Rich morpho-syntactic descriptors for factored machine translation with highly inflected languages as target

Alexandru Ceausu
 Centre for Next Generation Localisation, Dublin City University

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Motivation

- The baseline phrase-based translation approach has limited success on translating between languages with very different syntax and morphology
- The translation is especially difficult when the direction is from a language with fixed word structure to a highly inflected language
- There are two main points to improve on:
\square morphological translation equivalence
\square long range reordering

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Introduction

- Factored translation models (Koehn și Hoang, 2007) allow the integration of the morpho-syntactic information into the translation model.
- We present a factored translation system that uses lemma translations and morpho-syntactic correspondences to generate the target word-form.
- The experiments were carried out on a small parallel corpus (English-Bulgarian, English-Greek, English-Romanian and EnglishSlovenian). We show how the system scales-up to an automatically annotated corpus of 1.5 million sentence pairs (English-Romanian).
- Also, we present a method for rich morpho-syntactic annotation of highly inflected languages, considering the fact that encoding the morpho-lexical properties of the word-forms requires a large set of morpho-syntactic description codes (MSD).

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Related work

- Morphological splitting and stemming
- Supertags
\square CCG (Combinatorial Categorial Grammar) tags (Birch et al; Haque et al)
\square Syntax-to-morphology mapping (Yeniterzi \& Oflazer; Avramidis \& Koehn)
- Tree-based models

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Tagging with morpho-syntactic description codes (MSD)

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Morpho-syntactic description (MSD) codes

The notation format has the following main characteristics:

- attributes are marked by positions;
- values are represented by a single character;
- the character at position 0 encodes part-of-speech;
- each character at position 1, 2, ...n encodes the value of one attribute (person, gender, number, etc.);
- if an attribute does not apply, it is marked with the hyphen ('-').

Ncmsrn frate (brother)
Ncmson frate (of/to a_brother)
Ncmsry fratele (the_brother)
Ncmsoy fratelui
(the_brother's / to the_brother)

Ncmprn fraţi (brothers)
Ncmpon fraţi (of/to some brothers)
Ncmpry fraţii (the_brothers)
Ncmpoy fraţilor
(the_brothers' / to the_brothers)

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Multext-East tag-sets

- The size of the EAGLES compliant tag-sets build within the MULTEXT-EAST initiative (Erjavec, 2004):
\square English - 133
\square Romanian - 614
\square Hungarian - 618
\square Estonian - 639
\square Czech - 1428
\square Slovene - 2083

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Tiered tagging

■ Tiered tagging (Tufiş, 1999) is a two-stage technique for morpho-syntactical annotation.
\square Tiered tagging uses an intermediary tag-set of a smaller size on the basis of which a language model (LM) is built. This LM serves for the first level of tagging.
\square Then, a second phase replaces the tags from the small tag-set with contextually the most probable tags from the large tag-set.

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Dd	Dd	The	Holul	Nc*sry	Ncmsry
Ncns	Nc*s	hallway	blocului	Nc*soy	Ncmsoy
Vmis	Vmis	smelt	mirosea	Vm**3*	Vmii3s
Sp	Sp	of	a	$S^{* * *}$	Spsa
Afp	Af*	boiled	varză	Nc*srn	Ncfsrn
Ncns	$\mathrm{Nc}^{*} \mathrm{~s}$	cabbage	călită	Af**srn	Afpfsrn
Cc-n	Cc**	and	şi	Cr***	Crssp
Afp	Af*		a	$S^{* * *}$	Spsa
Ncns	Nc*s	rag	preşuri	Nc*p-n	Ncfp-n
Ncnp	$N c^{*} \mathrm{p}$	mats	vechi	Af**p-n	Afp-p-n

Reduced tag-set - POS tags

- The lexicon contains the words annotated with the MSD tags. For Romanian, this lexicon contains almost 1,200,000 entries.
- The reduced tag-set for Romanian consists of 92 tags plus punctuation marks.
- The reduced tag-set is derived from the MSD tagset by repeated generalisations (leaving out some attributes from the original tag-set specification).

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Problems of the rule and lexicon-driven tiered tagging approach

- The ambiguities from the recovering process have to be solved using some additional knowledge resource (hand-written contextual disambiguation rules).
- The successful recovering is applicable only for the words recorded in the MSD tag-set lexicon.

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Tag-set conversion

- previous tags
- previous MSD features*
- suffix (1-4 characters)
- upper case (lower, all, initial)
- abbreviation (true, false)
- multiple-word expression (true, false)
- has number (true, false)
- hyphen position (none, start, middle, end)
- prefix (1-2 characters)
- word length (in characters)
- end of sentence punctuation mark

Factored translation experiments

Workshop on Machine Translation and Morphologically-rich Languages University of Haifa, 23-27 January, 2011

SEE-ERA.net corpus

- 1204 documents from the JRC-Acquis corpus
- 60,389 translation units

Language	No. of tokens	Avg no. of tokens/sentence
Bulgarian	$1,436,925$	23.79
English	$1,466,912$	24.29
Greek	$1,469,642$	24.33
Romanian	$1,422,995$	23.56
Slovene	$1,271,011$	21.04

