional MT system. First, it contains many disfluencies (rep-
etitions, hesitations and other artifacts). Second, it is not
easy to recover the structural elements of the message such
as punctuation marks, sentence and paragraph boundaries
or capitalization. The system presented in this work aims
at solving a third problem, namely the robustness of the MT
system regarding recognition errors made by the ASR sys-
tem.
Most speech recognition systems do not convert an audio
signal to text greedily one word at a time. They rather gen-
erate a lattice where edges correspond to words and nodes
to boundaries between words (see Figure 1). ASR systems
return the sentence associated with the best path between
the source and the sink nodes, which correspond to the be-
ginning and ending of the audio signal. A recognition error
happens when a spoken word is unknown to the system or
when the wrong path is selected.
In this work, we present MISTRAL, a statistical MT system
designed to translate lattices produced by ASR systems. The
motivation for lattice translation is the hope that the knowl-
edge embedded in the MT system will help the ASR system
to reduce its recognition errors (Ney, 1999).
Word lattices have already been translated by systems based
on finite state transducers (Saleem et al., 2004; Matusov et
al., 2005; Zhang et al., 2005; Mathias and Byrne, 2006).
Our decoder manipulates the same kind of lattices as finite
state transducers, but it allows a finer control on pruning
policies and it eases the recovery of aggregated informa-
tions like individual feature function values.
Translating only the sentence returned by the ASR system
is not optimal, but translating a lattice requires a dedicated
decoder. A compromise is to translate an n-best list of sen-
tences extracted from the lattice and then select the best

Figure 1: A lattice of words where nodes are labelled with
time and edges with words.

translation (Zhang et al., 2004; Quan et al., 2005). Most of
the sentences of a given list will be very similar, so trans-
lating each of them independently is more computationally
expensive than translating a lattice where common parts are
factored.
Bertoldi et al. (2007) present an algorithm translating con-
fusion networks. Confusion networks are lattices where
each node has at most one predecessor and one successor.
Their algorithm deals with non-monotone efficiently trans-
lations because word boundaries are the same for all the
sentences in a given confusion network. On the other hand,
another system must be created and tuned to convert word
lattices into confusion networks.
The decoder presented in this work was initially devel-
oped for the International Workshop on Spoken Language
Translation (IWSLT) (Fordyce, 2007; Patry et al., 2007).
It is a phrase-based system (Koehn et al., 2003) trans-
lating lattices in two passes. The first pass simultane-
ously recognizes and translates the source sentence and
the second pass rescores a list of top-ranked translations
obtained from the first pass. MISTRAL is licensed under
the Gnu General Public License1 and is available from
http://smtmood.sourceforge.net.
Other open source decoders translating lattices have been
developed. While MISTRAL uses lattices for spoken lan-

1http://www.gnu.org/copyleft/gpl.html



guage translation, MARIE uses them to encode word re-
ordering (Crego and Mariño, 2007). MOSES (Koehn et al.,
2007) translates confusion networks and lattices, but at the
time of this writing, its lattice translation algorithm is not
documented. We are thus not able to compare our work
with it.
This paper is organized as follow. The next section presents
the theoretical framework of spoken language translation.
We describe our decoder in section 3 and evaluate our com-
plete system in section 4. We finally conclude in section 5.

2. Lattice Translation
A statistical MT system searches the target sentence (t) hav-
ing the highest probability to translate a given source sen-
tence (s):

t? = argmax
t∈Lt

Pr(t|s) (1)

where Lt is the set of valid sentences in the target language.
When translating a lattice of words (o), both the source and
the target sentences are unknown. The statistical MT system
thus seeks to solve:

t? = argmax
t∈Lt

∑
p∈Po

Pr(t, sp,p|o) (2)

wherePo is the set of paths from the source node to the sink
node in o and sp is the source sentence associated with path
p.
The decoder described in this work estimates Eq. (2) under
the so-called maximum approximation:

t̂ = argmax
t∈Lt

max
p∈Po

Pr(t, sp,p|o) (3)

