Translation by Pattern Matching

Adam Lopez
University of Edinburgh

Statistical Machine Translation

parallel text + alignment

Statistical Machine Translation

parallel text + alignment

Statistical Machine Translation

parallel text + alignment

Statistical Machine Translation

decoder

Statistical Machine Translation

Statistical Machine Translation

Statistical Machine Translation

Baseline Translation Model

- Hierarchical Phrase-based translation (Chiang 2007)
- 1M parallel sentences (27M words)
- GIZA++ alignments (Och \& Ney 2003, Koehn et al. 2003)
- alignments are dense
- Heuristics used to restrict number of extracted rules
- 67 M rules, 6.1 Gb of data
- cf. 225M (Zens \& Ney 2007), 55M (DeNeefe et al. 2007)

Some Possible Improvements

- 3.5 M sentences (2.5 M out-of-domain), 100 M words
- Discriminatively trained alignments (Ayan \& Dorr 2006)
- Key difference: alignments are sparse
- Loose phrase extraction (Ayan \& Dorr 2006)

Some Possible Improvements

- 3.5 M sentences (2.5 M out-of-domain), 100 M words
- Discriminatively trained alignments (Ayan \& Dorr 2006)
- Key difference: alignments are sparse
- Loose phrase extraction (Ayan \& Dorr 2006)

Some Possible Improvements

- 3.5 M sentences (2.5 M out-of-domain), 100 M words
- Discriminatively trained alignments (Ayan \& Dorr 2006)
- Key difference: alignments are sparse
- Loose phrase extraction (Ayan \& Dorr 2006)

Some Possible Improvements

- 3.5 M sentences (2.5 M out-of-domain), 100 M words
- Discriminatively trained alignments (Ayan \& Dorr 2006)
- Key difference: alignments are sparse
- Loose phrase extraction (Ayan \& Dorr 2006)

Some Possible Improvements

- 3.5 M sentences (2.5 M out-of-domain), 100 M words
- Discriminatively trained alignments (Ayan \& Dorr 2006)
- Key difference: alignments are sparse
- Loose phrase extraction (Ayan \& Dorr 2006)

Some Possible Improvements

- Rule extraction time: 77 CPU days
- does not include sorting or scoring!
- Rules counted: 20 billion
- 2 orders of magnitude larger than state of the art
- Estimated unique rules: 6.6 billion
- Estimated extract file size: 917 Gb
- Estimated phrase table size: 600 Gb

The Problem

- Current models are bounded by resource limitations.
- We're already pushing the edge of what's possible.
- Parallel data aren't getting any smaller.
- Models aren't getting any less complex.

The Solution

- Translation by pattern matching.
- Novel pattern matching algorithms.
- Exploit ideas developed in bioinformatics, IR
- Support for tera-scale translation models.

Idea: Translation by Pattern Matching

 (Callison-Burch et al. 05, Zhang \& Vogel 05)

Exact Pattern Matching

Input Pattern it persuades him and it disheartens him

Exact Pattern Matching

Input Pattern it persuades him and it disheartens him
$=$ Query Pattern

Pattern Matching for Phrase-Based MT

Input Pattern it persuades him and it disheartens him

Pattern Matching for Phrase-Based MT

Input Pattern it persuades him and it disheartens him

Query Patterns it
persuades
him
and
disheartens
it persuades
persuades him
him and and it
it disheartens disheartens him
it persuades him
persuades him and
him and it
and it disheartens it disheartens him it persuades him and persuades him and it him and it disheartens and it disheartens him
it persuades him and it
persuades him and it disheartens him and it disheartens him

Suffix Arrays

it makes him and it mars him, it sets him on and it takes him off . \#
$0 \quad 1$
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
$15 \quad 161718$

Text T

Suffix Arrays

it makes him and it mars him, it sets him on and it takes him off . \#

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18															

Text T

4 it mars him, it sets him on and it takes him off. \#
Suffix 4

Suffix Arrays

it makes him and it mars him, it sets him on and it takes him off . \#
$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array} 18$
0 it makes him and it mars him , it sets him on and it takes him ...
1 makes him and it mars him, it sets him on and it takes him off. \#
2 him and it mars him, it sets him on and it takes him off. \#
3 and it mars him, it sets him on and it takes him off. \#
4 it mars him, it sets him on and it takes him off. \#
5 mars him, it sets him on and it takes him off. \#
6 him, it sets him on and it takes him off . \#
7 , it sets him on and it takes him off. \#

