Mikel L. Forcada^{1,2,3}

 ¹Centre for Next Generation Localisation, Dublin City University, Dublin 9 (Ireland)
 ²Departament de Llenguatges i Sistemes Informàtics, Universitat d'Alacant, E-03071 Alacant (Spain)
 ³Prompsit Language Engineering, S.L., St. Francesc, 74, 1-L, E-03195 l'Altet (Spain)

Machine Translation Marathon, Dublin, Jan. 29, 2010

Contents

- 1 Free/open-source rule-based machine translation
- 2 Existing free/open-source rule-based MT systems

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 3 Apertium history
- 4 The Apertium philosophy
- 5 Apertium technology
- 6 The Apertium community
- 7 Research with Apertium
- 8 Business with Apertium
- 9 Recent developments in Apertium
- 10 Lots of work ahead
- 11 Apertium funding

MT software/1

MT is special: it strongly depends on data

- rule-based MT (RBMT): dictionaries, rules
- corpus-based MT (CBMT): sentence-aligned parallel text, monolingual corpora
- Three components in every MT system:
 - Engine (also decoder, recombinator...)
 - Data (linguistic data, corpora)
 - Tools to maintain these data and to convert them to the format used by the engine

Some reasons to use RBMT:

- CBMT requires massive amounts of sentence-aligned parallel text (a scarce resource for many language pairs).
- RBMT may use linguistic data elicited by speakers without access to existing machine-readable resources.
- RBMT is more transparent: errors are easier to diagnose and debug.

MT software/3 : commercial machine translation

- Most commercial MT systems are RBMT (but, for instance, LanguageWeaver, Google Translate are CBMT).
- They use proprietary technologies which are not disclosed (perceived as their main competitive advantage).
- For most users, only partial modification (*customization*) of linguistic data is allowed.

MT software/3: free/open-source machine translation

- For MT to be free/open-source (FOS), the engine, the data and the tools must all be free/open-source
- In the case of CBMT this means that corpora must also be free/open-source (hard to come by!)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Opportunities from free/open-source MT systems

Even if reasonable-quality closed-source MT is available for a given language pair, the development and use of free/open-source MT systems provides additional opportunities:

- Increases language expertise and resources
- Increases technological independence

Increasing expertise and language resources

- When building a free/open-source MT system for a language pair, a variety of situations may occur:
 - Building linguistic data from scratch for an existing engine
 - Transforming existing linguistic data for one language pair into data for another language pair
 - Changing the engine to deal with new problems
- All of them involve building linguistic expertise and resources through
 - reflection about the languages involved
 - elicitation of linguistic (monolingual and bilingual) knowledge about them
 - subsequent encoding of this knowledge
- The free/open-source setting makes the newly created expertise and resources naturally available to the community.

Free/open-source rule-based machine translation

L Increasing independence

Increasing technological independence

Having a free/open-source engine, tools and data makes users of the involved languages less dependent on a single commercial, closed-source provider.

(日) (日) (日) (日) (日) (日) (日)

This has an analogous effect, not only on machine translation, but also on other human language technologies. Existing FOS RBMT

Existing free/open-source rule-based MT systems

These are the three main FOS RBMT systems currently being actively developed:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- the Matxin MT system for Basque (http://matxin.sf.net),
- the OpenLogos MT system
 (http://logos-os.dfki.de/), and
- Apertium, which I will present here.

Existing FOS RBMT

Matxin

- FOS MT system architecture for pair es→eu (en→eu being worked on).
- Uses a dependency parser for es based on Freeling and performs deep transfer; lexical transfer and generation use Apertium components.
- A branch uses Apertium components together with constraint grammar for analysis.
- Developed by group Ixa at Euskal Herriko Unibertsitatea and Elhuyar R&D both in the Basque Country.
- FOS software under the GPL license.