3. Decoder
A typical phrase-based decoder (Koehn et al., 2003) trans-
lates a source sentence one phrase at a time using a trans-
lation table (a bilingual dictionary of phrases). A partial
target sentence can be extended by the translation of any
untranslated phrase in the source sentence. The initial tar-
get is made of an empty sentence and a translation is com-
pleted when all the source words have been translated.
When translating a lattice, the source sentence is generated
along with the target sentence while the lattice is traversed.
When a translation is extended with a pair of phrases, the
decoder walks the path corresponding to the source phrase
in the lattice. The initial translation starts at the source
node and a translation is completed when it reaches the sink
node.
Conceptually, our decoder combines a source word lattice
and a translation table into a translation lattice where nodes
correspond to phrase boundaries and edges correspond to
pair of phrases (see Figure 2). As the translation lattices are
created during traversal, they can be pruned and traversed
effectively regardless of their size.
The search for a translation will fail if all the paths in the
lattice contain a phrase that is unknown to the translation
table. To avoid this kind of failure, unknown words fol-
lowing a partial translation that cannot be extended are all
considered to be translated by themselves.

Italian English

non not, don’t
fumatory smoker
non fumatory non-smoking

+

=

Figure 2: The word lattice is combined with the translation
table to generate an implicit translation lattice.

The probability of a translation is approximated using an
exponential model. A first model is used to generate an n-
best list of translations and a second model to reorder this
list.

3.1. Model
To approximate the value of Pr(t, sp,p|o) in Eq. (3), we
use an exponential model:

t̂ = argmax
t∈Lt

max
p∈Po

Z−1 exp

(∑
r

λrfr(t, sp,p,o)

)
= argmax

t∈Lt

max
p∈Po

∑
r

λrfr(t, sp,p,o)
(4)

where Z is a normalization factor, fr(·, ·, ·, ·) are feature
functions returning real values and λr are free parameters
weighting the feature functions.
As MISTRAL is implemented with a modular framework
(Patry et al., 2006), feature functions are easy to add. At
the time of this writing, it supports ASR scores in lattices,
source and target language models, scores in translation ta-
bles and IBM model 1 scores (Och et al., 2004).

3.2. First pass
Exploring the entire translation lattice would be intractable,
thus it must be pruned. A common pruning technique in
statistical MT consist in grouping together partial transla-
tions covering a similar portion of the source sentence and
then considering only the top ranked translations of each
group.
Partial translations are usually grouped by the number of
words they translate. As the number of source words is
not fixed when translating a lattice, we propose to group
translations by the portion of audio signal they cover. The
audio signal is divided in time slices of equal duration, and
a group is assigned to each time slice.
The groups are explored in chronological order. When a
group is considered, it is pruned and the remaining transla-
tions are moved to a temporary group. Once all the transla-
tions of the temporary group are extended, we check if the



considered group contains new translations, meaning that
at least one partial translation was in the same time slice
before and after it was extended. If it is the case, the group
is explored again, otherwise the next group is considered.
A group is pruned in two steps. The so-called histogram
pruning, which keeps only a fix number of translations,
is applied in the former step. The remaining translations
are checked for recombination in the latter step. Two or
more translations can be recombined if their future path and
scores are identical. This happens when they correspond to
the same node in the lattice, their last source words are the
same and their last target words are the same (because of
the language models).

3.3. Second pass
Some feature functions require more computation than oth-
ers. The IBM model 1 feature function considers all the
pairs of source and target words of a translation. It thus
makes recombination possible only for identical transla-
tions pointing at the same node in the lattice. Other fea-
ture functions limiting recombinations are language mod-
els, because they require the recombined translations to be
suffixed by the same words.
In order to use these features without increasing the decod-
ing time too much, we consider them only in the second
pass, which rescores a list of translations produced in the
first pass.

4. Experiments
In this section, we evaluate MISTRAL on a wide range of
configurations and compare the best configuration against
a fair baseline.

4.1. Data
We evaluated MISTRAL on the corpus that was provided for
the IWSLT 2007 Italian-English shared task. This corpus is
composed of Italian spontaneous conversations in the travel
domain and their English translations. It is divided in train
(IN-DOMAIN) and development (DEV) sections containing
respectively 19,722 and 996 sentence pairs. Lattices are
provided only for the DEV corpus. These lattices are scored
with an acoustic model and a language model.
Because the IN-DOMAIN corpus is small, we also trained
our models on the Italian-English section of the proceed-
ings of the European Parliament (EUROPARL), which con-
tains more than 928,000 sentence pairs (Koehn, 2005). Be-
fore training, we lowercased all the material and we re-
moved the punctuation marks, since our lattices do not con-
tain any.
We trained one translation table on IN-DOMAIN and another
on EUROPARL using the grow-diag-final heuristics (Koehn
et al., 2003), which extracts phrase pairs from a word align-
ment that was produced by GIZA++ (Och and Ney, 2000).
Knowing that the corpora contain many dates and numbers,
we manually created a third translation table made of trans-
lations for days, months and numbers.
For all the experiments, the first pass is tuned on the first
300 sentences of DEV, the second pass on the following
300 sentences and the evaluation metrics are computed on
the remaining 396 sentences.

