
Efficient Handling of n-gram Language Models
for Statistical Machine Translation

M. Federico
FBK-irst Trento, Italy

Edinburgh, April 16, 2007

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

1

Summary

• Motivations

• Role of language model in SMT

• Introduction to n-gram LMs
– Smoothing methods
– LM representation/computation

• IRST LM Toolkit for Moses
– Distributed estimation
– Efficient data structures
– Memory management

• Experiments

• Conclusions

Credits:

N. Bertoldi (FBK-irst), M. Cettolo (FBK-irst), C. Dayer (U. Maryland), H. Hoang (U. Edinburgh)

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

2

Motivation

N-gram LMs are major components of NLP systems, e.g. ASR and MT:

• Availability of large scale corpora has pushed research toward using huge LMs

• At 2006 NIST WS best systems used LMs trained on at least 1.6G words

• Google presented results using a 5-gram LM trained on 1.3T words

• Handling of such huge LMs with available tools (e.g. SRILM) is prohibitive
if you use standard computer equipment (4 to to 8Gb of RAM)

• Trend of technology so far rewards distributing work on more PCs

We developed an alternative LM library addressing these needs

• IRSTLM is open-source Lesser GPL

• available and integrated into the Moses SMT Toolkit

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

3

Classical SMT Formulation

Let f be any text in the source language (French). The most probable translation
is searched among texts e in the target language (English).

SMT used the following criterion:

e∗ = arg max
e

Pr(f | e) Pr(e) (1)

The computational problems of SMT:

• language modeling: estimating the language model probability Pr(e)

• translation modeling: estimating the translation model probability Pr(f | e)

• search problem: carrying out the optimization criterion (1)

Remark: in statistical MT all translation pairs are plausible, in principle.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

4

Classical SMT Architecture

Search Algorithm

Monolingual
Texts Texts

Parallel

Model
Language Translation

Model

Post!Processing

Pre!ProcessingSource String

Target String

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

5

Log-linear phrase-based SMT

• Translation hypotheses are ranked by a log-linear combination of statistics:

ranke max
a

∑
i

λihi(e, f ,a)

f =source, e =target, a =alignment, and hi(e, f ,a) =feature functions.

• Feature functions: Language Model, Lexicon Model, Distortion Model

• LM and TM consist of a huge number of observations-value pairs

• Example: 5-gram LM – hi(e, f ,a) = log Pr(e)
– observations: 1-grams, 2-grams, 3-grams, 4-grams, 5-grams
– values: log of cond. word probabilities, log of back-off weights

• Example: Moses lexicon model
– observations: aligned phrase-pairs of length 1 to 8 words
– values: log of dir/inv relative freq, dir/inv compositional logprobs

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

6

N-gram LM

The purpose of LMs is to compute the probability Pr(wT
1) of any sequence of

words wT
1 = w1 . . . , wt, . . . , wT . The probability Pr(wT

1) can be expressed as:

Pr(wT
1) = P (w1)

T∏
t=2

Pr(wt | ht) (2)

where ht = w1, . . . , wt−1 indicates the history of word wt.

• Pr(wt | ht) become difficult to estimate as the sequence of words ht grows.

• We approximate by defining equivalence classes on histories ht.

• n-gram approximation let each word depend on the most recent n− 1 words:

ht ≈ wt−n+1 . . . wt−1. (3)

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

7

Normalization Requirement

∞∑
T=1

Pr(T)
∑

w1...wT

Pr(w1, . . . , wT | T) = 1

N -gram LMs guarantee that probabilities sum up over one, for a given length T :

X
w1...wT

TY
t=1

Pr(wt | ht) =
X
w1

Pr(w1)
X
w2

Pr(w2 | h1) . . .
X

wT−1

Pr(wT−1 | hT−1)
X
wT

Pr(wT | hT)| {z }
=1

=
X
w1

Pr(w1)
X
w2

Pr(w2 | h1) . . .
X

wT−1

Pr(wT−1 | hT−1)| {z }
=1

·1

= . . .

