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Abstract 

In this paper, we explain why we have 
adopted pattern matching for MT pur-
poses and why we have embedded it into 
a hybrid approach. "Patterns” here are 
understood as independent meaningful 
sub-sentential segments received in a sys-
tematic way. We describe the nature and 
size of the patterns used as well as the 
comparison algorithm developed. We 
discuss results obtained by matching pat-
terns of different types and complexity in 
four different language pairs. Our ex-
periments indicate that better results are 
obtained when matching the longest pos-
sible patterns. 

1 Introduction 

Corpus driven MT, based on bilingual corpora, 
whether aligned or not, currently dominates re-
search in the field. On the other hand, MT more 
and more adopts hybrid techniques to establish 
correspondences across language pairs and for 
generation purposes. The term ‘hybrid tech-
niques’ refers to a range of techniques (statistical 
algorithms, rules etc) which are combined with 
linguistic resources of varied complexity to es-
tablish the required correspondences across lan-
guage pairs and generate TL (target language) 
strings. 

(Nagao, 1984) put forward the idea that a large 
amount of knowledge about translating between 
two languages is encoded in parallel texts of the 
particular language pair. Parallel corpora were 

aligned at sentence level. Input sentences were 
compared with the sentences on the SL (source 
language) part in order to retrieve the most simi-
lar one in the parallel corpus. This is how transla-
tion memories (TMs) and Example-Based MT 
(EBMT) came to stage. 

Very soon, approaches based on bilingual cor-
pora became the norm in the field. To this situa-
tion contributed the seminal work of Brown et al. 
(1990), who first introduced a promising MT 
approach that relied on (a) a word-to-word 
alignment of parallel corpora and (b) statistically 
obtained language models. It was expected that, 
by using the appropriate techniques, knowledge 
in the language strings would be extracted and 
reused and that human intervention would be 
rendered unnecessary, human intervention being 
limited to the employment of linguistic knowl-
edge. 

However, what actually happened is that work 
on TMs and MT started to converge with conclu-
sions reached by researchers working on the 
cognitive aspects of translation. Human transla-
tors were already known to work with sub-
sentential units (Gerloff, 1987). Work within 
TMs demonstrated that sub-sentential units in-
crease similarity scores in TMs (Cranias et al., 
1997), when comparing the input sentence with 
the SL corpus. In particular, it was shown that 
best similarity scores were obtained, when the 
sub-sentential units were syntactically ‘complete’ 
(and, by the same token, independent and mean-
ingful) and comparison took into account the 
contained content words. In order to obtain 
meaningful units without resorting to parsing, 
Cranias et al. (1997) relied on functional words – 



with the exception of articles – to define borders. 
The use of sub-sentential units was also advo-
cated by members of the SMT community. Ya-
mada and Knight (2001) for instance have used 
statistical models for structurally analysed sen-
tences (adopting a “syntax-based translation 
model”) in their effort to handle word order is-
sues. 

The corpus-based approach presented here 
draws on the tradition described above, but it is 
innovative in certain important ways: 

a. It uses solely monolingual TL corpora, 
while no SL corpus is required; this is a 
radical answer to the problem of bilingual 
corpora sparseness, for the vast majority of 
language pairs, as well as the dubious 
quality of the existing ones for translation 
purposes, which constitute one of the ma-
jor drawbacks of corpus-based approaches 
to MT.  

b. It relies on a general pattern matching al-
gorithm, for handling sub-sentential cor-
pus material, together with statistical tech-
niques in order to select certain TL word 
affiliations (Tambouratzis et al., 2006).  

c. Patterns are generated by using basic NLP 
tools (lemmatiser, tagger, chunker) and re-
sources (flat bilingual lexica). This tech-
nology is often available and, in any case, 
relatively easily obtained; therefore the 
application of the method is feasible for a 
large number of language pairs.  

