

Language Models

Marcello Federico FBK-irst Trento, Italy

MT Marathon 2010

Outline

- Role of LM in ASR and SMT
- N-gram Language Models
- Evaluation of Language Models
- Frequency Smoothing
- Frequency Discounting
- Is smoothing necessary?
- ARPA LM representation
- New IRSTLM Toolkit

Goal: find the words \mathbf{w}^* in a speech signal \mathbf{x} such that:

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \Pr(\mathbf{x} \mid \mathbf{w}) \Pr(\mathbf{w})$$
(1)

Problems:

- language modeling (LM): estimating $Pr(\mathbf{w})$
- acoustic modeling (AM): estimating $Pr(\mathbf{x} \mid \mathbf{w})$
- search problem: computing (1)

AM sums over hidden state sequences ${\bf s}$ a Markov process of $({\bf x},{\bf s})$ from ${\bf w}$

$$\Pr(\mathbf{x} \mid \mathbf{w}) = \sum_{\mathbf{s}} \Pr(\mathbf{x}, \mathbf{s} \mid \mathbf{w})$$

Hidden Markov Model: hidden states "link" speech frames to words.

Fundamental Equation of SMT

Goal: find the English string f translating the foreign text f such that:

$$\mathbf{e}^* = \arg\max_{\mathbf{e}} \Pr(\mathbf{f} \mid \mathbf{e}) \Pr(\mathbf{e})$$
(2)

Problems:

- language modeling (LM): estimating Pr(e)
- translation modeling (TM): estimating $Pr(\mathbf{f} \mid \mathbf{e})$
- search problem: computing (2)

TM sums over hidden alignments a a stochastic process generating (f, a) from e.

$$\Pr(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a}} \Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

Alignment Models: hidden alignments "link" foreign words with English words.

ASR and MT Architectures

- Parallel data are samples of observations (\mathbf{x},\mathbf{w}) and (\mathbf{f},\mathbf{e})
- \bullet AM and TM can be machine-learned without observing ${\bf s}$ and ${\bf a}.$

• Translation hypotheses are ranked by:

$$\mathbf{e}^* = \operatorname*{argmax}_{\mathbf{e}} \sum_{\mathbf{a}} \sum_{k} \lambda_k \log h_k(\mathbf{e}, \mathbf{f}, \mathbf{a})$$

- Phrases are finite string (cf. n-grams)
- Hidden variable a embeds:
 - segmentation of ${\bf f}$ and ${\bf e}$ into phrases
 - alignment of phrases of ${\bf f}$ with phrases of ${\bf e}$
- Feature functions $h_k()$ include:
 - Translation Model: appropriateness of phrase-pairs
 - Distortion Model: word re-ordering
 - Language Model: fluency of target string
 - Length Model: number of target words
- Role of the LM is exactly the same as for the classical approach:
 - to score translations generated incrementally by the search algorithm!

N-gram Language Model

Goal: given a text $w_1^T = w_1 \dots, w_t, \dots, w_T$ we can compute its probability by:

$$\Pr(w_1^T) = \Pr(w_1) \prod_{t=2}^T \Pr(w_t \mid h_t)$$
(3)

where $h_t = w_1, \ldots, w_{t-1}$ indicates the history of word w_t .

- $\Pr(w_t \mid h_t)$ becomes difficult to estimate as the history h_t grows .
- hence, we take the *n*-gram approximation $h_t \approx w_{t-n+1} \dots w_{t-1}$

e.g. Full history: Pr(Parliament | I declare resumed the session of the European)3 - gram: Pr(Parliament | the European)

The choice of n determines the complexity of the LM (# of parameters):

- bad: no magic recipe about the optimal order n for a given task
- good: language models can be evaluated quite cheaply

Language Model Evaluation

- Indirect: impact on task (e.g. BLEU score for MT)
- Direct: capability of predicting words

The perplexity (PP) measure is defined as: 1

$$PP = 2^{LP}$$
 where $LP = -\frac{1}{M}\log_2 p(w_1^M)$ (4)

• w_1^M is a sufficiently long test sample and $p(w_1^M)$ is the LM probability

Properties:

- $0 \le PP \le |V|$ (size of the vocabulary V)
- \bullet predictions are as good as guessing among PP equally likely options

Good: there is typical strong correlation between PP and BLUE scores!

