
The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 89–98

Unsupervised Generation of Parallel Treebanks
through Sub-Tree Alignment

Ventsislav Zhechev

Abstract
e need for syntactically annotated data for use in natural language processing has increased dra-

matically in recent years. is is true especially for parallel treebanks, of which very few exist. e ones
that exist are mainly hand-craed and too small for reliable use in data-oriented applications. In this
paper we introduce an open-source system for fast and robust automatic generation of parallel tree-
banks. We expect the opening of the presented platform to the scientific community to help boost re-
search in the field of data-oriented machine translation and lead to advancements in other fields where
parallel treebanks can be employed.

1. Motivation

In recent years much effort has been made to make use of syntactic information in statis-
tical machine translation (MT) systems (Hearne and Way, 2006, Nesson et al., 2006, Lavie,
2008). is has led to increased interest in the development of parallel treebanks as the
source for such syntactic data. ey consist of a parallel corpus, both sides of which have
been parsed and aligned at the sub-tree level.

So far parallel treebanks have been created manually or semi-automatically. is has
proven to be a laborious and time-consuming task that is prone to errors and inconsistencies
(Samuelsson and Volk, 2007). Because of this, only a few parallel treebanks exist and none
are of sufficient size for productive use in any statistical MT application.

In this paper we present an open-source platform for the automatic generation of parallel
treebanks from parallel corpora. We discuss algorithms both for cases in which monolingual
phrase-structure parsers exist for both languages and for cases in which such parsers are not
available. e parallel treebanks created with the methods described in this paper can be
used by different statistical MT applications and for translation studies.

We will first discuss the technologies and algorithms used in our system in section 2 and
then we will look at the practical details of how to compile and run the system in section 3.

© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised Generation of Parallel Treebanks

through Sub-Tree Alignment. The Prague Bulletin of Mathematical Linguistics No. 91, 2009, 89-98.

logo

PBML

2. Algorithms

In this section we introduce a method for the automatic generation of parallel treebanks
from parallel corpora. e only tool that is required besides the soware presented in this pa-
per is a word-alignment tool (eg. GIZA++ – Och and Ney, 2003). However, if parsers or at least
POS taggers exist for any of the languages in question, they can be used to pre-process the data.

In all cases, a word alignment tool is used to first obtain word-alignment probabilities for
the parallel corpus in question for both language directions. We will start with the descrip-
tion of the case in which parsers are available for both languages, as this is the core of the sys-
tem. ey are used to parse both sides of the parallel corpus. e resulting parsed data together
with the word-alignment probability tables are then used as the input to a sub-tree alignment
system that introduces links between nodes in corresponding trees according to their trans-
lational equivalence scores. e output of the sub-tree aligner is the desired parallel treebank.

If there is no parser available for one of the languages, the parallel corpus — together with
the word-alignment tables — is fed directly to a modified version of the sub-tree aligner that
can produce unambiguous parallel treebanks from plain data.

We will now look at the alignment algorithms in greater detail, starting with the tree-to-
tree alignment and then moving on to the string-to-string, string-to-tree and tree-to-string
cases. A thorough evaluation of the aligner is presented in (Zhechev and Way, 2008).

2.1. Tree-to-Tree Alignment

First, the tree-to-tree aligner has to follow certain principles to fit in the above framework:
• Independence with respect to language pair, constituent-labelling scheme and POS tag set.
• Preservation of the original tree structures.
• Dependence on a minimal number of external resources, so that the aligner can be used
even for languages with few available resources.
• e word-level alignments should be guided by links between higher constituents
in the trees

ese principles guarantee the usability of the algorithm for any language pair in many
different contexts. Additionally, there are a few well-formedness criteria that have to be fol-
lowed to enforce feasible alignments:

• A node in a tree may only be linked once.
• Descendants of a source linked node may only be linked to descendants of its target
linked counterpart.
• Ancestors of a source linked node may only be linked to ancestors of its target
linked counterpart.

Links produced according to these criteria encode enough information to allow the inference
of complex translational patterns from a parallel treebank, including some idiosyncratic transla-
tional divergences, as discussed in (Hearne et al., 2007). In what follows, a hypothesised align-
ment is regarded as incompatible with the existing alignments if it violates any of these criteria.