Suffix Arrays

it makes him and it mars him , it sets him on and it takes him off . \#
$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array} 18$

3 and it mars him, it sets him on and it takes him off. \#
12 and it takes him off. \#
2 him and it mars him, it sets him on and it takes him off. \#
15 him off. \#
10 him on and it takes him off . \#
6 him, it sets him on and it takes him off. \#
0 it makes him and it mars him , it sets him on and it takes him ...
4 it mars him , it sets him on and it takes him off. \#

Suffix Arrays

it makes him and it mars him, it sets him on and it takes him off . \#

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 18

3 and it mars him , it sets him on and it takes him off . \#
12 and it takes him off. \#
2 him and it mars him , it sets him on and it takes him off. \#
15 him off. \#
10 him on and it takes him off. \#
6 him , it sets him on and it takes him off. \#
0 it makes him and it mars him , it sets him on and it takes him ...
it mars him, it sets him on and it takes him off. \#

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18\end{array}$
Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18\end{array}$
Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$
him and it
Query Pattern w

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18\end{array}$
Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$
him and it
Query Pattern w

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18\end{array}$
Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$
him and it
Query Pattern w

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
01
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 14$
15161718

Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$
him and it
Query Pattern w

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
01
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 14$
15161718

Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array SA
$O(|w| \log |T|)$
him and it
Query Pattern w

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
01
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 14$
15161718

Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$

$$
\begin{gathered}
O(|w| \log |T|) \\
O(|w|+\log |T|) \text { (Manber \& Myers, 93) }
\end{gathered}
$$

him and it
Query Pattern w

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
01
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$
$15 \quad 16 \quad 1718$

Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$
him and it
Query Pattern w

$$
\begin{gathered}
O(|w| \log |T|) \\
O(|w|+\log |T|) \text { (Manber \& Myers, 93) }
\end{gathered}
$$

$$
O(|w|) \quad \text { (Abouelhoda et al., 04) }
$$

Suffix Arrays

it makes him and it mars him . it sets him on and it takes him off . \#
01
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$\begin{array}{lll}6 & 78 & 9\end{array}$
$\begin{array}{lllll}10 & 11 & 12 & 13 & 14\end{array}$
$\begin{array}{ll}15 & 161718\end{array}$

Text T

3	12	2	15	10	6	0	4	8	13	1	5	16	11	9	14	7	17	18

Suffix Array $S A$
$O(|w| \log |T|)$
$O(|w|+\log |T|)$ (Manber \& Myers, 93) $O(|w|) \quad$ (Abouelhoda et al., 04)
Query Pattern w on baseline model:
0.009 seconds/ sentence
(not including extraction/scoring)

Problem: Phrases with Gaps

- Hierarchical phrase-based translation (Chiang 2005, 2007)
- Quirk et al. 2005, Simard et al. 2005, DeNeefe et al. 2007

Input
it persuades him and it disheartens him

Source Phrase
it X him

Hierarchical Phrases: Phrases with Gaps

- Hierarchical phrase-based translation (Chiang 2005, 2007)
- Quirk et al. 2005, Simard et al. 2005, DeNeefe et al. 2007

Input
it persuades him and it disheartens him

Source Phrase
it X him

Hierarchical Phrases: Phrases with Gaps

- Hierarchical phrase-based translation (Chiang 2005, 2007)
- Quirk et al. 2005, Simard et al. 2005, DeNeefe et al. 2007

Input
it persuades him and it disheartens him

Source Phrase
it X him

Hierarchical Phrases: Phrases with Gaps

- Hierarchical phrase-based translation (Chiang 2005, 2007)
- Quirk et al. 2005, Simard et al. 2005, DeNeefe et al. 2007

Input
it persuades him and it disheartens him

Source Phrase
it X him

Hierarchical Phrases: Phrases with Gaps

- Hierarchical phrase-based translation (Chiang 2005, 2007)
- Quirk et al. 2005, Simard et al. 2005, DeNeefe et al. 2007

Input
it persuades him and it disheartens him

Source Phrase
it X and X him

Problem Statement

Given an input sentence, efficiently find all hierarchical phrase-based translation rules for that sentence in the training corpus.

