
The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 17–26

Sulis: An Open Source Transfer Decoder for Deep Syntactic
Statistical Machine Translation

Yvette Graham
National Centre for Language Technology, Dublin City University, Ireland

Abstract
In this paper, we describe an open source transfer decoder for Deep Syntactic Transfer-Based

Statistical Machine Translation. Transfer decoding involves the application of transfer rules to a
SL structure. The N-best TL structures are found via a beam search of TL hypothesis structures
which are ranked via a log-linear combination of feature scores, such as translation model and
dependency-based language model.

1. Introduction

Deep Syntactic Transfer-Based Statistical Machine Translation (SMT) applies stan-
dard methods of Phrase-Based SMT (PB-SMT) (Koehn et al., 2003) to transfer between
deep syntactic structures. For example, both Riezler and Maxwell (2006) and Bojar
and Hajič (2008) use beam search decoding and a log-linear model to combine fea-
ture scores when transferring from source language (SL) deep syntactic structure to
target language (TL) deep syntactic structure. Each uses different statistical mod-
els for transfer, however. Bojar and Hajič (2008) use the Synchronous Tree Substitu-
tion Grammar formalism, in which the probability of attaching pairs of dependency
treelets into aligned pairs of frontiers given frontier state labels is used as a main fea-
ture function, as well as a bigram dependency-based language model. Riezler and
Maxwell (2006), on the other hand, use a translation model computed from rela-
tive frequencies of automatically induced transfer rules and a trigram dependency-
based language model. Riezler and Maxwell (2006) diverge somewhat from PB-SMT,
however, by only applying the language model after decoding on the n-best decoder

© 2010 PBML. All rights reserved. Corresponding author: ygraham@computing.dcu.ie
Cite as: Yvette Graham. Sulis: An Open Source Transfer Decoder for Deep Syntactic Statistical Machine Trans-
lation. The Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 17–26. ISBN 978-80-904175-4-0.
doi: 10.2478/v10108-010-0005-7.

PBML 93 JANUARY 2010

output.1 In this paper, we describe the Sulis transfer decoder that, like Riezler and
Maxwell (2006), uses a translation model computed from relative frequencies of au-
tomatically induced transfer rules, but for language modeling, like Bojar and Ha-
jič (2008), we use a dependency-based language model during transfer decoding to
help decide the n-best TL structures. In addition, we increase the dependency-based
language model from a bigram model, as in Bojar and Hajič (2008), to a trigram model.

Sulis forms part of a larger system consisting of several resources, most of which
are open source and all of which are at least available to the research community:
XLE (Kaplan et al., 2002) for parsing and generation, Giza++ (Och et al., 2000) and
Moses (Koehn and Hoang, 2007) for automatic word alignment, RIA (Graham and
van Genabith, 2009) for automatic transfer rule induction, Ariadne and SRILM (Stol-
cke, 2002) for dependency-based language modeling and ZMERT (Zaidan, 2009) for
Minimum Error Rate Training (Och, 2003) (MERT). Graham et al. (2009) contains the
most recently published evaluation of Sulis.

2. Deep Syntactic Transfer-Based SMT

Deep Syntactic Transfer-Based SMT is composed of three parts, (i) parsing to deep
syntactic structure, (ii) transfer from SL structure to TL structure and (iii) generation
of TL sentence. Step (ii) involves a statistical search for the n-best TL deep syntactic
structures by means of a transfer decoder that constructs TL structures by applying
transfer rules to the SL structure. Transfer rules are similar to phrases in PB-SMT: a bi-
text corpus is firstly word-aligned before all rules consistent with the word-alignment
are extracted. They differ from SMT phrases, however, in their structure: they are
in the form of dependency graphs with missing arguments replaced by variables as
opposed to linear sequences of words. As in PB-SMT, for each SL input structure
their exists a large number of possible TL output structures. We use beam search to
manage the large search space. TL hypotheses are ranked using a log-linear model to
combine several feature scores, such as dependency-based language model and trans-
lation model. MERT is carried out on a development set to optimize the weights used
to combine feature scores.

2.1. Decoding

2.2. Translation Model

As in PB-SMT, a Transfer-Based SMT translation model can be defined as a com-
bination of several feature functions combined using a log-linear model:

p(e|f) = exp

n∑
i=1

λihi(e, f)

1Through personal communication with John Maxwell.

18

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

2.2.1. Transfer Rule Probabilities

In PB-SMT the translation of an input sentence into an output sentence is mod-
eled by breaking down the translation of the sentence into the translation of a set of
phrases. Similarly, for Transfer-Based SMT, the transfer of the SL structure f into a TL
structure e can be broken down into the transfer of a set of rules {f̄, ē}:

p(f̄I
1|ēI

1) =

I∏
i=1

ϕ(f̄i|ēi)

We compute all rules from the training corpus and estimate the translation probability
distribution by relative frequency of the rules:

ϕ(f̄, ē) =
count(ē, f̄)∑
f̄i

count(ē, f̄i)

This is carried out in both the source-to-target and target-to-source directions.