¹[Exercise 1. Find PP of 1-gram LM p(T)=0.5 on T H T H T H T T H T T H.]

$N\text{-}\mathsf{gram}$ Probabilities

Estimating n-gram probabilities is not trivial due to:

- parameter space: with 10,000-word V we can form one trillion 3-grams!
- data sparseness: most of 3-grams are rare events even in large corpora.

Relative frequency estimate: MLE of any discrete conditional distribution is:

$$f(w \mid x \ y) = \frac{c(x \ y \ w)}{\sum_{w} c(x \ y \ w)}$$

where counts $c(\cdot)$ are taken over a large training corpus.

Problem: relative frequencies in general over-fit the training data

- if the test sample contains a "new" $n\text{-}\mathsf{gram}\ \mathsf{PP}\to+\infty$
- with 4-grams or 5-grams LM this is largely the most frequent case!

We need frequency smoothing!

Frequency Smoothing

Issue: $f(w \mid x \mid y) > 0$ only if w was observed after x y in the training data.

Idea: for each w take off some fraction of probability from $f(w \mid x \mid y)$ and redistribute the total to words never observed after $x \mid y$.

• the discounted frequency $f^*(w \mid x \mid y)$ satisfies:

$$0 \le f^*(w \mid x \ y) \le f(w \mid x \ y) \qquad \forall x, y, w \in V$$

Notice: in general $f^*(w \mid x y)$ does not sum up to 1!

• the "total discount" is called zero-frequency probability $\lambda(x \ y)^2$:

$$\lambda(x \ y) = 1.0 - \sum_{w \in V} f^*(w \mid x \ y)$$

How to redistribute the total discount?

²Notice: by convention $\lambda(x \ y) = 1$ if $f(w \mid x \ y) = 0$ for all w, i.e. $c(x \ y) = 0$.

Discounting Example

Frequency Smoothing

Insight: redistribute $\lambda(x \ y)$ according to the lower-order smoothed frequency. Two major hierarchical schemes to compute the smoothed frequency $p(w \mid x \ y)$:

• Back-off, i.e. select the best available *n*-gram approximation:

$$p(w \mid x \ y) = \begin{cases} f^*(w \mid x \ y) & \text{if } f^*(w \mid x \ y) > 0\\ \alpha_{xy}\lambda(x \ y)p(w \mid y) & \text{otherwise} \end{cases}$$
(5)

where α_{xy} is an appropriate normalization term.³

• Interpolation, i.e. sum up the two approximations:

$$p(w \mid x \; y) = f^*(w \mid x \; y) + \lambda(x \; y)p(w \mid y).$$
(6)

Smoothed frequencies are learned bottom-up, starting from 1-grams ...

³[Exercise 2. Find and expression for α_{xy} s.t. $\sum_{w} p(w \mid x \mid y) = 1$.]

Frequency Smoothing of 1-grams

Unigram smoothing permits to treat out-of-vocabulary (OOV) words in the LM. Assumptions:

- |U| is an upper-bound estimate of the size of language vocabulary
- $f^*(w)$ is strictly positive on the observed vocabulary V
- λ is the total discount reserved to OOV words

Then: 1-gram back-off and interpolation collapse to:

$$p(w) = \begin{cases} f^*(w) & \text{if } w \in V \\ \lambda(|U| - |V||)^{-1} & \text{otherwise} \end{cases}$$
(7)

Notice: LMs make also other approximations when an OOV word x appears:

$$p(w \mid h_1 \ x \ h_1) = p(w \mid h_2)$$
 and $p(x \mid h) = p(x)$

Important: use a common value |U| when comparing/combining different LMs!

Witten-Bell estimate (WB) [Witten and Bell, 1991]

- Insight: learn $\lambda(x \ y)$ by counting "new word" events in 3-grams x y *
 - corpus: x y u x x y t t x y u w x y w x y t u x y u x y t
 - then $\lambda(x \ y) \propto$ number of "new word" events (i.e. 3)
 - and $f^*(w \mid x \mid y) \propto$ relative frequency (linear discounting)
- Solution:

$$\lambda(x \ y) = \frac{n(x \ y \ *)}{c(x \ y) + n(x \ y \ *)} \quad \text{and} \quad f^*(w \mid xy) = \frac{c(x \ y \ w)}{c(x \ y) + n(x \ y \ *)}$$

where $c(x \ y) = \sum_{w} c(x \ y \ w)$ and $n(x \ y \ *) = |\{w : c(x \ y \ w) > 0\}|$.⁴

- Pros: easy to compute, robust for small corpora, works with artificial data.
- Cons: underestimates probability of frequent n-grams

⁴[Exercise 3. Compute $f^*(u | x y)$ with WB on the above artificial text.]