In this paper, we explain why we have adopted 
a hybrid approach, employing pattern matching 
techniques over independent meaningful phrasal 
units received in a systematic way. We describe 
the types of the patterns used, as well as the 
comparison algorithm developed. Then we pre-
sent results received by matching patterns of dif-
ferent complexity. Our experiments indicate that 
results are improved when matching the longest 
possible patterns that function as syntactic con-
stituents. 

2 Why Pattern Matching 

In parallel corpus-based MT, patterns are very 
often viewed as strings of fixed length with or 
without slots for variables ranging over words 
(see, among others, Lepage, 1997; McTait, 2003; 
Brown, 2003; Kitamura, 2004). Variables are 
instantiated on the basis of corpus information. 
This notion of a pattern makes sense in a parallel 
corpus-based approach, where the exact length of 

a (pattern) string and the exact place of variables 
can be defined. 

In our monolingual TL corpus-based ap-
proach, the problem to be solved corresponds to 
the similarity problem in TMs. However, in our 
case, comparisons are not performed on the SL 
side, but on the TL one: the system is fed with 
flexible ‘models’ of TL strings, which receive 
their final form (i.e. translated) only after the 
corpus has been consulted.  

More formally, translation is viewed as an as-
signment problem (i.e. finding a maximum 
weight matching), which the pattern matching 
algorithm is called to solve. Translation units 
(chunk patterns in the current application) are 
assigned weights, which are compared with the 
aim of detecting the highest similarity scores (i.e. 
the best matching patterns). Pattern matching 
checks whether patterns have the desired struc-
ture. It computes the pattern similarity and sub-
stitutes, when necessary, the non-matching parts.  

Like statistical techniques, pattern matching 
has been successfully used in other domains such 
as Voice Recognition (VR), Optical Character 
Recognition (OCR), Biometrics (face recogni-
tion, finger prints recognition, speech recogni-
tion) and Image Segmentation and Analysis (ob-
ject recognition, medical diagnosis using X-
Rays, EKG analysis).  

We considered pattern matching appropriate 
for MT purposes because it handles unit (word or 
phrase) selection and order simultaneously. Sta-
tistics-based techniques do not perform both 
tasks in one step (Yamada and Knight, 2001). 
The core idea was that, if a lexicon was avail-
able, providing us with word translations, as well 
as a large corpus, where all grammatical word 
combinations occurred, we would only need to 
select the proper words in the right order. If the 
right words co-occurred in a TL sentence, they 
would obviously be in the right order, excluding 
the possibility of finding ungrammatical strings 
in the corpus. Thus, with a flat bilingual lexicon, 
a large TL corpus and a pattern matching meth-
odology we would have a complete system. No 
rules or other extravagant linguistic information 
would be necessary. 

The validity of this idea was demonstrated 
with METIS-I (Dologlou et al., 2003), where 
patterns corresponded to TL sentences rather 
than to TL sentence segments (phrases). Ideally 
an MT system would translate sentences as, in 
this way, both meaning and relations among 
words are minimally disturbed. Indeed, METIS-I 



selected the best sentence among very similar 
ones. 

Obviously, METIS-I only provided proof-of-
concept, as the problem lies with the corpus: it 
can never be big enough to contain all the possi-
ble grammatical word combinations. The natural 
way of dealing with the data sparseness problem 
was to take advantage of the recursive nature of 
language: sentences can be broken to phrases and 
phrases can be broken to a limited number of 
types of smaller phrasal units. Smaller phrasal 
units consist of few words, therefore, the chance 
of achieving good (partial, probably) matches is 
greater, rendering thus the problem of data 
sparseness manageable.  

The choice of working at sub-sentential level 
was supported by two more facts: (a) as said be-
fore, it was only common wisdom given the re-
sults of existing experience in SMT, TMs and 
cognitive studies; (b) pattern matching could be 
applied iteratively throughout the procedure 
(somehow simulating the recursive nature of lan-
guage). The same core algorithm would be used 
to perform comparisons both at clause level 
(when comparing the constituent phrases) and 
lexical level (when comparing the ‘content’ of 
phrases). As with sentences, phrases presented us 
with a similarity problem.  