=
X
w1

Pr(w1)| {z }
=1

·1 . . . · 1 · 1 = 1 (4)

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

8

String Length Model

Hence we just need a length model P (T)

• Exponential model p(T) = (a− 1)a−T with any a > 1, in fact:

∞∑
T=1

p(T) = (a− 1)
∞∑

T=1

a−T =
a− 1

a

∞∑
T=0

(
1
a

)T

=
a− 1

a

1(
1− 1

a

) =
a− 1
a− 1

= 1

(5)
– Implemented in SMT by the word penalty model

• Uniform model over a range “of interest”:

p(T) =
{

1
Tmax

if 1 ≤ T ≤ Tmax

0 otherwise
(6)

– Used in SMT when no word penalty model is considered

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

9

N-gram LM and data sparseness

Even estimating n-gram probabilities may be not a trivial task:

• high number of parameters: e.g. a 3-gram LM with a vocabulary of 1,000
words requires, in principle, to estimate 109 probabilities!

• data sparseness of real texts: i.e. most of correct n-grams are rare events

Experimentally, in the 1.2Mw (million word) Lancaster-Oslo-Bergen corpus:

• more than 20% of bigrams and 60% of trigrams occur only once

• 85% of trigrams occur less than five times.

• expected chances of finding new 2-grams is 22%

• expected change of finding new 3-grams is 65%

We need frequency smoothing or discounting!

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

10

Frequency Discounting

Discount relative frequency to assign some positive prob to every possible n-gram

0 ≤ f∗(w | h) ≤ f(w | h) ∀hw ∈ V n

The zero-frequency probability λ(h), defined by:

λ(h) = 1.0 −
∑
w∈V

f∗(w | h),

is redistributed over the set of words never observed after history h.

Redistribution is proportional to the less specific n− 1-gram model p(w | h̄).1

1Notice: c(h) = 0 implies that λ(h) = 1.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

11

Smoothing Schemes

Discounting of f(w | h) and redistribution of λ(h) can be combined by:

• Back-off, i.e. select the most significant approximation available:

p(w | h) =
{

f∗(w | h) if f∗(w | h) > 0
αhλ(h)p(w | h̄) otherwise

(7)

where αh is an appropriate normalization term2

• Interpolation, i.e. sum up the two approximations:

p(w | h) = f∗(w | h) + λ(h)p(w | h̄). (8)

2

αh =

0@ X
w:f∗(w|h)=0

p(w | h̄)

1A−1

=

0@1−
X

w:f∗(w|h)>0

p(w | h̄)

1A−1

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

12

Smoothing Methods

• Witten-Bell estimate [Witten & Bell, 1991]
λ(h) ∝ n(h) i.e. # different words observed after h in the training data:

λ(h) =def
n(h)

c(h) + n(h)
which gives: f∗(w | h) =

c(hw)
c(h) + n(h)

• Absolute discounting [Ney & Essen, 1991]
subtract constant β (0 < β ≤ 1) from all observed n-gram counts3

f∗(w | h) = max
{

c(hw)− β

c(h)
, 0

}
which gives λ(h) = β

∑
w:c(h,w)>1 1

c(h)

3β ≈ n1
n1+2n2

< 1 where nc is # of different n-grams which occurr c times in the training data.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

13

Improved Absolute Discounting

• Kneser-Ney smoothing [Kneser & Ney, 1995]
Absolute discounting with corrected counts for lower order n-grams. Rationale:
the lower order frequency f(h̄, w) is made proportional to the number of
different words that (h̄, w) follows.

Example: let c(los, angeles) = 1000 and c(angeles) = 1000 −→ corrected
count is c′(angeles) = 1, i.e. unigram prob p(angeles) will be small.

• Improved Kneser-Ney [Chen & Goodman, 1998]
In addition use specific discounting coefficients for rare n-grams:

f∗(w | h) =
c(hw)− β(c(h, w))

c(h)

where β(0) = 0, β(1) = D1, β(2) = D2 , β(c) = D3+ if c ≥ 3.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

14

LM representation: ARPA File Format

Contains all the ingredients needed to compute LM probabilities:
\data\
ngram 1= 86700
ngram 2= 1948935
ngram 3= 2070512
\1-grams:
-2.88382 ! -2.38764
-2.94351 world -0.514311
-6.09691 edinburgh -0.15553
...
\2-grams:
-3.91009 world ! -0.351469
-3.91257 hello world -0.24
-3.87582 hello edinburgh -0.0312
..
\3-grams:
-0.00108858 hello world !
-0.000271867 , hi hello !
...
\end\

logPr(!| hello edinburgh) = -0.0312 + logPr(!| edinburgh)
logPr(logPr(!| edinburgh) = -0.15553 - 2.88382

