

Improving SMT for Baltic Languages with Factored Models

Raivis SKADIŅŠ^{a,b}, Kārlis GOBA^a and Valters ŠICS ^a ^a *Tilde SIA, Latvia* ^b *University of Latvia, Latvia*

The Fourth International Conference HUMAN LANGUAGE TECHNOLOGIES — THE BALTIC PERSPECTIVE Riga, Latvia, October 7-8, 2010

In this presentation

- Current situation with Latvian & Lithuanian MT
- Motivation of this research
- SMT with factored models
 - English-Latvian
 - Lithuanian-English
- Evaluation
- The latest improvements

Current situation

- Latvian
 - MT in Tildes Birojs 2008 (RBMT)
 - Google Translator (SMT)
 - Microsoft Translator (SMT)
 - Pragma (RBMT)
 - IMCS system (SMT)
- Lithuanian
 - Google Translator (SMT)
 - Bing Translator (SMT)
 - VMU system (RBMT)

- Both Latvian and Lithuanian
 - Morphologically rich languages
 - Relatively free order of constituents in a sentence
- Small amount of parallel corpora available
- We were not happy with a quality of existing MT
- Goal
 - not to build yet another SMT system using publicly available parallel corpora and tools
 - to add language specific knowledge to assess the possible improvement of translation quality

SMT is not so easy

- There are good open source tools (Giza++, Moses etc.) and even some training data available (DGT-TM, OPUS)
- Why it is not so easy to build SMT for Baltic languages
 - Rich morphology
 - Limited amount of training data
- Translating from English
 - How to chose the right inflected form
 - How to ensure agreement
 - How to deal with long distance reordering
- Translating to English
 - Out of vocabulary issue
 - How to deal with long distance reordering

- The main challenge inflected forms and agreement
- Simple SMT methods relay on size of training data
- Factored methods allow integration of language specifics
 - Lemmas, morphology, syntactic features, ...
- There is no one best way how to use factored methods
- Solution depends on language pair and available tools

Experiment 1: English-Latvian

Training data:

Bilingual corpus	Parallel units	
Localization TM	~1.29 mil.	
DGT-TM	~1.06 mil.	
OPUS EMEA	~0.97 mil.	
Fiction	~0.66 mil.	
Dictionary data	~0.51 mil.	
Total	4.49 mil.	
	(3.23 mil. filtered)	

Monolingual corpus	Words	
Latvian side of parallel corpus	60M	
News (web)	250M	
Fiction	9M	
Total, Latvian	319M	

Experiment 1: English-Latvian

Development and evaluation data

- Development 1000 sentences
- Evaluation 500 sentences
- Balanced

Торіс	Percentage
General information about European Union	12%
Specifications, instructions and manuals	12%
Popular scientific and educational	12%
Official and legal documents	12%
News and magazine articles	24%
Information technology	18%
Letters	5%
Fiction	5%

Tools

- GIZA++, Moses, SRILM
- Latvian morphological tagger developed by Tilde

Experiment 1: English-Latvian

Factored models

- More than 10 different models tried
- Here presented (1) gives good results and (2) is reasonably fast

System	Translation Models	Language Models
EN-LV SMT baseline	1: Surface \rightarrow Surface	1: Surface form
EN-LV SMT suffix	1: Surface \rightarrow Surface, suffix	1: Surface form 2: Suffix
EN-LV SMT tag	1: Surface \rightarrow Surface, morphology tag	1: Surface form 2: Morphology tag

Automatic evaluation

System	Language pair	BLEU
Tilde rule-based MT	English-Latvian	8.1%
Google	English-Latvian	32.9%
Pragma	English-Latvian	5.3%
SMT baseline	English-Latvian	24.8%
SMT suffix	English-Latvian	25.3%
SMT tag	English-Latvian	25.6%

Human evaluation

System2	Language pair	р	ci	
SMT baseline	English-Latvian	58.67 %	±4.98 %	
SMT tag	English-Latvian	55.73 %	±6.01 %	
	SMT baseline SMT tag	System2Language pairSMT baselineEnglish-LatvianSMT tagEnglish-Latvian	System2Language pairpSMT baselineEnglish-Latvian58.67 %SMT tagEnglish-Latvian55.73 %	System2Language pairpciSMT baselineEnglish-Latvian58.67 %±4.98 %SMT tagEnglish-Latvian55.73 %±6.01 %

- The main challenge out of vocabulary
- Simple SMT methods relay on size of training data
- We do not have a morphologic tagger for Lithuanian
- Simplified approach splitting each token into two separate tokens containing the stem and an optional suffix.
- The stems and suffixes were treated in the same way in the training process.
- Suffixes were marked to avoid overlapping with stems.

Experiment 2: Lithuanian-English

Training data:

Bilingual corpus	Parallel units	
Localization TM	~1.56 mil.	
DGT-TM	~0.99 mil.	
OPUS EMEA	~0.84 mil.	
Dictionary data	~0.38 mil.	
OPUS KDE4	~0.05 mil.	
Total	3.82 mil.	
	(2.71 mil. filtered)	

Monolingual corpus	Words	
English side of parallel corpus	60M	
News (WMT09)	440M	
LCC	21M	
Total, English	521M	

Experiment 2: Lithuanian-English

Development and evaluation data

- Development 1000 sentences
- Evaluation 500 sentences
- Balanced (the same set of English sentences as before)

Торіс	Percentage
General information about European Union	12%
Specifications, instructions and manuals	12%
Popular scientific and educational	12%
Official and legal documents	12%
News and magazine articles	24%
Information technology	18%
Letters	5%
Fiction	5%

Tools

• GIZA++, Moses, SRILM

A Simple Lithuanian stemmer developed by Tilde

Experiment 2: Lithuanian-English

Models

System	Translation Models	Language Models
LT-EN SMT baseline	1: Surface \rightarrow Surface	1: Surface form
LT-EN SMT Stem/suffix	1: Stem/suffix \rightarrow Surface	1: Surface form
LT-EN SMT Stem	1: Stem \rightarrow Surface	1: Surface form

Automatic evaluation

System	Language pair	BLEU
Google	Lithuanian-English	29.5%
SMT baseline	Lithuanian-English	28.3%
SMT stem/suffix	Lithuanian-English	28.0%

System	Language pair	OOV, Words	OOV, Sentences
SMT baseline	Lithuanian-English	3.31%	39.8%
SMT stem/suffix	Lithuanian-English	2.17%	27.3%

Human evaluation

System1	System2	Language pair	р	ci	
SMT stem/suffix	SMT baseline	Lithuanian-English	52.32 %	±4.14 %	

- Translating from English
 - Human evaluation shows a clear preference for factored SMT over the baseline SMT
 - However, automated metric scores show only slight improvement
- Translating to English
 - Simple stem/suffix model helps to reduce number of untranslated words.
 - The BLEU score slightly decreased (BLEU 28.0% vs 28.3%)
 - OOV rate differs significantly.
 - Human evaluation results suggest that users prefer lower OOV rate despite slight reduction in overall translation quality in terms of BLEU score.

English-Latvian and Latvian-English systems have been released: <u>http://translate.tilde.com</u>

BLEU scores

System	Language pair	BLEU
translate.tilde.com	English-Latvian	33%
translate.tilde.com	Latvian- English	41%

Human evaluation

System1	System2	Language pair	р	ci	
Google	translate.tilde.com	Latvian-English	56.73 %	±4.60 %	
Google	translate.tilde.com	English-Latvian	51.16 %	±3.62 %	