Existing FOS RBMT

- FOS version of historical system Logos (developed over 30 years).
- Language pairs: en ↔ de, en → fr, en → it, en → pt, en → es.
- Complex transfer, with semantics.
- Scarce documentation.
- Language data in Postgres data base form (no real "sources")
- Multiple-licensed, but FOS under the GPL license.

Apertium: The inception

Apertium: the inception

October 2004: The Spanish Ministry of Industry, funds a consortium to build FOS MT for the languages of Spain:
 Universities: EHU, UA, UPC, UVigo

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Companies: Eleka, Elhuyar, Imaxin Software
- Project develops two systems:
 - Apertium (es⇔ca, es⇔gl)
 - Matxin (es→eu)

Apertium history

L Technology

- Apertium not built from scratch.
- Complete FOS re-specification, rewriting and extension of closed-source systems built by Transducens at the UA:
 - interNOSTRUM (interNOSTRUM.com, es↔ca)
 - Tradutor Universia (tradutor.universia.net, es⇔pt)
- Linguistic data for es⇔ca and es⇔gl built combining in-house resources with existing FOS data (e.g., in Freeling).

A conservative design?

A conservative design? /1

Most of the design of Apertium is rather "conservative":

- No "rocket science": tested and established techniques and technologies: finite state transducers, finite-state pattern matching, hidden Markov models.
- High-school linguistics: representation based on well-known and widely-accepted linguistic concepts (morphology, parts of speech and just a little bit of syntax).

A conservative design?

A conservative design? /2

Good-old 70's Unix style: modularity achieved "the Unix way":

- little programs "that do one thing and do it well" (McIlroy 1978)
- "simple parts that are connected by clean interfaces" (Raymond 2004)
- text, pipes & filters

for easy diagnosis, extension, to build *frankensteins*, etc.

Development of language pairs as a driving force for innovation

Development of language pairs as a driving force for innovation

Language-pair development (currently 21 stable pairs) has motivated changes in the Apertium platform:

- Apertium 1.0: designed to treat with closely-related language pairs (es⇔ca, es⇔pt, etc.)
- Apertium 2.0: three-stage structural transfer introduced to deal with less-related languages such as en⇔ca
- Apertium 3.0: Unicode compliance to deal with any written language in the world
- multi-stage (> 3) structural transfer for eo→en
- integration of VISL constraint grammar, motivated by
 - **FOS grammars for** no (nn, nb) and the Sámi languages
 - their utility to deal with the morphology of Celtic languages.

・ロト・四ト・モー・ 中下・ 日・ うらぐ

- The Apertium philosophy
 - Build on top of word-for-word translation

Build on top of word-for-word translation/1

To generate translations which are

- reasonably intelligible and
- easy to correct (postedit)

between related languages such as es-ca, es-pt, nn-nb, ga-gd, one can just augment *word for word* translation with

- robust lexical processing (including multi-word units)
- lexical categorial disambiguation (part-of-speech tagging)
- local structural processing based on simple and well-formulated rules for frequent structural transformations (reordering, agreement)

L The Apertium philosophy

Build on top of word-for-word translation

Build on top of word-for-word translation /2

For harder, not so related, language pairs:

One should be able to build as much as possible on top of that simple model.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

It should be possible to generalize its concepts so that linguistic complexity is kept as low as possible.

L The Apertium philosophy

Clear and effective separation of translation engine and language-pair data

Clear and effective separation of translation engine and language-pair data/1

- It should be possible to generate the whole system from linguistic data (monolingual and bilingual dictionaries, grammar rules) specified in a declarative way.
- This information, i.e.,
 - (language-independent) rules to treat text formats
 - specification of the part-of-speech tagger
 - morphological and bilingual dictionaries and dictionaries of orthographical transformation rules

(日) (日) (日) (日) (日) (日) (日)

structural transfer rules

should be provided in an interoperable format \Rightarrow XML.