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

15

Moses Toolkit for Statistical MT

• Developed during JHU Summer Workshop 2006

– U. Edinburgh, ITC-irst Trento, RWTH Aachen,
U. Maryland, MIT, Charles University Prague

– open source under Lesser GPL
– available for Linux, Windows and Mac OS
– www.statmt.org/moses

• Main features:
– translation of both text and CN inputs
– exploitation of more Language Models
– lexicalized distortion model (only for text input, optional)
– incremental pre-fetching of translation options from disk
– handling of huge LMs (up to Giga words)
– on-demand and on-disk access to LMs and LexMs
– factored translation model (surface forms, lemma, POS, word classes, ...)

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

16

IRSTLM library (open source)

Important Features

• Distributed training
– split dictionary into balanced n-gram prefix lists
– collect n-grams for each prefix lists
– estimate single LMs for each prefix list (approximation)
– quickly merge single LMs into one ARPA file

• Space optimization
– n-gram collection uses dynamic storage to encode counters
– LM estimation just requires reading disk files
– probs and back-off weights are quantized
– LM data structure is loaded on demand

• LM caching
– computations of probs, access to internal lists, LM states,

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

17

Data Structure to Collect N-grams

3
w | fr | succ | ptr | flags

6 3 8 1

3
w | fr

1

1-gr 2-gr 3-gr

• Dynamic prefix-tree data structure

• Successor lists are allocated on demand through memory pools

• Storage of counts from 1 to 6 bytes, according to max value

• Permits to manage few huge counts, such as in the google n-grams

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

18

LM Estimation with Prefix Lists

Smoothing of probs up from 2-grams is done separately on each subset of n-grams.
Let (v, w, x, y, z) be a 5-gram :

• Witten-Bell smoothing (equivalent to original)
Statistics are computed on n-grams starting with v.

• Absolute discounting (different from original)
The value βv to be subtracted from all counts N(v, w, x, y, z) is:

βv =
N1(v)

N1(v) + 2 ∗N2(v)

Nr(v) is # of different 5-grams starting with v and occurring exactly r times.
Notice: if for some v the above formula is zero or undefined, we resorts to
Witten-Bell method.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

19

Data Structure to Compute LM Probs

1-gr 2-gr 3-gr

3
w | bo | pr | idx

1 1 4

w | pr
3 1

• First used in CMU-Cambridge LM Toolkit (Clarkson and Rosenfeld, 1997]

• Slower access but less memory than structure used by SRILM Toolkit

• IRSTLM in addition compresses probabilities and back-off weights into 1 byte!

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

20

Compression Through Quantization

How does quantization work?

1. Partition observed probabilities into regions (clusters)

2. Assign a code and probability value to each region (codebook)

3. Encode the probabilities of all observations (quantization)

We investigate two quantization methods:

• Lloyd’s K-Means Algorithm
– first applied to LM for ASR by [Whittaker & Raj, 2000]
– computes clusters minimizing average distance between data and centroids

• Binning Algorithm
– first applied to term-frequencies for IR by [Franz & McCarley, 2002]
– computes clusters that partition data into uniformly populated intervals

Notice: a codebook of n centers means a quantization level of log2 n bits.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

21

LM Quantization

• Codebooks
– One codebook for each word and back-off probability level
– For instance, a 5-gram LM needs in total 9 codebooks.
– Use codebook of at least 256 entries for 1-gram distributions.

• Motivation
– Distributions of these probabilities can be quite different.
– 1-gram distributions contain relatively few probabilities
– Memory cost of a few codebooks is irrelevant.

• Composition of codebooks
– LM probs are computed by multiplying entries of different codebooks
– actual resolution of lower order n-grams is higher than that of its codebook!

Practically no performance loss with 8 bit quantization[Federico & Bertoldi ’06]

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

22

LM Accesses by SMT Search Algorithm

Moses’s calls to a 3-gram LM while decoding into English the Europarl text:
ich bin kein christdemokrat und glaube daher nicht an wunder . doch ich möchte

dem europäischen parlament , so wie es gegenwürtig beschaffen ist , für seinen

grossen beitrag zu diesen arbeiten danken.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

23

LM Accesses by SMT Search Algorithm

• 1.7M calls only involving 120K different 3-grams

• Decoder tends to access LM n-grams in nonuniform, highly localized patterns

• First call of an n-gram is easily followed by other calls of the same n-gram.

