MT Marathon Statistical machine translation: IBM Models and word alignment

Patrik Lambert (based on lecture by Alexandra Birch and Philipp Koehn)

September 2010

Lexical translation

 \bullet How to translate a word \rightarrow look up in dictionary

Haus — house, building, home, household, shell.

- Multiple translations
 - some more frequent than others
 - for instance: *house*, and *building* most common
 - special cases: *Haus* of a *snail* is its *shell*
- Note: During all the lectures, we will translate from a foreign language into English

Collect statistics

• Look at a *parallel corpus* (German text along with English translation)

Translation of <i>Haus</i>	Count
house	8,000
building	1,600
home	200
household	150
shell	50

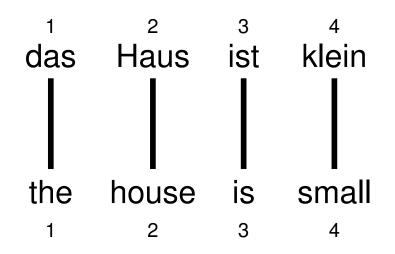
Estimate translation probabilities

• Maximum likelihood estimation

$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \text{house}, \\ 0.16 & \text{if } e = \text{building}, \\ 0.02 & \text{if } e = \text{home}, \\ 0.015 & \text{if } e = \text{household}, \\ 0.005 & \text{if } e = \text{shell}. \end{cases}$$

Alignment

• In a parallel text (or when we translate), we **align** words in one language with the words in the other



• Word *positions* are numbered 1–4

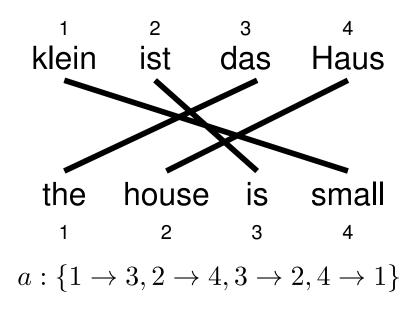
Alignment function

- Formalizing *alignment* with an **alignment function**
- Mapping an English target word at position i to a German source word at position j with a function $a:i\to j$
- Example

$$a: \{1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4\}$$

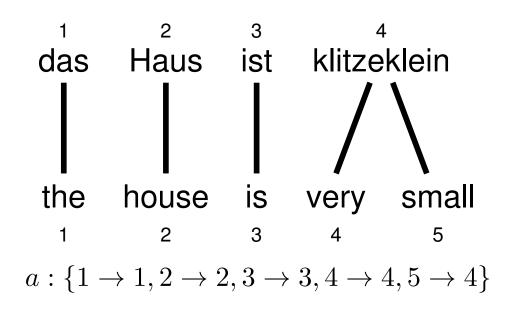
Reordering

• Words may be **reordered** during translation



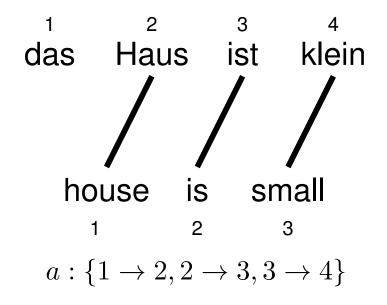
One-to-many translation

• A source word may translate into **multiple** target words



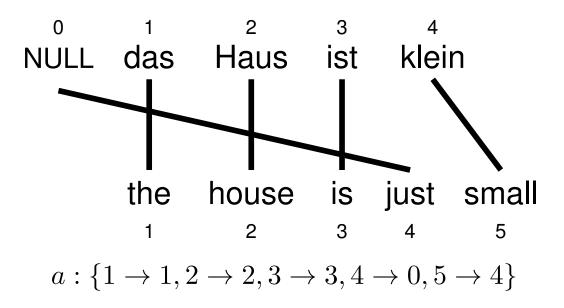
Dropping words

- Words may be **dropped** when translated
 - The German article *das* is dropped



Inserting words

- Words may be **added** during translation
 - The English *just* does not have an equivalent in German
 - We still need to map it to something: special NULL token