L The Apertium philosophy

Clear and effective separation of translation engine and language-pair data

Clear and effective separation of translation engine and language-pair data/2

- It should be possible to have a single generic (language-independent) engine reading language-pair data ("separation of algorithms and data").
- Language-pair data should be preprocessed so that the system is fast (>10,000 words per second) and compact; for example, lexical transformations are performed by minimized finite-state transducers (FSTs).

The Apertium philosophy

Apertium as free/open-source software

Apertium as free/open-source software /1

Reasons for the development of Apertium as free/open-source software:

- To give everyone free, unlimited access to the best possible machine-translation technologies.
- To establish a modular, documented, open platform for shallow-transfer machine translation and other human language processing tasks.
- To favour the interchange and reuse of existing linguistic data.
- To make integration with other free/open-source technologies easier.

- L The Apertium philosophy
 - Apertium as free/open-source software

Apertium as free/open-source software /2

More reasons for the development of Apertium as free/open-source software:

- To benefit from collaborative development
 - of the machine translation engine
 - of language-pair data for currently existing or new language pairs

from industries, academia and independent developers.

- To help shift MT business from the obsolescent licence-centered model to a service-centered model.
- To radically guarantee the *reproducibility* of machine translation and natural language processing research.
- Because public research investments must be made available to the public.

The Apertium philosophy

Reasons for the use of copyleft

Reasons for the use of copyleft

What is *copyleft*?

- Obviously a play on the word *copyright*.
- Copyleft, when added to a free license, means that modifications have to be distributed with the same (copylefted) license.

Apertium chose *copylefted* free/open-source licences from the very beginning:

To enable communities of programmers to build a machine translation commons or pool (Streiter et al. 2006), that is, a shared body of FOS machine translation software and data that stands stands a better chance of being preserved and extended...

while allowing for many uses (including commercial uses).
 The license chosen was the GNU General Public License
 (GPL)

- Apertium technology
 - L The Apertium platform

The Apertium platform

Apertium is a free/open-source machine translation platform (http://www.apertium.org) providing:

- 1 A free/open-source modular shallow-transfer machine translation **engine** with:
 - text format management
 - finite-state lexical processing
 - statistical lexical disambiguation
 - shallow transfer based on finite-state pattern matching
- 2 Free/open-source **linguistic data** in well-specified XML formats for a variety of language pairs
- 3 Free/open-source tools: compilers to turn linguistic data into a fast and compact form used by the engine and software to learn disambiguation or structural transfer rules.

- Apertium technology
 - L The Apertium engine

Architecture/1

- Apertium technology
 - L The Apertium engine

XML linguistic data are compiled for speed:

- Lexical information (SL and TL morphological dictionaries, SL-TL bilingual dictionaries, post-generation rules) → finite-state transducers (FST).
- Patterns identifying the left-hand side of structural transfer rules → finite-state pattern matchers
- Disambiguation rules and probabilities obtained from text corpora → hidden Markov models (HMM)

(日) (日) (日) (日) (日) (日) (日)

etc.

- L The Apertium community
 - L The Apertium community

The Apertium community/1

Not the ideal community development situation, but close. In addition to the original (funded) developers, a community (instigated by Francis Tyers) formed around the platform.

- More than 100 developers in sourceforge.net/projects/apertium/, many outside the original group (thank you all!)
- Code updated very frequently: hundreds of monthly SVN commits
- A collectively-maintained wiki shows the current development and tips for people building new language pairs or code.

- The Apertium community
 - L The Apertium community

The Apertium community/2

- Externally developed tools and code:
 - a graphical user interface apertium-tolk, and the related diagnostic tool apertium-view and apertium-view
 - plugins for OpenOffice.org, the Pidgin (previously Gaim) messaging program, for the Wordpress content management system, the Virtaal translation software, the Jubler film-subtitling application, etc.
 - A standalone film subtitling application (apertium-subtitles)
 - Dictionaries adapted to mobile phones and handhelds (tinylex)
 - Windows ports.
- Many people gather and interact in the #apertium IRC channel (at freenode.net).
- Stable packages ported to Debian GNU/Linux (and therefore to Ubuntu and gNewSense).