Pattern Matching for Hierachical PBMT

Input Pattern it persuades him and it disheartens him

Pattern Matching for Hierarchical PBMT

Input Pattern it persuades him and it disheartens him

Query Patterns it

persuades
him
and
disheartens
it persuades
persuades him
him and and it
it disheartens disheartens him
it persuades him
persuades him and
him and it
and it disheartens it disheartens him it persuades him and persuades him and it him and it disheartens and it disheartens him
it persuades him and it
persuades him and it disheartens him and it disheartens him

Pattern Matching for Hierarchical PBMT

Input Pattern it persuades him and it disheartens him

it X and
Query Patterns
it X it
it X disheartens
it X him
persuades X it
persuades X disheartens persuades X him it persuades X it
it persuades X disheartens
it persuades X him
it X and it
it X it disheartens

it X disheartens him
it X and X him
persuades him X disheartens
persuades him X him
persuades X it disheartens
persuades X disheartens him
him and X him
him X disheartens him
it persuades him X disheartens
it persuades him X him
it persuades X it disheartens
it persuades X disheartens him

Pattern Matching for Hierarchical PBMT

Input Pattern it persuades him and it disheartens him
it X and it disheartens
Query Patterns it X it disheartens him
persuades him and X him
persuades him X disheartens him persuades X it disheartens him
it persuades him and X him
it persuades him X disheartens him it persuades X it disheartens him
it X and it disheartens him

Pattern Matching for Hierarchical PBMT

Input Pattern it persuades him and it disheartens him
it X and it disheartens
Query Patterns it X it disheartens him
persuades him and X him
persuades him X disheartens him persuades X it disheartens him
it persuades him and X him
it persuades him X disheartens him it persuades X it disheartens him
it X and it disheartens him
This is a variant of approximate pattern matching (Navarro ‘01)

Pattern Matching with Gaps

Query pattern α him X it

3 and it mars him , it sets him ...
12 and it takes him off. \#
2 him and it mars him . it sets ...
15 him off. \#
10 him on and it takes him off. \# him , it sets him on and it ... it makes him and it mars ...
4 it mars him , it sets him on ... it sets him on and it takes ...
13 it takes him off. \# makes him and it mars him ...

Pattern Matching with Gaps

Query pattern α him X it

3 and it mars him , it sets him ... 12 and it takes him off. \#
2 him and it mars him . it sets ...
15 him off. \#
10 him on and it takes him off . \# him , it sets him on and it ... it makes him and it mars ...

4 it mars him , it sets him on ... it sets him on and it takes ... it takes him off. \# makes him and it mars him ...

Pattern Matching with Gaps

Query pattern α him X it

3 and it mars him, it sets him ...
12 and it takes him off. \#
2 him and it mars him . it sets ...
15 him off. \#
10 him on and it takes him off. \# him, it sets him on and it... it makes him and it mars ...
4 it mars him , it sets him on ... it sets him on and it takes ... it takes him off. \# makes him and it mars him ...

Pattern Matching with Gaps

Query pattern α him X it

Subpatterns w_{i}
him
it

3 and it mars him , it sets him ...
12 and it takes him off. \#
2 him and it mars him . it sets ...
15 him off. \#
10 him on and it takes him off. \# him , it sets him on and it ... it makes him and it mars ...
4 it mars him, it sets him on ... it sets him on and it takes ...
13 it takes him off. \# makes him and it mars him ...

Pattern Matching with Gaps

Query pattern α him X it

Subpatterns w_{i} him
it

3 and it mars him , it sets him ...
12 and it takes him off. \#
2 him and it mars him . it sets ...
15 him off. \#
10 him on and it takes him off. \# him , it sets him on and it ... it makes him and it mars ...
4 it mars him , it sets him on ... it sets him on and it takes ... it takes him off. \# makes him and it mars him ...

Pattern Matching with Gaps

Query pattern α him X it

Subpatterns w_{i}
him
it
n_{i} Occurrences

3 and it mars him , it sets him ... 12 and it takes him off. \#
2 him and it mars him . it sets ...
15 him off. \#
10 him on and it takes him off. \# him , it sets him on and it ... it makes him and it mars ... it mars him , it sets him on ... it sets him on and it takes ... it takes him off. \# makes him and it mars him ...