- interpolation and back-off with WB discounting
- trigram LMs estimated on the English Europarl corpus
- logprobs of 3-grams of type aiming at $_$ observed in training

- peaks correspond to very probable 2-grams interpolated with f^* respectively: at that, at national, at European
- Practically, interpolation and back-off perform similarly

14

LM

Discounting Methods

Absolute Discounting (AD) [Ney and Essen, 1991]

- Insight:
 - discount by subtracting a small constant β ($0 < \beta \leq 1$) from each counts
 - estimate β by maximizing the leaving-one-out likelihood of the training data
- Solution: (notice: one distinct β for each n-gram order)

$$f^*(w \mid x \; y) = max \left\{ \frac{c(xyw) - \beta}{c(xy)}, 0 \right\} \text{ which gives } \lambda(xy) = \beta \frac{\sum_{w:c(xyw) > 1} 1}{c(xy)}$$

where $\beta \approx \frac{n_1}{n_1+2n_2} < 1$ and $n_r = |\{x \ y \ w : c(x \ y \ w) = r\}|$.⁵

- Pros: easy to compute, accurate estimate of frequent *n*-grams.
- Cons: problematic with small and artificial samples.

⁵[Exercise 4. Given the text in WB slide find the number of 3-grams, n_1 , n_2 , β , $f^*(w \mid x \mid y)$ and $\lambda(x \mid y)$]

Kneser-Ney method (KN) [Kneser and Ney, 1995]

- Insight: 2-grams counts should be correspond to the "back-off" cases
 - count all "back-off" events in 3-grams of type * y w (cf. WB method)
 - corpus: x y w x t y w t x y w u y w t y w u x y w u u y w
 - corrected counts n(* y w) = number of observed back-offs (i.e. 3)
- Solution: (for 3-gram normal counts)

$$f^*(w \mid y) = max \left\{ \frac{n(* \ y \ w) - \beta}{n(* \ y \ *)}, 0 \right\} \text{ which gives } \lambda(y) = \beta \frac{\sum_{w:n(* \ y \ w) > 1} 1}{n(* \ y \ *)}$$

where $n(* y w) = |\{x : c(x y w) > 0\}|$ and $n(* y *) = |\{x w : c(x y w) > 0\}|$

- Pros: better back-off probabilities, can be applied to other methods
- Cons: LM cannot be used to compute lower order *n*-gram probs

Discounting Methods

Modified Kneser-Ney (MKN) [Chen and Goodman, 1999]

- Insight: specific discounting coefficients for unfrequent *n*-grams
- Solution:

$$f^{*}(w \mid x \ y) = \frac{c(x \ y \ w) - \beta(c(x \ y \ w)))}{c(x \ y)}$$

where $\beta(0) = 0$, $\beta(1) = D_1$, $\beta(2) = D_2$, $\beta(c) = D_{3+}$ if $c \ge 3$, coefficients are computed from n_r statistics, corrected counts used for lower order n-grams

- Pros: see previous + more fine grained smoothing
- Cons: see previous + more sensitiveness to noise

Important: LM interpolation with MKN is the most popular training method. Under proper training conditions it gives the best PP and BLEU scores!

- interpolation with WB and MKN discounting trained on Europarl
- \bullet the plot shows the logprob of observed 3-grams of type aiming at $_$

- notice that for less frequent 3-grams WB assigns higher probability
- we have three very high peaks corresponding large corrected counts: n(*at that)=665 n(* at national)=598 n(* at European)=1118
- also an interesting peak at rank #26: n(* at very)=61

Discounting Methods

- train: interpolation with WB and MKN discounting on Europarl
- \bullet test: 3-grams of type aiming at $_$ are from the Google 1TWeb sample

• the trend is the same but MKN outperforms WB smoothing If you don't believe, check the next slide

Discounting Methods

- train: interpolation with WB and MKN discounting on Europarl
- test: 3-grams of type aiming at $_$ are from the Google 1TWeb sample
- plot: cumulative score differences between MKN and WB on top 1000 3-grams

Is LM Smoothing Necessary?