2.2.2. Lexical Weighting

In PB-SMT, lexical weighting is used as a back-off since it provides richer statis-
tics and more reliable probability estimates. Adapting this feature to deep syntax
is straightforward. In PB-SMT the lexical translation probability of a phrase pair is
calculated based on the alignment between the words in the phrase pair. For deep
syntactic transfer, we simply calculate the same probability via the alignment of lexi-
cal items in the LHS and RHS of a transfer rule. The lexical translation probability of
a RHS, ē, given the LHS, f̄ and alignment a, is estimated as follows:

lex(ē|f̄, a) =

length(ē)∏
i=1

1

|{j|(i, j) ∈ a}|

∑
∀(i,j)∈a

w(ei|fj)

We use lexical weighting in both language directions.

2.2.3. Transfer Rule Application

Decoding takes a single SL structure as input and involves a statistical search for
the n-best TL structures. The current decoding algorithm works by creating TL so-
lutions via a top-down application of transfer rules to the SL structure beginning at
the root.2 When the LHS of a rule unifies with the SL structure, the RHS produces
a portion of TL structure. Figure 1 shows an example application of three rules to
the dependency structure for the German sentence Die Katze schläft gern ‘The cat likes
to sleep’ shown in Figure 1(a). Figure 1(b) shows the first transfer rule applied to
the root node of the SL structure producing the TL structure portion shown in Figure
1(c). Transfer rule variables map arguments in the SL structure to the desired position

2In future work, we plan to extend the decoder by allowing rule application starting at any node in the
SL structure.

19

PBML 93 JANUARY 2010

Figure 1. Example top-down application of transfer rules

when creating a TL solution. For example, variable X0 in Figure 1(b) maps the subject
of schlafen to the subject of like in the TL structure labeled with id number 1 shown in
Figure 1(c). Next Katze in the SL structure is translated (Figures 1(d) and 1(e)), before
finally die is translated (Figures 1(f) and 1(g)).

2.2.4. Beam Search

Partial translations (or translation hypotheses) are constructed by applying trans-
fer rules to the SL structure. While TL translations are constructed, beam search man-
ages the large search space by ranking translation hypotheses and pruning the search
by dropping lower scoring hypotheses. A number of stacks are used to organize trans-
lation hypotheses into groups of comparable hypotheses, according to the portion of
SL structure that has already been translated to produce each hypothesis, i.e. hypothe-
sis stack N stores TL translation hypotheses with N nodes covered in the SL structure.
For example, Figure 2(a) shows the hypothesis stacks for decoding the dependency
structure of Die Katze schläft gern containing 4 nodes and therefore requiring stacks
1-4 for decoding, each stack storing translation hypotheses for solutions covering one
to four nodes, respectively.

Transfer rules are indexed by root node so that they can be retrieved quickly to
translate SL structure nodes. For example, in Figure 2(a) the rules rooted at node
Katze are stored together. Since rules are applied top-down to the SL structure (see

20

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

1 2 3 4

schlafen

Katze gern

die

subj adj

det

0:

1: 3:

2:

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es

...

doze

subj adj

0:

1: 3:

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es

...

doze

lion
subj adj

det

0:

1:

2: the

like3:

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

SL Structure

schlafen

Katze gern

die

subj adj

det

0:

1: 3:

2:

SL Structure TL Structure

1 2 3 4

Hypothesis Stacks

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

schlafen

Katze gern

die

subj adj

det

0:

1: 3:

2:

SL Structure TL Structure

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep
...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

a d

b e

c f

Hypothesis Stacks Hypothesis Stacks

Hypothesis Stacks

Hypothesis Stacks

Hypothesis Stacks

Figure 2. Beam Search Decoding of Example German Deep Syntactic Structure

21

PBML 93 JANUARY 2010

Section 2.2.3) rules beginning at the root node of the SL structure are first used to
construct hypotheses. For example, in Figure 2(b) the rule that translates the root
node of the SL structure schlafen as doze is first used to construct a hypothesis and
since it covers one SL node it is stored in hypothesis stack 1. Figure 2(c) shows the
next three hypotheses that are constructed: snooze, sleep and like sleep. Hypotheses
are ordered within each stack according to their score, high-to-low from bottom-to-
top. We currently use histogram pruning. When a stack becomes full, lower scoring
solutions are pruned by being popped off the top of the stack.