PBML 91 JANUARY 2009

90

e sub-tree aligner operates on a per sentence-pair basis in two stages. First, for each
possible hypothetical link between two nodes, a translational equivalence score is calculated.
Only the links with a nonzero score are stored for further processing. Unary productions
from the original trees, if available, are collapsed to single nodes, preserving all labels. us
the aligner will consider a single node — instead of several nodes — for the same lexical span.

During the second stage, the optimal combination of links is selected from among the
available nonzero links using either a greedy-search based, or a full-search based approach.

2.1.1. Translational Equivalence

Given a tree pair 〈S, T〉 and a hypothesis 〈s, t〉, we first compute the strings in (1), where
〈si…six〉 and 〈tj…tjy〉 denote the terminal sequences dominated by s and t respectively, and
〈S1…Sm〉 and 〈T1…Tn〉 denote the terminal sequences dominated by S and T. Here, inside are
the strings that represent the spans of the nodes being linked and outside are the strings that
lay outside the spans of those nodes.

(1)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

inside outside
sl = 〈si . . . six〉 sl = 〈S1 . . . si−1six+1 . . . Sm〉
tl = 〈tj . . . tjy〉 tl = 〈T1 . . . tj−1tjy+1 . . . Tn〉

α (x|y) =

|y|∏

j

|x|∑

i

P (xi |yj)

α (x|y) =

|x|∏

i

|y|∑
j

P (xi |yj)

|y|

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

(2)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

1. Motivation

Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇme-
jrek, 2004 #130%) can be used as a parallel treebank, it is not such per se. The authors
do not use phrase-structure trees. Instead, tectogrammatical dependency structures
are used ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure
of the sentences using base forms of the words, rather than inflected forms. Either
a word alignment tool like GIZA++ or a probabilistic electronic dictionary (supplied
with the treebank) can be used to automatically align the dependency structures.
The presented version contains over 21 thousand sentence pairs that can be aligned.
Because of its nature this treebank can only be used by MT systems that employ
tectogrammatical dependency structures.

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

(3)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

inside outside
sl = 〈si . . . six〉 sl = 〈S1 . . . si−1six+1 . . . Sm〉
tl = 〈tj . . . tjy〉 tl = 〈T1 . . . tj−1tjy+1 . . . Tn〉

score1 α (x|y) =

|y|∏

j

|x|∑

i

P (xi |yj)

score2 α (x|y) =

|x|∏

i

|y|∑
j

P (xi |yj)

|y|

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

(4)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

inside outside
sl = 〈si . . . six〉 sl = 〈S1 . . . si−1six+1 . . . Sm〉
tl = 〈tj . . . tjy〉 tl = 〈T1 . . . tj−1tjy+1 . . . Tn〉

score1 α (x|y) =

|y|∏

j

|x|∑

i

P (xi |yj)

score2 α (x|y) =

|x|∏

i

|y|∑
j

P (xi |yj)

|y|

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

e score for the given hypothesis 〈s, t〉 is computed using (2) and (3) or (4). According
to (3), for each source token we first sum the word-alignment probabilities of the target to-
kens, given the source token. is gives us the probability masses of the target string corre-
sponding to each of the source tokens and multiplying these gives us the alignment probabil-
ity. In (4), the word-alignment probabilities are used to get an average vote by the source
tokens for each target token. en the product of the votes for the target words gives the
alignment probability for the two strings. e final translational equivalence score is the
product of the alignment probabilities for the inside and outside strings in both language
directions as in (2).

2.1.2. Greedy-Search Algorithm

e greedy-search algorithm is very simple. e set of nonzero-scoring links is processed
iteratively by linking the highest-scoring hypothesis at each iteration and discarding all hy-
potheses that are incompatible with it until the set is empty.

Problems arise when there happen to be several hypotheses that share the same highest
score. ere are two distinct cases that here: these top-scoring hypotheses may or may not
represent incompatible links. If all such hypotheses are compatible, they are all linked at the
same time; otherwise these hypotheses are skipped and processed at a later stage.

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

91

e sub-tree aligner can be built to use one of two possible skipping strategies, which we
will call skip1 and skip2. According to the skip1 strategy, hypotheses are simply skipped until
a score is reached, for which only one hypothesis exists. is hypothesis is then linked and
the selection algorithm continues as usual. e skip2 strategy is more complex, in that we
also keep track of which nodes take part in the skipped hypotheses. en, when a candidate
for linking is found, it is only linked if it does not include any of these nodes.