3 Why a hybrid approach 

A hybrid approach was adopted for the reasons 
explained below. 

First of all, we used flat bilingual lexica (as al-
ready explained). We had to do so because no 
bilingual corpus was available to introduce map-
ping knowledge to the system. However, the use 
of lexica in corpus-based MT is a rather common 
requirement; similar practices have been reported 
for approaches using bilingual corpora, for in-
stance in SMT (Ney, 2005). 

Certainly, acquisition of patterns was the ma-
jor issue. What kind of patterns we would use 
such that could be obtained automatically? In 
line with our argument about data sparseness, we 
have decided to use conventional taggers to ac-
quire patterns at PoS level, lemmatisers to gener-
alise over morphological paradigms (and reduce 
data sparseness) and chunkers to split up sen-
tences into noun, verb, adjectival and preposi-
tional chunks in both SL and TL. The chunkers 
used are rule-based (but of course, one can think 
of approaches where machine learning tech-
niques are applied to annotated corpora).  

Our decision to use the patterns that were gen-
erated by the stepwise application of a tagger, a 
lemmatiser and a chunker to both the TL corpus 
and the input SL sentence was motivated by the 
following facts: 

a. Patterns would be of a very general type 
which would allow for a powerful algo-
rithm applying to a very wide range of 
data. Sentences would consist of a central 
unit (the verbal ‘head’ as a rule) and its 
satellite units. Those, in turn, would con-
sist of a central word (again, the ‘head’) 
and its satellite words. The study of lan-
guages has shown that this is a wide 
spread pattern for putting words together 
into sentences.  

b. Sub-sentential units would be meaningful 
and this was advantageous according to 
Cranias et al. (1997). Actually, the units 
produced by the chunker were just a finer 
version of the units produced by Cranias et 
al. (1997).  

c. We could take advantage of selection phe-
nomena among chunk heads.  

d. It would help to reduce to a minimum the 
friction phenomena between selected TL 
chunks. 

As regards point (a) above, the discrepancies 
between the SL and the corresponding TL ones, 
even after lemmatisation, may vary between lan-
guage pairs, for instance, the presence or absence 
of the constituent VP in fixed word order lan-
guages, such as English, as opposed to relatively 
free word order ones, such as Modern Greek, 
pro-drop phenomena etc. Such phenomena are 
among the ones that pave the way to rule-based 
transformations. However, although we did not 
abstain from using transformation rules, we 
wanted to keep their number to a minimum and 
resort to them only when nothing else (simple 
enough, in line with the modest resource re-
quirement) could be done. 

The following questions were put forward in 
order to develop an approach general enough to 
handle more than one language pair: 

1. How much detailed should the optimum 
sentence segmentation be? 

2. Which type of information should be in-
troduced with transformation rules in order 
to provide the pattern matching algorithm 
with TL-like patterns (rather than SL-like 
ones)? 

3. Which other techniques could be used? 
In the remainder of this paper, we will take up 

issue (1) above and use material from our ex-



periments to explain that, for the range of lan-
guage pairs we have treated, better results are 
obtained when nominal patterns are maximally 
defined.  

As regards point (2), the results obtained so far 
show that only discrepancies non-reducible to a 
word-order problem or to a local selection one 
(e.g. the syntax of “like” verbs) should be treated 
with transformation rules in order to facilitate the 
pattern matching algorithm. The results dis-
cussed below have been obtained by employing 
only a limited number of transformation rules 
(e.g. the formation of infinitival chunks for 
Greek, a language lacking infinitives). However, 
a wider range of data is required in order to pre-
sent a typology and an estimation of the number 
of the necessary transformation rules.  