Research with Apertium

Research/1

- Apertium is also a MT research platform.
- New code (apertium-tagger-training-tools, apertium-transfer-tools) or language-pair data have often been released simultaneously to research publications.
- The research undertaken has even produced a PhD thesis (Felipe Sánchez-Martínez 2008) and four master's theses (Gema Ramírez-Sánchez, Carme Armentano-Oller, Francis M. Tyers, Ángel Seoane).
- A survey of published research may be found in the paper.
- Apertium has also been used to obtain resources for other MT systems.

Research with Apertium

Access to FOS software like Apertium

- guarantees the reproducibility of all of the above experiments
- "lowers the bar for entry to your project for new colleagues" (Pedersen 2008: "Empiricism is not a matter of faith", recommended reading!)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Research with Apertium

Research/3

Together with other FOS machine translation software, such as

- the Giza++ statistical aligner,
- the Moses statistical MT engine,
- the IRSTLM language-model toolkit,
- the Cunei example-based MT platform,
- the Anymalign aligner,
- the Matxin MT system for Basque, and
- the OpenLogos MT system,

Apertium contributes to the reproducibility and the advancement of MT research and experiments.

Business with Apertium

Business with Apertium

Companies in the initial consortium sell services based on Apertium:

- Eleka Ingeniaritza Linguistikoa
- imaxin|Software

Prompsit Language Engineering, started in 2006:

- works almost exclusively on Apertium
- currently one of the main developers of the platform Services:
 - installing and supporting translation servers
 - maintaining and extending language-pair data for a particular application
 - integrating Apertium in multilingual documentation management systems

Recent Apertium developments

Recent developments: the 2009 Google Summer of Code

Apertium was selected to participate as a mentoring organisation in the 2009 Google Summer of Code. Succesful projects:

- two new language pairs: nn↔nb and sv↔da
- a morphological analyser for bn
- an improved part-of-speech tagger
- a web-service infrastructure
- porting of the lexical component to Java
- hybridising Apertium with other systems

Recent Apertium developments

Recent developments: ongoing work

- Universidá d'Uviéu: es⇔ast
- University of Reykjavík: is→en
- Universitat d'Alacant and Prompsit: es⇔it
- University of Tromsø: sme→nob sme⇔smj

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lots of work ahead

Known limitations

Lots of work ahead: known limitations

- No successful, general-purpose lexical selection for polysemic words
- No deep (parse-tree-based) structural transfer, needed for syntactically divergent language pairs
- Current lexical processing not adequate for agglutinative languages or languages with non-catenative morphology.
- The representation of morphological inflection is still too low-level.
- No support to segment long compound words (de: Kontaktlinsenverträglichkeitstest)
- Apertium is a *transfer* system: generating a new pair involves the creation of explicit bilingual resources. apertium-dixtools helps build pair A-B from A-C and C-B, but task is far from trivial.

Apertium funding

Funding

Apertium has been funded by

- The Ministry of Industry, Tourism and Commerce of Spain (also, the Ministries of Education and Science and of Science and Technology of Spain)
- The Secretariat for Technology and the Information Society of the Government of Catalonia
- The Ministry of Foreign Affairs of Romania
- The Universitat d'Alacant
- The Ofis ar Brezhoneg (Breton Language Board)
- Google (Google Summer of Code 2009) scholarships
- Companies: Prompsit Language Engineering, ABC Enciklopedioj, Eleka Ingeniartiza Linguistikoa, imaxin|software, etc.

Apertium funding

License

This work may be distributed under the terms of

the Creative Commons Attribution-Share Alike license: http:

//creativecommons.org/licenses/by-sa/3.0/

(日) (日) (日) (日) (日) (日) (日)

the GNU GPL v. 3.0 License: http://www.gnu.org/licenses/gpl.html

Dual license! E-mail me to get the sources: mlf@ua.es