Regardless of whether skip1 or skip2 is used, sometimes a situation occurs in which the
only hypotheses remaining unprocessed are equally likely candidates for linking. In such
ambiguous cases our decision is not to link anything, rather than make wrong a decision.

During initial testing of the aligner we found that oen lexical links would get higher
scores than the non-lexical links,1 which sometimes resulted in poor lexical links blocking
bona fide non-lexical ones. To address this issue, an extension to the selection algorithm was
developed, which we call span1. When enabled, this extension results in the set of nonzero
hypotheses being split in two subsets: one containing all hypotheses for lexical links, and one
containing the hypotheses for non-lexical links. Links are then first selected from the second
subset, and only when it is exhausted does the selection continue with the lexical ones.

2.1.3. Full-Search Algorithm

is is a backtracking recursive algorithm that enumerates all possible combinations of
non-crossing links. All maximal combinations2 found during the search are stored for further
processing. Aer the search is complete, the probability mass of each maximal combination is
calculated by summing the translational equivalence scores for all the links in the it and the one
that has the highest probability mass is selected as the best alignment for the sentence pair.

Oen, there are several distinct maximal combinations that share the highest probability
mass. e disambiguation strategy that we currently employ is to take the largest common
subset of all maximal combinations.

2.2. Other Alignment Modules

In this section we look at the string-to-string, tree-to-string and string-to-tree modules
that are used when a parser is not available for one or both of the languages being aligned.

e string-to-string aligner can accept as its input plain or POS-tagged data. For a pair of
sentences, all possible binary trees are first constructed for each sentence. All nodes in these
trees have the same label (X) and are used as available link targets. In the case of POS-tagged
data, the pre-terminal nodes receive the POS tags as labels.

Aer all link-hypothesis scores have been calculated, the string-to-string aligner continues
with the selection of links in the same manner as the sub-tree aligner, with one extension; aer
a link has been selected — besides all incompatible links — all binary trees that do not include

PBML 91 JANUARY 2009

92

1 lexical are such links, for which at least one of the linked nodes spans over only one word.
2 A maximal combination of non-crossing links is a combination of links for which any newly added

link would be incompatible with at least one of the links already in the combination.

the linked nodes are discarded with any nonzero hypotheses attached to them. In this way, only
those binary trees that are compatible with the selected links remain aer the linking process.

In an additional step for the string-to-string aligner, all non-linked nodes (except for the
root nodes) are discarded, thus allowing for the construction of unambiguous n-ary trees for
the source and target sentences. If necessary, non-linked nodes are le intact to provide sup-
porting structure in the trees. It is also possible to output a parse forest of all binary trees that
are compatible with the alignments.

In its operation, the string-to-string aligner is very similar to ITG (Wu, 2000), however its
goal is the generation of a parallel treebank, rather than the induction of a bilingual grammar.

e tree-to-string and string-to-tree modules differ from the string-to-string module in
that a parser is available for one of the languages being aligned. In this case, the available
parses are used, where available, rather than generate hypothetical binary trees. Also, at the
output stage, the existing parses are preserved, except for any unary productions that are
being collapsed as in the tree-to-tree alignment module. e non-parsed side may be POS-
tagged, if a POS tagger is available.

2.3. Re-scoring

It can be argued that each newly induced link in a sentence pair should affect the decisions
regarding which links to select further in the alignment process for this sentence pair. This can
be simulated to a certain extent using the simple re-scoring module discussed in this section.

e operation of this module relies on the fact that aer a link has been introduced for a
pair of trees, some of the word alignments available in the word-alignment tables for the tree
pair will be incompatible with this link. Namely, these are alignments between words within
the span of the source node being linked and words without the span of the target node; as
well as alignments between words without the source node and words within the target node.

us, each time a new link has been selected, the incompatible word alignments are re-
moved from the list of available word alignments for the tree pair and the scores of the re-
maining link hypotheses are recalculated. e linking process then continues as usual.

3. Usage

e distribution package of the aligner consists of a single bzip2 compressed tarball. e
system is implemented using standard C++ and can be compiled using GCC version 4.0 and
higher. e source code is distributed with a configure script, which handles the configura-
tion options. Aer the distribution package is unpacked, this script can be found in the
build sub-folder. Run ./build/configure --help for a full list of compilation options. A
README file is included with the distribution, which includes an up-to-date version of the in-
formation presented in this paper.