IBM Model 1

- Generative model: break up translation process into smaller steps
 IBM Model 1 only uses *lexical translation*
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_f})$ of length l_f
 - to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a:j\to i$

$$p(\mathbf{e}, a | \mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

– parameter ϵ is a *normalization constant*

Example

das		Haus		ist			klein	
e	t(e f)	e	t(e f)	e	t(e f)		e	t(e f)
the	0.7	house	0.8	is	0.8		small	0.4
that	0.15	building	0.16	's	0.16		little	0.4
which	0.075	home	0.02	exists	0.02		short	0.1
who	0.05	household	0.015	has	0.015		minor	0.06
this	0.025	shell	0.005	are	0.005		petty	0.04

$$p(\mathbf{e}, a | \mathbf{f}) = \frac{\epsilon}{5^4} \times t(\text{the} | \text{das}) \times t(\text{house} | \text{Haus}) \times t(\text{is} | \text{ist}) \times t(\text{small} | \text{klein})$$
$$= \frac{\epsilon}{5^4} \times 0.7 \times 0.8 \times 0.8 \times 0.4$$
$$= 0.0028\epsilon$$

11

Learning lexical translation models

- \bullet We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the *alignments*,
 - \rightarrow we could estimate the parameters of our generative model
 - if we had the *parameters*,
 - \rightarrow we could estimate the $\emph{alignments}$

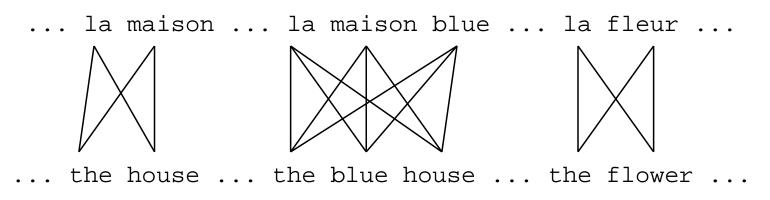
• Incomplete data

- if we had *complete data*, we could estimate *model*
- if we had *model*, we could fill in the *gaps in the data*

• Expectation Maximization (EM) in a nutshell

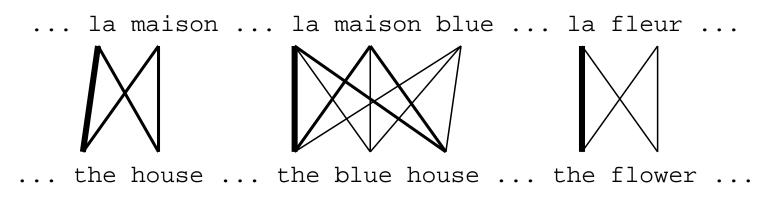
- initialize model parameters (e.g. uniform)
- apply the model to the (missing) data
- learn the model from (completed) data
- iterate

13



- Initial step: all alignments equally likely
- Model learns that, e.g., *la* is often aligned with *the* (3 times), more than with *house* (twice) and with *blue* (once)

14



- After one iteration
- Alignments, e.g., between *la* and *the* are more likely



- After another iteration
- It becomes apparent that alignments, e.g., between *fleur* and *flower* are more likely

16

- Convergence
- Inherent hidden structure revealed by EM

17

p(la the) = 0.453
p(le the) = 0.334
p(maison house) = 0.876
p(bleu blue) = 0.563
...

• Parameter estimation from the aligned corpus

IBM Model 1 and EM

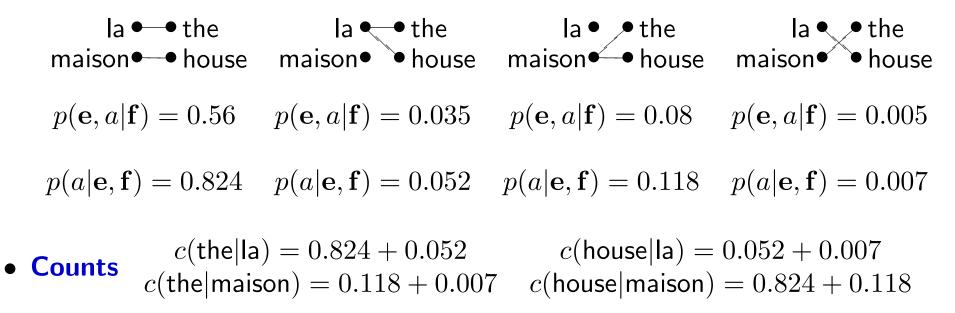
- EM Algorithm consists of two steps
- **Expectation-Step**: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - gaps in data filled in with assigned probabilities
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until **convergence**