4.2. Evaluation
One specificity of lattice translation compared to typical
MT is the generation of the source sentence along with
the target sentence. We compare the source sentences ex-
tracted from the lattices with the original transcriptions us-
ing word-error-rate (WER) and the target with the reference
translations using BLEU (Papineni et al., 2001). Both scores
take a value between zero and one, but reported figures are
multiplied by 100 to enhance readability.

4.3. Feature Functions
The following feature functions are used in the first pass:

• ASR scores.

• Two English and two Italian trigrams trained on the
IN-DOMAIN and EUROPARL corpora.

• The number of words in the source and in the target
sentences.

• The number of phrases in the translation.

• The translation probability of the phrases in both trans-
lation directions estimated by relative frequencies.

• The lexical weighting of the phrases in both translation
directions. Lexical weighting estimates the probability
of a phrase at the word alignment level (Koehn et al.,
2003).

• Three binary functions associating a pair of phrases
with its origin (IN-DOMAIN, EUROPARL or manually
created).

and the following feature functions are added for the second
pass:

• Two English and two Italian 4-grams trained on the
IN-DOMAIN and EUROPARL corpora.

• Four IBM model 1 translation scores from models
trained on IN-DOMAIN and EUROPARL corpora in
both translation directions.

The weights of the different feature functions are optimized
on BLEU using the downhill simplex algorithm (Press et
al., 1992). All the weights are initialized to 0.1 except the
weights of ASR features, which get a higher values in order
to start with good source sentences.
Running the decoder whenever weights are updated is com-
putationally expensive. The weights are thus optimized
on n-best lists as suggested in Och et al. (2004). A first
set of n-best lists are generated from the initial configura-
tion. When the weights are updated by the optimization
algorithm, those lists are reordered according to the new
weights. Once optimal weights are found, a new set of n-
best lists is generated. The optimization algorithm iterates
as long as the new lists are different from the previous ones.
First pass models needed less than 10 iterations to converge.
As the list of translations is fixed for the second pass, only
one iteration is needed. An implementation of this tuning
algorithm is packaged with MISTRAL.



Lattice 1st Pass 2nd Pass
WER BLEU WER BLEU

ASR scores 49.33 10.87 49.36 10.99
posterior 12.58 16.51 12.78 18.20
posterior, pruned 12.24 19.00 12.24 19.76

Table 1: Evaluation of translations produced using ASR
scores and posterior probability on full and pruned lattices.

4.4. Word Lattices
As the lattices in DEV are scored with an acoustic model
and a language model, those are the ASR scores that we
consider at first. The results, which are presented in Ta-
ble 1, are quite deceptive with a WER of 49.36 and a BLEU
of 10.99. A closer look at the data reveals that the acous-
tic score fluctuates a lot and sort of shadows all the other
scores.
In order to reduce the variance of ASR scores, we aug-
mented each edge with its posterior probability using the
lattice-tool utility packaged in the SRILM toolkit (Stolcke,
2002). The posterior probability of an edge is computed
by summing the scores of all the paths containing the edge
normalized over the sum of the scores of all the paths in
the lattice (Wessel et al., 2000). When posterior probability
is the only ASR score, WER decreases to 12.78 and BLEU
increases to 18.20.
Word lattices typically encode many low-probability paths.
Because translations of bad source sentences are of no in-
terest, we investigated whether pruning the lattice is a good
strategy. We did a third experiment where we pruned the
edges having a posterior probability smaller than one per-
cent of the posterior probability of the best edge starting
from the same node. Translating pruned lattices improves
BLEU (see Table 1) and decreases the average number of
edges per spoken word from 360 to 2.7. It also reduces the
decoding time by seven.
In all the experiments of this section, only the 10 best trans-
lations of groups spanning 0.1 second are considered and
the second pass rescores 2000 translations.
As pruned lattices scored with posterior probabilities yield
the best BLEU and the best WER, results presented in further
sections are obtained from those lattices.