I suggest configuration and compilation in the build folder. Configuration and compila-
tion in other folders has not been tested and is discouraged. To speed up reconfiguration, I
suggest passing the argument -C to the configure script, which will turn on caching.

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

93

Run ./configure [options] to configure the tools you want to compile. ere is an
option for the configure script that controls which tools are to be compiled and installed:
--enable-tools="<list of tools>" By default, only the tree-to-tree aligner is compiled
and installed. To install all available tools, use --enable-tools=all. If you want to specify
precisely which tools are to be built and installed, use align for the standard tree-to-tree
aligner; lattice for a full-search based tree-to-tree aligner (experimental); str2str for a
string-to-string, tree-to-string and string-to-tree 3-in-1 alignment module.

Run make && make install to compile and install the soware. e default installation
destination is /usr/local, but it can be changed using configure options.

Also, if you have GCC 4.2 or later, you can compile the aligner for parallel execution. To
configure the soware for parallel execution, supply the --enable-parallel option to con-
figure. When compiled for parallel execution, the OMP_DYNAMIC environment variable con-
trols the behaviour of the soware. If you set this variable to FALSE, the soware will use all
available CPUs on your system, regardless of whether there are other processes running or
not. If you are running other resource intensive tasks on your system you may want to set
OMP_DYNAMIC to TRUE. In this case, the soware will decide dynamically what amount of re-
sources to use without interfering with other running processes.

3.1. Tree-to-Tree Aligner

e options controlling the functionality of the aligner have defaults that can be changed by
passing options to the configure script. Here is a list of the different options and their function:

--enable-data-set=<data_set_name> is option should be set to a string, describing
the data set it will operate on. By default this option is set to "unknown".

--disable-span1 If you supply this option to the configure script, the aligner will be
compiled without the span1 feature. By default, this feature is turned on.

--enable-score={1, 2} You can choose the scoring mechanism that is to be used by the
aligner by using this option. By default, the aligner will use score2.

--enable-skip={1, 2} You can choose the selection algorithm that is to be used by the
aligner by using this option. By default, the aligner will use skip2.

--enable-rescoring is option turns on the re-scoring module. It is off by default.
--enable-lowercasing is option should be defined, if you are using lowercased word-

alignment data. It is disabled by default.
--enable-log-based-probabilities If you turn on this option, the link hypothesis

scores will be stored as logarithms. e option is on by default.
You would normally run the aligner in one of the following two ways:
align <source_to_target_lex_probs> <target_to_source_lex_probs> [<source_to_tar-

get_phrase_probs>] <input_corpus>
align <config_file>

You should always supply the proper command line arguments, as they are not checked
for correctness. Here is a description:

<source_to_target_lex_probs> e path to the file which holds the source-to-target
word alignment probabilities. e format is <target> <source> <probability>\n

PBML 91 JANUARY 2009

94

<target_to_source_lex_probs> e path to the file which holds the target-to-source
word alignment probabilities. e format is <source> <target> <probability>\n

<source_to_target_phrase_probs> e path to the file which holds the source-to-target
phrase alignment probabilities. is file is currently used only to calculate some statistics and
you can safely omit it, as its use slows down the system and increases the memory footprint.

<input_corpus> e path to the file containing the aligned parsed sentences or –. Sup-
plying – for this parameter will direct the aligner to read data from the standard input, rather
than from a file. e format is <source>\n<target>\n\n\n. e parsed sentences should be
in bracketed format, using (and) as delimiters. White-space (except new lines) is irrelevant
and any character is allowed in both terminal and non-terminal nodes (except spaces; spaces
are not allowed in non-terminal nodes and signify multiword units in terminal nodes).

<config_file> e path to a file containing run-time options, one option per line. is
file has the format <option_name> <option_value>\n. Any line starting with a # character
will be ignored. You can specify the following options in the file that correspond to com-
mand line options: input — corresponds to <input_corpus>; source_alignments — <sour-
ce_to_target_lex_probs>; target_alignments — <target_to_source_lex_probs>;
phrase_alignments — <source_to_target_phrase_probs>. Additionally, the input option
may be omitted in which case the aligner will read data from the standard input. ere are
some additional options that may be specified in the configuration file, but are not required.
output is used to specify the path to a file in which the output of the aligner is to be written.
Information about the output format is given later in this section. log is used to specify the
path to a file in which run-time information and statistics are to be written. expensive_sta-
tistics can be set to all, none, POS or search and controls whether certain memory-
expensive statistics should be calculated. When not specified, this option defaults to all. e
statistics in question concern the distribution of POS tags and POS tag-pairs and keeping
track of the search-space reductions during alignment.