IBM Model 1 and EM

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

IBM Model 1 and EM

- Probabilities t(the|la) = 0.7 t(house|la) = 0.05t(the|maison) = 0.1 t(house|maison) = 0.8
- Alignments



- We need to compute $p(a|\mathbf{e},\mathbf{f})$
- Applying the *chain rule*:

$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

• We already have the formula for $p(\mathbf{e}, a | \mathbf{f})$ (definition of Model 1)

- We need to compute $p(\mathbf{e}|\mathbf{f})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(\mathbf{e}, a|\mathbf{f})$$

= $\sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} p(\mathbf{e}, a|\mathbf{f})$
= $\sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$
$$= \frac{\epsilon}{(l_f+1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$
$$= \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)$$

- Note the trick in the last line
 - removes the need for an *exponential* number of products
 - \rightarrow this makes IBM Model 1 estimation tractable

• Combine what we have:

$$p(\mathbf{a}|\mathbf{e}, \mathbf{f}) = p(\mathbf{e}, \mathbf{a}|\mathbf{f}) / p(\mathbf{e}|\mathbf{f})$$

$$= \frac{\frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)}$$

$$= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)}$$

IBM Model 1 and EM: Maximization Step

- Now we have to *collect counts* for word translations
- Evidence from a sentence pair e, f that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplification as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

IBM Model 1 and EM: Maximization Step

• After collecting these counts over a corpus, we can estimate the model:

$$t(e|f;\mathbf{e},\mathbf{f}) = \frac{\sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}{\sum_{e'} \sum_{(\mathbf{e},\mathbf{f})} c(e'|f;\mathbf{e},\mathbf{f}))}$$

IBM Model 1 and EM: Pseudocode

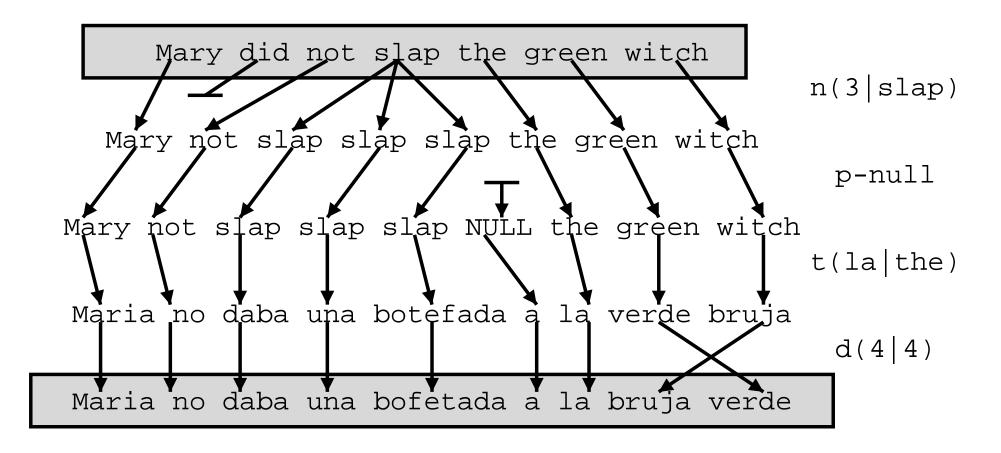
```
initialize t(e|f) uniformly
do
  set count(e|f) to 0 for all e,f
  set total(f) to 0 for all f
  for all sentence pairs (e_s,f_s)
    for all words e in e_s
      total_s = 0
      for all words f in f_s
        total s += t(e|f)
    for all words e in e_s
      for all words f in f_s
        count(e|f) += t(e|f) / total_s
        total(f) += t(e|f) / total_s
  for all f in domain( total(.) )
    for all e in domain( count(.|f) )
      t(e|f) = count(e|f) / total(f)
until convergence
```

Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has *global maximum*
 - training of a higher IBM model builds on previous model
- Computationally biggest change in Model 3
 - trick to simplify estimation does not work anymore
 - \rightarrow *exhaustive* count collection becomes computationally too expensive
 - sampling over high probability alignments is used instead