Pattern Matching with Gaps

Pattern Matching with Gaps

2
15
10
6

Problem Overview Solution Framework Alg Pattern Matching with Gaps

Pattern Matching with Gaps

RILMS (Rahman et al., 06)

Alg

Pattern Matching with Gaps

RILMS (Rahman et al., 06)
linear in number of occurrences of subpatterns: $O\left(\sum_{i} n_{i}\right)$

Baseline Timing Result

compare: 0.009 seconds per sentence
for contiguous phrases

Problem Overview
 Complexity Analysis

contiguous

$$
\begin{gathered}
\sum_{w}(|w|+\log |T|) \\
137 \quad 5 \quad 27
\end{gathered}
$$

discontiguous

$$
\begin{aligned}
& \sum_{\alpha=w_{1} X \ldots X w_{I}} \sum_{i=1}^{I}\left(\left|w_{i}\right|+\log |T|+n_{i}\right) \\
& 2825
\end{aligned} 3 \quad 5 \quad 27 \quad 82069 \text { 3 }
$$

Complexity Analysis

contiguous

$$
\begin{gathered}
\sum_{w}(|w|+\log |T|) \\
137 \quad 5 \quad 27
\end{gathered}
$$

Exploiting Redundancy

Input Pattern it persuades him and it disheartens him
it X and
Query Patterns it X it
it $X \operatorname{disheartens~}$
it X him
persuades X it
persuades X disheartens
persuades X him
it persuades X it
it persuades X disheartens
it persuades X him
it X and it
it X it disheartens
it X disheartens him
it X and X him
persuades him X disheartens
persuades him X him
persuades X it disheartens
persuades X disheartens him him and X him
him X disheartens him
it persuades him X disheartens
it persuades him X him
it persuades X it disheartens
it persuades X disheartens him

Exploiting Redundancy

Input Pattern it persuades him and it disheartens him

it X and it X it it X disheartens it X him persuades X it
persuades X disheartens persuades X him it persuades X it

it persuades X disheartens
it persuades X him
it X and it
it X it disheartens
it X disheartens him it X and X him
persuades him X disheartens
persuades him X him
persuades X it disheartens
persuades X disheartens him him and X him
him X disheartens him
it persuades him X disheartens
it persuades him X him
it persuades X it disheartens
it persuades X disheartens him

Exploiting Redundancy

Query Pattern

it persuades X disheartens him

Exploiting Redundancy

Query Pattern
Maximal Prefix
it persuades X disheartens him it persuades X disheartens
(Zhang \& Vogel 2005)

Exploiting Redundancy

Query Pattern
Maximal Prefix
Maximal Suffix
it persuades X disheartens him
it persuades X disheartens persuades X disheartens him

Prefix Tree with Suffix Links

 \title{
Timing Results
}
 \title{
Timing Results
}

Baseline

Timing Results

Problem Overview
 Complexity Analysis

contiguous

$$
\begin{gathered}
\sum_{w}(|w|+\log |T|) \\
137 \quad 5 \quad 27
\end{gathered}
$$

discontiguous

$$
\begin{aligned}
& \sum_{\alpha=w_{1} X \ldots X w_{I}} \sum_{i=1}^{I}\left(\left|w_{i}\right|+\log |T|+n_{i}\right) \\
& 2825
\end{aligned} 3 \quad 5 \quad 27 \quad 82069 \text { 3 }
$$

Problem Overview
 Complexity Analysis

contiguous

$$
\begin{gathered}
\sum_{w}(|w|+\log |T|) \\
137 \quad 5 \quad 27
\end{gathered}
$$

discontiguous

$$
\begin{array}{cccc}
\sum_{\alpha=w_{1} X \ldots X w_{I}} & \sum_{i=1}^{I}\left(\left|w_{i}\right|+\log |T|+n_{i}\right) \\
2825 & 3 & 5 & 27
\end{array}
$$

Empirical Analysis

computations (ranked by time)

Distribution of Patterns in Training Data

Pattern types (in descending order of frequency)

Distribution of Patterns in Training Data

Pattern types (in descending order of frequency)

Analysis of Problem

- The expensive computations involve at least one frequent subpattern. There are two cases.
- A frequent pattern paired with an infrequent pattern
- Two frequent patterns paired with each other