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

24

Memory Mapping of LM on Disk

Memory

1-gr 2-gr 3-gr
Disk file

• Our LM structure permits to exploit so-called memory mapped file access.

• Memory mapping permits to include a file in the address space of a process,
whose access is managed as virtual memory

• Only memory pages (grey blocks) that are accessed by decoding are loaded

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

25

Experiments

Baseline: Chinese-English NIST task

• Target Language Models

– 3 LMs: target part of parallel data + GigaWord + DevSets
– 2G running words (4.5M different words)
– 300M 5-grams (singletons pruned for GigaWord)

• Phrase Table

– 90M English running words
– 38M phrase pairs of maximum length 7

• Monotone search
– permits to run fast experiments
– you see exactly memory needed by LM
– with lexicalized LM: +1-1.5% Bleu, +2Gb RAM, x 2.0 run-time

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

26

Distributed Training on English Gigaword
list dictionary number of 5-grams:

index size observed distinct non-singletons

0 4 217M 44.9M 16.2M

1 11 164M 65.4M 20.7M

2 8 208M 85.1M 27.0M

3 44 191M 83.0M 26.0M

4 64 143M 56.6M 17.8M

5 137 142M 62.3M 19.1M

6 190 142M 64.0M 19.5M

7 548 142M 66.0M 20.1M

8 783 142M 63.3M 19.2M

9 1.3K 141M 67.4M 20.2M

10 2.5K 141M 69.7M 20.5M

11 6.1K 141M 71.8M 20.8M

12 25.4K 141M 74.5M 20.9M

13 4.51M 141M 77.4M 20.6M

total 4.55M 2.2G 951M 289M

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

27

IRSTLM Library: Esperiments (NIST 2005)

LM 1gram 2gram 3gram 4gram 5gram

lrg 0.3 5.3 4.8 6.3 6.1

giga 4.5 64.4 127.5 228.8 288.6

LM process size caching dec. speed BLEU

virtual resident (src w/s)

lrg SRILM 1.2Gb 1.1Gb - 13.33 27.32

lrg 619Mb 558Mb n 6.80 27.35

y 7.42

q-lrg 507Mb 445Mb n 6.99 27.26

y 7.52

lrg+giga 9.9Gb 2.1Gb n 3.52 29.15

y 4.28

q-lrg+q-giga 6.8Gb 2.1Gb n 3.64 28.98

y 4.35

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

28

IRSTLM Library: Esperiments (NIST 2005)

LM 1gram 2gram 3gram 4gram 5gram

lrg 0.3 5.3 4.8 6.3 6.1

giga 4.5 64.4 127.5 228.8 288.6

LM process size caching dec. speed BLEU

virtual resident (src w/s)

lrg SRILM 1.2Gb 1.1Gb - 13.33 27.32

lrg 619Mb 558Mb n 6.80 27.35

y 7.42

q-lrg 507Mb 445Mb n 6.99 27.26

y 7.52

lrg+giga 9.9Gb 2.1Gb n 3.52 29.15

y 4.28

q-lrg+q-giga 6.8Gb 2.1Gb n 3.64 28.98

y 4.35

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

29

Conclusions

Efficient handling of large scale LMs for SMT:

• Training is distributed over many machines
– approximate smoothing does not seem to hurt so far

• Run-time LM access through compact data structure

• While decoding one sentence LM is loaded on-demand

• Comparison with state-of-the-art SRILM toolkit:
– w/o memory mapping: 60% less memory, 45% slower decoding
– w memory mapping: 90% less memory!

• MT system with 5-gram LM runs on 2Gb PC rather than on a 20Gb PC!

Thank You!

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

30

Conclusions

Efficient handling of large scale LMs for SMT:

• Training is distributed over many machines
– approximate smoothing does not seem to hurt so far

• Run-time LM access through compact data structure

• While decoding one sentence LM is loaded on-demand

• Comparison with state-of-the-art SRILM toolkit:
– w/o memory mapping: 60% less memory, 45% slower decoding
– w memory mapping: 90% less memory!

• MT system with 5-gram LM runs on 2Gb PC rather than on a 20Gb PC!

Thank You!

M. Federico Efficient LM for SMT Edinburgh, April 16, 2007