For efficiency, each partial translation is only stored once in memory even though
it may be part of several different future hypotheses. For example, hypothesis stack 2
in Figure 2(d) contains four translations constructed by expanding hypothesis doze by
four different rules, each translating the word Katze into a different TL word. These
new hypotheses are represented by a reference to the most recently applied transfer
rule (rules translating Katze) and a reference back to the previous hypothesis.

Figure 2(e) shows an example of how per single completed translation, the struc-
ture for the lion likes to doze, is represented in the hypothesis stacks and Figure 2(f)
shows all hypotheses represented when the decoder has completed translating a sin-
gle SL input structure. The n-best translated structures can be retrieved from the final
stack.

2.2.5. Efficient Dependency-Based Language Modeling

Although the search space is limited by beam search, during decoding large num-
bers of TL hypothesis structures need to be ranked. At each expansion of a transla-
tion hypothesis (via joining of an existing hypothesis with a transfer rule) a language
model score for the newly created hypothesis needs to be calculated. Since this is
carried out very many times per single decoding run, it is vital that the method of
calculating this score is highly efficient.

In our system, we pre-compute a dependency-based language model score for each
transfer rule prior to beam search. This score is calculated only once for each rule even
though a single rule may be part of several translation hypotheses. Then during de-
coding, when a translation hypothesis is expanded by adding a new rule, the new
hypothesis score can be calculated quickly by combining the score of the old hypoth-
esis, the rule score and a score calculated based on the probabilities of n-grams where
the old hypothesis and rule join together. The probability of a TL hypothesis, hn, that
was produced by combining hypothesis hn−1 and rule r can be calculated as follows:

hyp_score(hn) = hyp_score(hn−1) ∗ join_score(hn−1, r) ∗ rule_score(r)
Since hyp_score(hn−1) and rule_score(r) are already computed, only join_score(hn−1, r)
needs to be computed to compute hyp_score(hn).

Figure 3 shows how the language model scores are efficiently calculated when
decoding the dependency structure for the German sentence Die Werbung spiegelt die
Vielfalt der britischen Universität wider ‘The advertisement reflects the diversity of the

22

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

Figure 3. Efficient Dependency-based Language Modeling
23

PBML 93 JANUARY 2010

British university’. We begin with the German dependency structure graph shown
in Figure 3(a) with nodes labeled by id numbers. Figure 3(b) shows the initial empty
translation hypothesis that has probability 1.

Figures 3(c), 3(f) and 3(i) show example transfer rules that can be applied to the
German dependency structure. Dependency-based language model scores are pre-
computed for each rule by identifying all trigrams within the RHS structure and cal-
culating the product of their individual probabilities; we call this the rule_score (see
Figure 3(d) for RuleA, Figure 3(g) for RuleB and Figure 3(j) for RuleC). In addition, for
each rule, n-grams located at the RHS root node and frontier nodes are recorded. For
example, RuleB in Figure 3(g) has a single root node bigram advertisement the located
at node 2, and RuleA in Figure 3(d) has two frontier bigrams < s >, reflect and diver-
sity, of located at nodes 2 and 6, respectively. This information is used to calculate the
score of joining a rule and a hypothesis.

Figure 3(e) shows the translation hypothesis established by applying RuleA to the
German structure. The language model score for the structure is computed by com-
bining the score of the previous hypothesis (since this is the first rule for this hypothe-
sis, the previous hypothesis is the empty hypothesis and is therefore 1), the join score
(since we are joining the rule with the empty hypothesis this score is also 1) and the
rule score of RuleA (see Figure 3(d)).

Figure 3(h) shows the translation hypothesis created by expanding Hypothesis1

by RuleB. Since this expansion involved adding a rule at node 2 in the TL structure,
the joining trigrams are derived by creating lists of words via all possible combinations
of the frontier bigrams belonging to Hypothesis1 labeled 2 and the root bigrams of
RuleB, also labeled 2 (see root n-grams in Figure 3(g)). For this example, this results
in a single word sequence <s >reflect advertisement the which forms two trigrams <s >-
reflect-advertisement and reflect-advertisement-the. The score for Hypothesis2 is then
calculated by combining the hypothesis score for Hypothesis1, this join score and
the precomputed rule score for RuleB.