- LM Quantization [Federico and Bertoldi, 2006]
 - Idea: one codebook for each n-gram/back-off level
 - Pros: improves storage efficiency
 - Cons: reduces discriminatory power
 - Experiments with 8bit quantization on ZH-EN NIST task showed:
 - * 2.7% BLUE drop with a 5-gram LM trained on 100M-words
 - * 1.6% BLUE drop with a 5-gram LM trained on 1.7G words.
- Stupid back-off [Brants et al., 2007]
 - simple smoothing, no correct normalization

$$p(w \mid x \mid y) = \begin{cases} f(w \mid x \mid y) & \text{if } f(w \mid x \mid y) > 0\\ k \cdot p(w \mid y) & \text{otherwise} \end{cases}$$
(8)

where k = 0.4 and p(w) = c(w)/N.

Stupid back-off (SB) versus Modified Kneser-Ney (KN)

• Conclusion: proper smoothing useful up to 1 billion word training data?

ARPA File Format (srilm, irstlm)

Represents both interpolated and back-off n-gram LMs

- format: log(smoothed-freq) :: n-gram :: log(back-off weight)
- computation: look first for smoothed-freq, otherwise back-off

```
\data\
ngram 1= 86700
ngram 2= 1948935
ngram 3= 2070512
1-grams:
-2.88382
              1
                     -2.38764
-2.94351
                         -0.514311
              world
-6.09691
              dublin
                         -0.15553
. . .
2-grams:
-3.91009
           world !
                      -0.351469
-3.91257
           hello world -0.24
-3.87582
           hello dublin
                         -0.0312
. .
3-grams:
-0.00108858
              hello world !
              , hi hello !
-0.000271867
. . .
\end\
\log Pr(!| hello dublin) = -0.0312 + \log Pr(!| dublin)
\log Pr(!| dublin) = -0.15553 - 2.88382
```


Main Features [Federico et al., 2008]

- Single thread training for standard LMs
 - all major smoothing methods: WB, AD, MKN, ...
 - LM pruning, internal/external interpolation, adaptation
- Distributed training for huge LMs
 - simple smoothing methods: interpolation with WB, KN $\,$
 - split dictionary into balanced n-gram prefix lists
 - collect n-grams for each prefix lists
 - estimate and merge single LMs for each prefix list
- Space optimization
 - n-gram collection uses dynamic storage to encode counters
 - distributed LM estimation just requires reading disk files
 - probs and back-off weights are quantized
 - run-time LM data structure is loaded on demand
- LM caching
 - computations of probs, access to internal lists, LM states,

References

- [Brants et al., 2007] Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. (2007). Large language models in machine translation. In <u>Proceedings of the 2007 Joint Conference on</u> <u>Empirical Methods in Natural Language Processing and Computational Natural Language</u> Learning, pages 858–867, Prague, Czech Republic.
- [Chen and Goodman, 1999] Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. <u>Computer Speech and Language</u>, 4(13):359–393.
- [Federico and Bertoldi, 2006] Federico, M. and Bertoldi, N. (2006). How many bits are needed to store probabilities for phrase-based translation? In <u>Proceedings on the Workshop on</u> <u>Statistical Machine Translation</u>, pages 94–101, New York City. Association for Computational Linguistics.
- [Federico et al., 2008] Federico, M., Bertoldi, N., and Cettolo, M. (2008). Irstlm: an open source toolkit for handling large scale language models. In <u>Proceedings of Interspeech</u>, Brisbane, Australia.
- [Kneser and Ney, 1995] Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, volume 1, pages 181–184, Detroit, MI.

- FRUNC KESSLEF [Ney and Essen, 1991] Ney, H. and Essen, U. (1991). On smoothing techniques for bigram-based natural language modelling. In <u>Proceedings of the IEEE International Conference on Acoustics</u>, Speech and Signal Processing, pages S12.11:825–828, Toronto, Canada.
 - [Witten and Bell, 1991] Witten, I. H. and Bell, T. C. (1991). The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. <u>IEEE Trans. Inform.</u> Theory, IT-37(4):1085–1094.