As regards point (3), we have decided to em-
ploy statistical, frequency-of-occurrence-based 
techniques to optimise lexical selection for those 
cases where the pattern matching algorithm may 
not be able to disambiguate between the various 
translations. 

4 The chunk patterns 

As mentioned above, both SL and TL models 
comprise chunks and their respective constitu-
ents, generated by equivalent chunkers. Origi-
nally (Tambouratzis et al,. 2005), for modelling 
both languages we used only a very small num-
ber of chunk patterns. Thus, for both SL and TL 
the chunk patterns used are: the Clause pattern, 
the VG Pattern, the PP pattern, the ADJ pattern 
and the INP pattern. 

Clause pattern  
(ADJ* PP* token*)* VG (ADJ* PP* INP* to-

ken*)* [where ‘token’ refers to adverbials or 
punctuation]  

The Clause pattern describes the overall 
structure of a clause: the verbal group head and 
the number, labels and heads of the chunks (if 
any chunks exist other than the verb group).  

The VG pattern describes the verb group. 
Other tokens, such as adverbs for example, if 
found within the verb phrase are considered as 
part of it, while if found in isolation, do not form 
a chunk. 

The INP pattern describes the infinitival 
chunks. In Modern Greek, a language that lacks 
infinitives, an INP pattern is formed by merging 
a na subordinate clause with the matrix verb. 

The ADJ pattern describes the adjectival 
chunks headed by an adjective. 

The PP pattern describes both prepositional 
and noun chunks. The generalisation here is that 
a noun chunk can be represented as a preposi-
tional one with an empty prepositional head. This 
representation captures phrase category mis-
matches between SL and TL of the sort exempli-
fied in the following example: 
[

pp 
∅ [

np_nm 
ο διαρρήκτης]] [

vg 
προσπάθησε]  

[
pp 
∅ [

np1 
the burglar]] [

vg 
tried] 

[
inp 
να [

vg
 μπει]] [

pp 
στο [

np_ac 
σπίτι]]  

[
inp 

to [
vg

enter]] [
pp 
∅ [

np2 
the house]] 

The selection of the best matching TL clause 
is carried out in two steps. At the first step, com-
parison is performed at clause level using as 
clause pattern comparison features the chunk 
labels and chunk head tokens (lemma and PoS 
tag). This step establishes the order of chunks in 
the SL clause pattern by using the specific TL 
clause as a template, and each SL chunk is di-
rectly mapped to its corresponding TL chunk.  

At the second step, the comparison is confined 
within the boundaries of the chunk patterns, in 
order to establish the order of the tokens within 
each chunk. The comparison features used are 
the chunk tokens in terms of their lemma and 
PoS tag. 

For both steps, the same pattern matching al-
gorithm is employed, each time evaluating dif-
ferent pattern features. In Table 1 (see Appendix 
A) we can see the first step of a clause compari-
son between an input Modern Greek (MG) 
clause (in lemmatised form after the lexicon 
lookup1) and an English one (lemmatised, as re-
trieved from the corpus): 

Input (MG) clause: the girl often describe 
several close member of the royal family as a gift 
by the god 

English clause: The Pakistani village of Mo-
hinuddinpur was described to me by Shamim, a 
woman 

As can been seen in Table 1, if this English 
clause was to be selected as the template for the 
final translation, then the chunk order of the MG 
clause would be changed to: 

the girl of the royal family often describe sev-
eral close member by the god as a gift 

The assignment algorithm used for the com-
parison process allows all chunks to change posi-
tion within the clause according to their mapping 
to the TL template. Certain chunks, however, 

                                                 
1 For simplicity, only one translation has been assigned to 
each token 



should never be split, for instance the preposi-
tional ones pp(- np_ac( several{DT0}close{AJ} 
member{NN})) and pp(of{PRF} np_ge(the{AT0} 
royal{AJ }family{NN}])).  