3. Using Sulis Decoder

3.1. Input Format

To use Sulis, go to http://www.computing.dcu.ie/˜ygraham/software.html and follow in-
structions. The input to the decoder is a text file containing transfer rules and infor-
mation for computing feature scores. Figure 4 shows an example rule entry for the
decoder. The first two lines in Figure 4 gives the id number of the SL structure, 0, and
the id number of the node in the SL structure where this rule is applied, also 0. The
subsequent lines of the file are used for dependency-based language modeling and
are paths of lexical items associated with nodes in the TL structure beginning at the
frontier nodes back to the root node of the rule. For example, the rule in Figure 4 has
three frontier nodes labeled 1, 7 and 12, and therefore the file contains three paths

24

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

rule: 0
start: 0
1 agree 0 <s> -1
7 agree 0 <s> -1
12 agree 0 <s> -1
cf(1,eq(attr(var(0),'COMP'),var(12)))
cf(1,eq(attr(var(0),'PASSIVE'),-))
cf(1,eq(attr(var(0),'SUBJ'),var(1)))
cf(1,eq(attr(var(0),'PRED'),semform(agree,_17367,[var(1),var(12)],[])))
cf(1,eq(attr(var(0),'TENSE'),pres))
cf(1,eq(attr(var(0),'ADJUNCT'),var(6)))
cf(1,in_set(var(7),var(6)))
lhs_vars: 0
num_rhs: 1
str: 8.204571144249204
tsr: 8.519636252843213
stl: 7.730179751898788
tsl: 8.799261640333976

Figure 4. Example Rule Entry of Input File: rule translating German structure word
meinen as agree.

from each of these nodes back to the root.3 Next is the RHS of the rule.4 Following
that, is a list of SL nodes covered by the LHS of the rule. In the example in Figure 4 a
single node, labeled 0 is covered by the rule. In addition, the number of TL lexicalized
nodes produced by the rule is given. Finally, the source-to-target and target-to-source
relative frequencies are given in the form of positive log probabilities, as well as the
source-to-target and target-to-source lexical weights, also as positive log probabilities.

In addition to the rules for each structure, the decoder takes in a weights file for
combining feature scores. The file should be in the format of Zaidan (2009) Z-MERT
tool. For language modeling, the tool expects a dependency-based language model
in ARPA format. To compute such a model, Ariadne open source tool in conjunction
with the SRILM toolkit (Stolcke, 2002) can be used.

3.2. Output Format

The decoder outputs the n-best TL structures in the form of the union of the RHS
equations of transfer rules used to construct it, as well as a list of feature scores and
the total combined score.5

3Each lexical item in the path is labeled with its node id number, which is used to verify that no single
trigram is counted more than once.

4In Figure 4, this is in the form of LFG F-structure Prolog equations, but can in fact be in any format, as
it is not interpreted by the program code, but simply remains as a string of characters to be output if this
rule forms part of a solution.

5These scores are needed for MERT.

25

PBML 93 JANUARY 2010

4. Conclusion

In this paper, we present an open source transfer decoder for Deep Syntactic Transfer-
Based SMT. The decoder applies standard methods of PB-SMT to deep syntactic trans-
fer.

Bibliography

Bojar, Ondřej and Jan Hajič. Phrase-Based and Deep Syntactic English-to-Czech Statistical
Machine Translation. In Proceedings of the third Workshop on Statistical Machine Translation,
Columbus, Ohio, June 2008.

Graham, Yvette and Josef van Genabith. An open source rule induction tool for transfer-based
smt. The Prague Bulletin of Mathematical Linguistics Special Issue: Open Source Tools for Machine
Translation, pages 37–46, 2009.

Graham, Yvette, Josef van Genabith, and Anton Bryl. F-structure transfer-based statistical ma-
chine translation. In Proceedings of Lexical Functional Grammar Conference 2009, Cambridge,
July 2009.

Kaplan, Ronald M., Tracy H. King, and John T. Maxwell. Adapting existing grammars: the XLE
experience. In Proceedings of COLING 2002, Taipei, Taiwan, 2002.

Koehn, Philipp and Hieu Hoang. Factored Translation Models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning, page 868–876, Prague, June 2007.

Koehn, Philip, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of HLT-NAACL 2003, pages 48–54, Edmonton, Alberta, 2003.

Och, Franz Josef. Minimum error rate training in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association for Computational Linguistics, pages 160–167,
Sapporo, Japan, 2003.

Och, Franz Josef, Christoph Tillmann, and Hermann Ney. Improved alignment models for
statistical machine translation. In Proceedings of the 1999 Conference on Empirical Methods in
Natural Language Processsing (EMNLP 99, pages 20–28, College Park, MD, 2000.

Riezler, Stefan and John Maxwell. Grammatical Machine Translation. In Proceedings of HLT-
ACL, pages 248–255, New York, 2006.

Stolcke, Andreas. Srilm - an extensible language modeling toolkit. In Proceedings of the Interna-
tional Conference on Spoken Language Processing, Denver, Colorado, September 2002.

Zaidan, Omar. Z-mert: A fully configurable open source tool for minimum error rate training
of machine translation systems. pages 79–88, 2009.

26