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

SEE-ERA.net corpus

```
<tu id="60389"><seg lang="en"><s id="32005L0004.n.26.1.en"><w lemma="do"
ana="Vmps">Done</w><w lemma="at" ana="Sp">at</w><w lemma="Brussels"
ana="Np">Brussels</w><c>,</c><w lemma="19" ana="Mc">19</w><w lemma="January"
ana="Ncns">January</w><w lemma="2005"
ana="Mc">2005</w><c>.</c></s></seg></tu>
<tu id="60389"><seg lang="ro"><s id="32005L0004.n.26.1.ro"><w lemma="adopta"
ana="Vmp--sf">Adoptată</w><w lemma="la" ana="Spsa">la</w><w lemma="Bruxelles"
ana="Np">Bruxelles</w><c>,</c><w lemma="19" ana="Mc">19</w><w
lemma="ianuarie" ana="Ncms-n">ianuarie</w><w lemma="2005"
ana="Mc">2005</w><c>.</c></s></seg></tu>
<tu id="60389"><seg lang="sl"><s id="32005L0004.n.25.1.sl"><w lemma="v"
ana="S|">V</w><w lemma="Bruselj" ana="Npmsl">Bruslju</w><c>,</c><w lemma="19."
ana="Mdo">19.</w><w lemma="januar" ana="Ncmsg">januarja</w><w lemma="2005"
ana="Mdm">2005</w></s></seg></tu>
```

Workshop on Machine Translation and Morphologically-rich Languages University of Haifa, 23-27 January, 2011

Factored translation steps

- Translation
- Language model
- Reordering
- Generation

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Factored translation models

- Aligning and translating lemma could add a significant improvement especially for languages with rich morphology.
- Part of speech affinities. In general, the translated words tend to keep their part of speech and when this is not the case, the part-of-speech chosen is not random.
- The re-ordering of the target sentence words can be improved if a language model over Part-of-Speech tags is used.

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Decoding

Source Target

Word-form	Trans/ation			Generation	
	treaty		tratatul		$\underset{\text { Word-form }}{\text { language model }}$
Lemma	treaty^Nc	1	tratat^Nc	2	
POS (reduced tag-set)	NN		NSRY		
Morpho-syntactical description	Ncns	3	Ncmsry	4	$\begin{gathered} \text { MSD } \\ \text { language model } \end{gathered}$

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Translation steps for English-Romanian

Translation model	Generation model	Language model	Distortion model	BLEU score
Word-form	lemma -> word-form	Word-form	51.76	
Lemma POS	lemma -> POS lemma,POS -> word-form	POS Word-form	51.79	
Lemma MSD	lemma -> MSD lemma,MSD -> word-form	MSD Word-form	52.31	
Lemma MSD	MSD lemma,MSD -> word-form	Word-form	Word-form	46.39
Lemma MSD	MSD lemma,MSD -> word-form Word-form	MSD	45.77	

Training: 58000 translation units (TU). MERT: 500 TU. Test set: 1000 TU Workshop on Machine Translation and Morphologically-rich Languages University of Haifa, 23-27 January, 2011

Translation steps for Romanian-English

Translation model	Generation model	Language model	Distortion model	BLEU score
Word-form		Word-form		47.22
Lemma	lemma -> wordform	Word-form		45.62
Lemma POS	```lemma -> POS lemma,POS -> word-form```	POS Word-form		47.37
Lemma MSD	$\begin{gathered} \text { lemma -> MSD } \\ \text { lemma,MSD -> word-form } \end{gathered}$	MSD Word-form		46.94
Lemma POS	```lemma -> POS lemma,POS -> word-form```	POS Word-form	Word-form	51.46
Lemma POS	```lemma -> POS lemma,POS -> word-form```	POS Word-form	POS	51.74

Training: 58000 translation units (TU). MERT: 500 TU. Test set: 1000 TU Workshop on Machine Translation and Morphologically-rich Languages University of Haifa, 23-27 January, 2011

Evaluation - SEE-ERA.net corpus

Direction	Baseline	Factored
English-Bulgarian	38.94	39.60
English-Romanian	51.76	52.76
English-Slovene	40.73	42.68

*BLEU scores
Training: 58000 translation units (TU). MERT: 500 TU. Test set: 1000 TU Workshop on Machine Translation and Morphologically-rich Languages University of Haifa, 23-27 January, 2011

English-Romanian 1.5 million sentence pairs corpus

Corpus	Tokens (millions)		Sentence pairs
	English	Romanian	
DGT Translation Memory	12.5	12	621 K
	10	11	698 K
SE Times (Opus Corpus)	4.4	4.7	166 K
NAACL news	0.8	0.7	39 K
Raw total	27.7	28,4	$1,525 \mathrm{~K}$
Cleaned total	27.3	27,7	$1,495 \mathrm{~K}$