In order to tackle the issue raised, we intro-
duced two new complex chunk patterns, the 
PPOF pattern and the PPOS pattern. The PPOF 
pattern is used in both SL and TL models, while 
the PPOS chunk pattern is language-specific, 
used only in English. 

The PPOF pattern [PPOF (PP PP_gen)] de-
scribes the combination of a noun chunk with its 
Genitive post-modifier (np_ge). 

The PPOS pattern [PPOS (PP ‘s PP)] de-
scribes a noun chunk pre-modified by a Saxon 
Genitive. 

The chunk patterns above are considered to be 
equivalent during the matching process. For in-
stance, the SL PPOF chunk the map of the city 
can be equally mapped either to the PPOF chunk 
the hall of the city or the PPOS chunk the city ‘s 
hall, both found in the TL corpus.  

The introduction of the new complex chunk 
patterns prevents the splitting of nominal chunks 
and their modifiers, while reducing the number 
of chunks within the clause, having, thus, the 
advantage of comparing smaller matrices, even if 
we need to define new and more complex com-
parison processes for the new chunk patterns. 

The results of the introduction of more com-
plex chunks can be seen in the following exam-
ple. Using the same SL clause, but having ap-
plied the new chunk patterns, we achieve a 
smoother transition from the SL model to the TL 
one. 

Input (MG) clause: the girl often describe 
several close member of the royal family as a gift 
by the god 

English clause: Ann Messenger describes the 
condition of women writers in the seventeenth 
and eighteenth centuries in very different terms 

As can been seen in Table 2 (see Appendix 
A), a different English clause is selected as the 
template for the final translation, establishing 
hence the desired (right) word order. 

In Tables 3 and 4 (see Appendix A), we pre-
sent an equivalent example for the language pair 
Spanish  English, the SL string being (after the 
lexicon lookup) Certain part of the state united 
be as poor as the third world. Without the com-
plex patterns the nominal chunk is severed from 
its post-modifier (Certain part be as poor as the 
third world of the united state), while the intro-
duction of complex chunks leads to a correct 

chunk order (Certain part of the united state be 
as poor as the third world).  

This example also illustrates the establishment 
of the correct token order by the pattern match-
ing algorithm (cf. state united vs. united state). 

The use of broader nominal patterns has im-
proved the performance of the system in three 
language pairs: Modern Greek, Dutch and Ger-
man  English. The results that were derived 
with the BLEU and NIST metrics are reported in 
Table 5 refer to a set of 15 sentences for each 
language pair. 

 

 No complex chunks With complex 
chunks 

SL BLEU NIST BLEU NIST 

Dutch 0.4022 5.7545 0.4865 6.0209 

German 0.4737 5.7340 0.4816 5.7875 

Greek 0.5432 6.6295 0.6541 6.8646 

Spanish 0.5676 6.6805 0.5378 6.6213 
Table 5: BLEU & NIST scores  

5 Future Work 

Presently, we are working on the optimisation of 
our system along the following lines: 

• Improving the corpus indexing scheme 
and narrowing down the search space  

• Accelerating the search process and im-
proving its effectiveness 

• Exploring further the issue of synthesis-
ing the final translation from multiple 
segments (clauses) 

• Employing machine learning techniques 
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Appendix A. Tables 

 

Table 1. Greek English clause comparison without complex chunks 

 
pp(-
np_nm(the{AT0} 
girl{NN})) 

vg(describe{VV} 
) 

pp(- np_ac( sev-
eral{DT0}close{AJ
} member{NN})) 

pp(of{PRF} 
np_ge(the{AT0} 
royal{AJ}family{NN}])) 

pp(as{PRP} 
np_ac(a{AT0} 
gift{NN})) 

pp(by{PRP} 
np_ac(the{AT0} 
god{NN})) 

PP(- NP1(the{AT0} paki-
stani{AJ0} village{NN1} 
)) 