IBM Model 4



30

HMM Model

- Words do not move independently of each other
 - they often move in groups \rightarrow condition word movements on previous word
- HMM alignment model:

$$p(a(j)|ja(j-1), l_e)$$

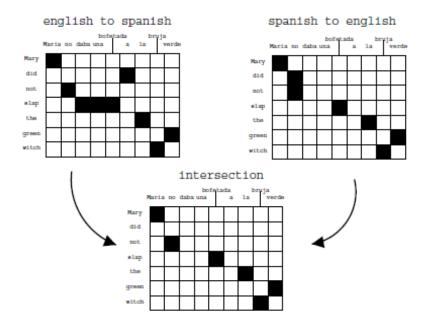
- EM algorithm application harder, requires dynamic programming
- IBM Model 4 is similar, also conditions on word classes

31

Word alignment with IBM models

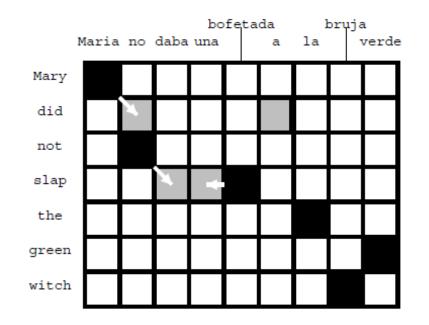
- IBM Models create a *one-to-many* mapping
 - words are aligned using an alignment function
 - a function may return the same value for different input (one-to-many mapping)
 - a function cannot return multiple values for one input (*no many-to-one mapping*)
- But we need *many-to-many* mappings

Symmetrizing word alignments



• *Intersection* of GIZA++ bidirectional alignments

Symmetrizing word alignments



• add additional alignment points present in the union

Symmetrizing word alignments

```
GROW-DIAG-FINAL(e2f,f2e):
  neighboring = ((-1,0), (0,-1), (1,0), (0,1), (-1,-1), (-1,1), (1,-1), (1,1))
  alignment = intersect(e2f,f2e);
  GROW-DIAG(); FINAL(e2f); FINAL(f2e);
GROW-DIAG():
  iterate until no new points added
    for english word e = 0 \dots en
      for foreign word f = 0 \dots fn
        if ( e aligned with f )
          for each neighboring point ( e-new, f-new ):
            if ( ( e-new not aligned or f-new not aligned ) and
                (e-new, f-new) in union(e2f, f2e))
              add alignment point ( e-new, f-new )
FINAL(a):
  for english word e-new = 0 \dots en
    for foreign word f-new = 0 \dots fn
      if ( ( e-new not aligned or f-new not aligned ) and
           (e-new, f-new) in alignment a) add alignment point (e-new, f-new)
```

More Recent Work on Symmetrization

- Symmetrize after each iteration of IBM Models [Matusov et al., 2004]
 - run one iteration of E-step for each direction
 - symmetrize the two directions
 - count collection (M-step)
- Use of posterior probabilities in symmetrization
 - generate n-best alignments for each direction
 - calculate how often an alignment point occurs in these alignments
 - use this posterior probability during symmetrization

Discriminative training methods

- Given some annotated training data, supervised learning methods are possible
- Structured prediction
 - not just a classification problem
 - solution structure has to be constructed in steps
- Many approaches: maximum entropy, neural networks, support vector machines, conditional random fields, MIRA, ...
- Small labeled corpus may be used for parameter tuning of unsupervised aligner [Fraser and Marcu, 2007]

Better Generative Models: Joint Model

$$p(\mathbf{e}, \mathbf{f}) = \sum_{C \in \mathcal{C}} \prod_{\langle \overline{e}_j, \overline{f}_j \rangle \in C} p(\langle \overline{e}_j, \overline{f}_j \rangle)$$

• Variables:

• Use EM to estimate $p(\langle \overline{e}_j, \overline{f}_j \rangle)$ for all phrases in our corpus

Joint Model

- Advantages:
 - Allows phrase-phrase alignments
 - Eliminates need for strange parameters like fertility, NULL alignment
 - Reduces dependency on distortion
- Disadvantages:
 - Complexity explodes all possible segmentations and their alignments