Frequent \times Infrequent Subpatterns

Frequent \times Infrequent Subpatterns

Frequent \times Infrequent Subpatterns

Frequent \times Infrequent Subpatterns

Problem Overview
 Double Binary Search

Baeza-Yates, 04

 \title{
Double Binary Search
}
 \title{
Double Binary Search
}

Baeza-Yates, 04

Dataset D
 \title{
Double Binary Search
}
 \title{
Double Binary Search
}

Baeza-Yates, 04

Problem Overview Solution Framev
Double Binary Search
Baeza-Yates, 04

Queryset Q

Dataset D

Double Binary Search

Baeza-Yates, 04

Queryset Q

Dataset D

Double Binary Search

Baeza-Yates, 04

Queryset Q

Dataset D

Problem Overview Solution Frame Double Binary Search

Baeza-Yates, 04

Queryset Q

Dataset D

Double Binary Search

Baeza-Yates, 04

Queryset Q

Dataset D

Upper bound complexity: $|Q| \log |D|$

Obtaining Sorted Sets

Obtaining Sorted Sets

Sort via Stratified Tree (van Emde Boas et al. 1977)

Obtaining Sorted Sets

Sort via Stratified Tree (van Emde Boas et al. 1977)

Problem: complexity increases to

$$
O(|Q| \log |D|+(|Q|+|D|) \log \log |T|)
$$

Obtaining Sorted Sets

Sort via Stratified Tree (van Emde Boas et al. 1977)

Problem: complexity increases to

$$
O(|Q| \log |D|+(|Q|+|D|) \log \log |T|)
$$

Timing Results

Timing Results

Obtaining Sorted Sets

Sort via Stratified Tree

Problem: sort complexity is still very high for very frequent patterns

Obtaining Sorted Sets

Solution: precompute the inverted index for 1000 most frequent contiguous patterns

Timing Results

Timing Results

Frequent \times Frequent Subpatterns

Frequent \times Frequent Subpatterns

Problem:
There is no clever algorithm to solve this problem

Problem Overview
 Solution: Precomputation

it makes him and it mars him . it sets him on and it takes him off . \#
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18\end{array}$
Text

Solution: Precomputation

it makes him and it mars him . it sets him on and it takes him off . \#

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18															

Text

Most Frequent Patterns
it (4)
him (4)

Precomputed Pattern Matches
it X him $\quad \operatorname{him} X$ it
it X it
him X him

Solution: Precomputation

it makes him and it mars him . it sets him on and it takes him off . \#
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18\end{array}$

Text

Most Frequent Patterns
it (4)
him (4)

Precomputed Pattern Matches

$$
\begin{array}{cc}
\text { it } X \text { him } & \operatorname{him} X \text { it } \\
(0,2)(0,6)(13,15) & (2,4)(2,8)(10,13) \\
(4,6)(4,10)(8,10)(8,15) & (6,8)(6,13) \\
\text { it } X \text { it } & \text { him } X \text { him } \\
(0,4)(0,8) & (2,6)(2,10)(10,15) \\
(4,8)(4,13)(8,13) & (6,10)(6,15)
\end{array}
$$

Timing Results

Timing Results

Analysis of Fixed Memory Usage

- Source Text: $|T|$
- Suffix Array: $|T|$
- Alignments: $|T|$
- Target Text: $|T|$
- Total Cost: $4|T|$
- For 27M words: about 700M
- including indices for 1000 words: about 2.1 Gb
- for 100 words: 1.1 Gb , increases time to 1.6 secs / sent

Longer Spans, Longer Phrases

The Tera-Scale Translation Model

- Task: NIST Chinese-English 2005
- Baseline Model: 30.7
- Tera-Scale Model: 32.6
- All modifications contribute to overall score
- With better language model and number translation:
- Baseline Model: 31.9
- Tera-Scale Model: 34.5

Open Questions

- Can we improve speed?
- Can we improve memory use? Compressed self-indexes?
- Uses for arbitrarily large translation models?
- Context-sensitive models (Chan et al. 2007, Carpuat \& Wu 2007)
- Factored models (Koehn et al. 2007)
- Syntax-based model (DeNeefe et al. 2007)
- What other algorithms can we use from bioinformatics?

Thanks

Acknowledgements:
David Chiang, Chris Dyer, Philip Resnik