If you use command line options when running the aligner, or use a configuration file but
do not specify the output and log options, all output is sent to the standard output. If you
specify only the output option in the configuration file, the output of the aligner will be writ-
ten to the file specified, while the performance statistics will be written to the standard out-
put. If you, on the other hand, specify only the log option, the statistics will be written to the
specified file and the output will go to standard output. In case you specify both options,
both the output and the statistics will be written to the corresponding files. e format of the
output for the parallel treebank is <source>\n<target>\n<source_node_id> <tar-
get_node_id> … \n\n. e non-terminal nodes in the parsed trees all have IDs attached with
a – character. ese IDs are used to represent the links between the nodes of the trees. An
alignment example is shown in Figure 1 together with the proper input and output.

If you compile the lattice tool, it will use the exact same options as the tree-to-tree aligner
and will produce output in the same format. e most significant difference is that it will use
the full-search algorithm for the induction of the sub-tree alignments, rather than the greedy-
search based algorithm. is tool is still experimental, though, and due to the combinatorial
nature of the full-search algorithm may not find a solution for all sentence pairs within an ac-

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

95

ceptable timeframe. Because of this the use of this tool is strongly discouraged. e lattice
tool does not support the span1 extension yet and the skip* modules are irrelevant to it.

Figure 1: An aligned tree pair with the corresponding system input and output

3.2. String-to-String Aligner

Here only the differences between the string-to-string aligner and the tree-to-tree aligner will
be listed. Anything not mentioned works exactly as described for the tree-to-tree aligner, i.e. the
compilation and configuration options available for the tree-to-tree aligner are also available here.

e aligner should be run with command line arguments. You would normally run it in
one of the following two ways:

align_str2str <operation_mode> <input_type> <output_type> <source_to_target_lex_probs>
<target_to_source_lex_probs> [<source_to_target_phrase_probs>] <input_corpus>

align_str2str <config_file>

Here is the description of the options:
<operation_mode> is argument specifies the mode of operation of the aligner and

cannot be omitted. str2str will evoke standard string-to-string alignment. In case a parser is
available for one of the languages being aligned, the aligner can be set to run in string-to-tree
or tree-to-string mode. e parameters for these modes are str2tree and tree2str respec-
tively. In these cases you have to make sure that the correct side of the corpus contains brack-
eted representations of parsed sentences. e format of the other side of the corpus is con-
trolled by the <input_type> argument.

<input_type> If you supply POS-tagged sentences, this argument should be tagged and
for plain sentences this should be plain. is argument cannot be omitted.

<output_type> is argument is used to select the type of output of the aligner and can-
not be omitted. ere are three possible options: standard, parse and XML. e standard
output has the format presented in Figure 2 for each sentence pair. If the mother_node_ID of
a node is 0, then this node has no ancestors (it is a root node). ere may be more than one

(S (PRN He)(VP (V sees)(PRN her)))
(S (PRN Er)(VP (V sieht)(PRN sie)))

S−5

PRN−1
He

VP−4

V−2
sees

PRN−3
her

S−5

PRN−1
Er

VP−4

V−2
sieht

PRN−3
sie

(S-5 (PRN-1 He)(VP-4 (V-2 sees)(PRN-3 her)))
(S-5 (PRN-1 Er)(VP-4 (V-2 sieht)(PRN-3 sie)))
1 1 2 2 3 3 4 4 5 5

PBML 91 JANUARY 2009

96

such node for each sentence. is format preserves enough nodes to represent all possible
binary trees for the sentences in the pair that are consistent with the induced links. e parse
and XML output formats present minimal trees, consisting only of the pre-terminal nodes and
the linked nodes for the sentences in each pair. In case there is more than one root node for a
particular tree, an extra node with label X and ID 100000 is inserted as the mother of all root
nodes. Both formats give a standard bracketed representation of unambiguous parse trees.