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Corpus annotation

English	Romanian												
Grounds \| ground^Nc	NNS	Ncnp	Motive \| motiv^Nc	NPN	Ncfp-n								
of \| of^Sp	PREP	Sp non-recognition \| recognition^Nc	NN	 Ncns	de \| de^Sp	S	Spsa refuz \| refuz^Nc	NSN	Ncms-n al \| al^Ts	SS	Tsms recunoaşterii \| recunoaştere^Nc	NSOY	Ncfsoy
for \| for^Sp	PREP	Sp judgments \| judgment^Nc	NNS	Ncnp	hotărârilor_judecătoreşti \| hotărâre_judecătoreascå^Nc \| NSRN	Ncfsrn							
relating \| relate^Vm	PPRE	Vmpp to \| to^Sp	PREP	Sp	în \| în^Sp	S	Spsa materia \| materie^Nc	NSRY	Ncfsry				
parental_responsibility \| parental_responsibility^Nc \| NN	Ncns	răspunderii_părinteşti \| răspundere_părintească^Nc \| NSOY	Ncfsoy										

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Evaluation

- Baseline 53.82
- Factored 53.41

*BLEU scores

Training: 1.5 million translation units (TU). MERT: 1000 TU. Test set: 1000 TU Workshop on Machine Translation and Morphologically-rich Languages University of Haifa, 23-27 January, 2011

Analysis of the results

- 200 sentences from the journalistic corpus
- Noun-phrase agreement for noun phrases with a conjunction.
- Subject - predicate agreement for predicates with verbs in indicative present

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Noun-phrase agreement

- 81 noun phrases with conjunctions
\square Baseline: 61 correct
\square Factored: 75 correct
- Example:
\square Reference: 500 items of clothing and perfume
\square Baseline: 500 de articole (Ncfp-n) de îmbrăcăminte (Ncfsrn) şi parfumurilor (Ncfpoy)
\square Factored: 500 de piese (Ncfp-n) de îmbrăcăminte (Ncfsrn) şi parfumuri (Ncfp-n)

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Subject and predicate agreement

- 123 predicates with a verb in the present tense
\square Baseline: 97 correct
\square Factored: 118 correct
- Example:
\square Reference: the military spokesman, ..., said
\square Baseline: purtătorul (Ncmsry) de cuvânt al armatei, ..., au (Va--3p) declarat
\square Factored: purtătorul (Ncmsry) de cuvânt al armatei, ..., a (Va--3s) declarat

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Conclusions

- We found that translating lemmas and morphosyntactical descriptors (obtained with the tiered tagging process) and generating the word-forms has better results than the baseline word-form translation model
\square better noun phrase agreement
\square better long-distance subject and predicate match in gender and number
- Lemma-based translation equivalents table produce better alignments and improves the translation accuracy.

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

References

Eleftherios Avramidis and Philipp Koehn. 2008. Enriching morphologically poor languages for statistical machine translation. In Proceedings of ACL-08/HLT, pages 763-770, Columbus, Ohio, June
Tomaz Erjavec. 2004. MULTEXT-East Version 3: Multilingual Morphosyntactic Specifications, Lexicons and Corpora. In Proc. of the Fourth Intl. Conf. on Language Resources and Evaluation, LREC'04, pp. 1535-1538, ELRA, Paris
Rejwanul Haque, Sudip Kumar Naskar, Yanjun Ma \& Andy Way. 2009. Using Supertags as Source Language Context in SMT. In Proceedings of the 13th Annual Meeting of the European Association for Machine Translation (EAMT-09), May 14-15, 2009, Barcelona, Spain
Philipp Koehn, and Hieu Hoang. 2007. Factored Translation Models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 868-876, Prague, June 2007
Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, Evan Herbst. 2007. Moses: Open Source Toolkit for Statistical Machine Translation. Annual Meeting of the Association for Computational Linguistics (ACL), demonstration session, Prague, Czech Republic
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, July 2002, pp. 311-318
Ralph Steinberger, Bruno Pouliquen, Anna Widiger, Camelia Ignat, Tomaž Erjavec, Dan Tufiş. 2006. The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proceedings of the 5th LREC Conference, Genoa, Italy, 22-28 May, 2006, pp.2142-2147
Dan Tufiş, Svetla Koeva, Tomaž Erjavec, Maria Gavrilidou, and Cvetana Krstev. 2008. Building Language Resources and Translation Models for Machine Translation focused on South Slavic and Balkan Languages. In Marko Tadić, Mila Dimitrova-Vulchanova and Svetla Koeva (eds.) Proceedings of the Sixth International Conference Formal Approaches to South Slavic and Balkan Languages (FASSBL 2008), pp. 145-152, Dubrovnik, Croatia, September 25-28
Reyyan Yeniterzi and Kemal Oflazer. 2010. Syntax-to-Morphology Mapping in Factored Phrase-Based Statistical Machine Translation from English to Turkish, Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 454-464, Uppsala, Sweden, 11-16 July 2010

Workshop on Machine Translation and Morphologically-rich Languages
 University of Haifa, 23-27 January, 2011

Acknowledgments

- PLuTO Project (ICT-PSP-250430) European Union's ICT Policy Support Programme / Competitiveness and Innovation Framework Programme
- STAR (IDEI 742/19.01.2009) - CNCSIS Romania

Workshop on Machine Translation and Morphologically-rich Languages
University of Haifa, 23-27 January, 2011

Thank you!