4.5. Pruning
MISTRAL groups together partial translations that cover
similar portion of audio signal and only considers the top-
ranked candidates of each group (see section 3.2). In this
section, we vary the duration of time slices and the number
of translations extended per second. For example, when
groups duration is 0.1 second and 10 translations are con-
sidered for each group, we say that 100 translations are ex-
tended per second. The evaluation of the first pass is pre-
sented in Figure 3 and the evaluation of the second pass in
Figure 4.
Since many figures are very close, it is somehow delicate
to draw strong conclusions. We can nonetheless observe
general trends in the results. One trend we observe is that
the second pass generally improves BLEU without chang-
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Figure 3: Comparison of different pruning configurations
on the first pass.
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Figure 4: Comparison of different pruning configurations
on the second pass.

ing too much WER, which vary between 11.89 and 12.50
for all the experiments. We also observe that the four best
BLEU scores are obtained when the groups are conditioned
on short time intervals (0.1 or 0.5 second).
An unexpected result is that extending more translations
can worsen the objective measure. This might be explained
by the tuning algorithm that got stuck in a bad local opti-
mum.
In the sequel, groups are conditioned on time intervals last-
ing 0.1 second and only the 10 best translations of each
group are extended.

4.6. N-Best Lists
Both the tuning algorithm and the second pass take an n-
best list as input. Figure 5 presents the evaluation of MIS-
TRAL when the size of the n-best lists varies.
While 100 translations do not seem to be enough for tuning
and rescoring, 500 and more yield comparable figures. As
it obtains the best BLEU, we set the size of n-best lists to
2000 for the comparison with the baselines in the following
section.

4.7. Lattice vs ASR Output
In this section we compare translations from pruned lattices
with translations from automatic transcription generated by
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Figure 5: Comparison of n-best lists of different sizes.

Source 1st Pass 2nd Pass
WER BLEU WER BLEU

Reference 0 19.28 0 20.79
ASR 11.90 17.39 11.90 19.05

Lattice 12.04 19.00 12.24 19.76

Table 2: Comparison of MISTRAL when it translates the
reference transcription, the sentences returned by the ASR
system and the lattices.

the ASR system and translations from the reference tran-
scription provided by the organizers of the IWSLT shared
task. Results are presented in Table 2.
The ASR sentences are obtained using the viterbi algorithm
on the lattices with a weight of 10 for the language model
and weights of one for the acoustic model and the word
penalty. Because MISTRAL takes lattices as input, ASR out-
put and reference transcriptions are converted into lattices
where each word has an arbitrary duration of one second.
All configurations are tuned and rescored with n-best lists
of size 2000. Lattices are translated with 10 groups per sec-
ond and only the 10-best translations of each group are con-
sidered. Translations of reference transcriptions and ASR
output are grouped by their number of translated words and
only the 100-best translations of each group are considered.
Our starting hypothesis is that translating lattices should
improve translation quality because the translation model
should help the ASR system to reduce its recognition errors.
Indeed, translation quality improved according to BLEU,
but this is not corroborated with a decreasing WER. A qual-
itative evaluation reveals that many differences between the
ASR output and the sentences recognized by MISTRAL are
due to insertion or deletion of small words that do not con-
vey much information (like sı̀, il or è). We thus think the
BLEU improvement is in part explained by the added flexi-
bility of lattice translation, which can distort a little bit the
source sentences to make them easier to translate.
To validate our implementation, we translated the ASR out-
put and the reference transcriptions with MOSES (Koehn et
al., 2007). When given the same parameters, both MISTRAL
and MOSES produce exactly the same translations.

5. Conclusion
We presented and evaluated MISTRAL, a decoder for spo-
ken language translation. To the best of our knowledge,
MISTRAL, which is available at http://smtmood.
sourceforge.net, is the first open source decoder ded-
icated to the translation of lattices produced by an ASR sys-
tem.
In our experiments, translating pruned lattices yields bet-
ter BLEU scores than translating the best sentences returned
by an ASR system. To our surprise, this improvement was
not corroborated by an improvement in WER as we initially
tough. While those results are encouraging, they still need
to be confirmed on a larger dataset and on other language
pairs.
MISTRAL is a good baseline system for spoken language
translation and a good starting point to create more sophis-
ticated lattice decoders. Our future work will be oriented
toward the addition of new feature functions, the handling
of non-monotone translations and the translation of arbi-
trary lattices.
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