Figure 2: Standard output format of the string-to-string aligner

<input_corpus> ere are two possible formats for the sentences, while the overall file
format remains as for the tree-to-tree aligner. e first format is simply <word1> <word2> …
<wordn>. e second format is ((<word1>)) ((<word2>)) … ((<wordn>)) and can be used to
specify the boundaries of multiword units. is second format can also be used for supplying
POS tags for the words of the sentences. In that case the format is ((<word1> <POS1>))
((<word2> <POS2>)) … ((<wordn> <POSn>)). A specific requirement for the use of the string-
to-string aligner is the existence of one of two open source modules on your system: If you
are using the first input format, you need the Boost Tokenizer library; If you are using the
second input format, you need the Boost Regex library.

<config_file> e path to a file containing run-time options, one option per line. e
same rules apply as for the config file for the tree-to-tree aligner. ere are three additional
options, however: operation_mode, input_type and output_type. ey correspond directly
to their command-line counterparts.

4. Conclusion

We have presented a novel platform for the fast and robust automatic generation of paral-
lel treebanks. e algorithms described are completely language pair-independent and re-
quire a minimal number of resources; besides a parallel corpus, a word alignment tool is the
only extra soware required. If available, POS taggers or monolingual phrase-structure pars-
ers can be used to pre-process the data.

#BOP
#BOS
<word1>\t<mother_node_ID>
<word2>\t<mother_node_ID>
…
#<node_ID> <node_label>\t<mother1_node_ID> <mother2_node_ID> …
…
#EOS
#BOS
…
#EOS
#LINKS <source1_node_ID> <target1_node_ID> …
#EOP

#BOP
…
#EOP

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

97

e soware is distributed as C++ source code together with a script for configuring the
compilation process and extensive documentation. e latest version can be downloaded
from http://ventsislavzhechev.eu/Home/Soware/Soware.html.

Acknowledgments

We would like to thank Mary Hearne, John Tinsley, Andy Way and Khalil Sima'an for
their participation in the development of the algorithms. e current work is part of the AT-
TEMPT project at NCLT, DCU, Ireland and is generously supported by Science Foundation
Ireland (grant number 05/RF/CMS064).

Bibliography

Hearne, Mary and Andy Way. 2006. Disambiguation Strategies for Data-Oriented Translation. In
Proceedings of the 11th Conference of the European Association for Machine Translation (EAMT ’06),
pp. 59–68. Oslo, Norway.

Hearne, Mary, John Tinsley, Ventsislav Zhechev and Andy Way. 2007. Capturing Translational
Divergences with a Statistical Tree-to-Tree Aligner. In Proceedings of the 11th International
Conference on eoretical and Methodological Issues in Machine Translation (TMI ’07), eds. Andy
Way and Barbara Gawronska, pp. 85–94. Skövde, Sweden: Skövde University Studies in Informatics.

Lavie, Alon. 2008. Stat-XFER: A General Search-based Syntax-driven Framework for Machine
Translation. In Proceedings of the 9th International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing ’08), ed. Alexander F. Gelbukh, pp. 362–375. Vol. 4919/2008 of
Lecture Notes in Computer Science. Haifa, Israel: Springer.

Nesson, Rebecca, Stuart M. Shieber and Alexander Rush. 2006. Induction of Probabilistic Synchronous
Tree-Insertion Grammars for Machine Translation. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Americas (AMTA ’06), pp. 128–137. Boston, MA.

Och, Franz Josef and Hermann Ney. 2003. A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29 (1): 19–51.

Samuelsson, Yvonne and Martin Volk. 2007. Alignment Tools for Parallel Treebanks. In Data Structures
for Linguistic Resources and Applications: Proceedings of the Biennial GLDV Conference 2007,
eds. Georg Rehm, Andreas Witt and Lothar Lemnitzer. Tübingen, Germany: Gunter Narr.

Wu, Dekai. 2000. Bracketing and aligning words and constituents in parallel text using Stochastic
Inversion Transduction Grammars. In Parallel Text Processing: Alignment and Use of Translation
Corpora, ed. Jean Veronis, chap. 7. Dordrecht: Kluwer.

Zhechev, Ventsislav and Andy Way. 2008. Automatic Generation of Parallel Treebanks. In Proceedings of the
22nd International Conference on Computational Linguistics (CoLing ’08), pp. 1105–1112. Manchester, UK.

PBML 91 JANUARY 2009

98

http://ventsislavzhechev.eu/Home/Software/Software.html
http://ventsislavzhechev.eu/Home/Software/Software.html