79% 0% 68% 61% 68% 61% 

PP(of{PRF} 
NP2(mohinuddinpur{NP0} 
)) 

40% 0% 78% 78% 78% 78% 

VG(be{VBD} [de-
scribe{VVN}] ) 0% 100% 0% 0% 0% 0% 

PP(to{PRP} 
NP2(me{PNP})) 31% 0% 63% 70% 63% 70% 

PP(by{PRP}] 
NP2(shamim{NP0 })) 40% 0% 78% 78% 78% 79% 

PP(- NP2(a{AT0} 
woman{NN1})) 47% 0% 79% 78% 79% 78% 

 

Score=85.034485% 
pp(-
np_nm(the{AT0} 
girl{NN})) 

vg(describe{VV})

ppof(pp(- 
np_ac(several{DT0} 
close{AJ} mem-
ber{NN})) pp(- 
np_ge(the{AT0} 
royal{AJ} fam-
ily{NN}))) 

pp(as{PRP} 
np_ac(a{AT0} 
gift{NN})) 

pp(from{PRP}  
np_ac(the{AT0} 
god{NN})) 

PP(- NP_1(ann{NP0} 
messenger{NN1})) 84% 0% 21% 46% 46% 

VG(describe{VVZ}) 0% 100% 0% 0% 0% 

PPOF(PP(- 
NP_2(the{AT0} condi-
tion{NN1})) 
PP(of{PRF} 
NP_2(woman{NN2} 
writer{NN2}))) 

21% 0% 88% 45% 45% 

PP(in{PRP} 
NP_2(the{AT0} seven-
teenth{ORD} 
and{CJC} eight-
eenth{ORD} cen-
tury{NN2})) 

46% 0% 45% 83% 83% 

PP(in{PRP} 
NP_2(very{AV0} dif-
ferent{AJ0} 
term{NN2})) 

46% 0% 45% 83% 83% 

Table 2. Greek English clause comparison with the employment of complex chunks 

 



 

 pp(- np_nm(certain{AJ0} 
part{NN})) 

pp(of{PRF} 
np_ac(the{AT0}  
State{NN} 
united{AJ0})) 

vg(be{VB}) pp(as{PRP} 
np_ac(poor{AJ0})) 

pp(as{PRP} 
np_ac(the{AT0} 
third{ORD} 
world{NN})) 

PP(- NP_1(the{AT0} 
aircraft-carrier{AJ0-
NN1} centaur{NN1})) 

84% 46% 0% 27% 46% 

VG(be{VBD}) 0% 0% 100% 0% 0% 

PP(in{PRP} 
NP_2(the{AT0} in-
dian{NP0} ocean{NP0})) 

40% 77% 0% 64% 77% 

PP(on{PRP} 
NP_2(passage{NN1})) 46% 83% 0% 64% 83% 

PP(to{PRP} 
NP_2(the{AT0} far{AJ0} 
east{NN1})) 

46% 83% 0% 64% 83% 

Table 3. Spanish English clause comparison without complex chunks 

 

 

 

ppof(pp(- 
np_nm(certain{AJ0} 
part{NN})) 
pp(of{PRF} 
np_ge(the{AT0} 
State{NN} 
united{AJ0}))) 

vg(be{VB}) pp(as{PRP} 
np_nm(poor{AJ0}))

pp(as{PRP} 
np_ac(the{AT0} 
third{ORD} 
world{NN})) 

PPOF(PP(- NP_1(this{DT0} 
kind{NN1})) PP(of{PRF} 
NP_1(fundamentalism{NN1}))) 

69% 0% 0% 20% 

VG(be{VBZ}) 0% 100% 0 % 0 % 

ADJP_1(identifiable{AJ0}) 0% 0% 0% 0 % 

PP(in{PRP} NP_2(the{AT0} 
world{NN1})) 20% 0% 0% 99% 

Table 4. Spanish English clause comparison with the employment of complex chunks 

 


