Context-Free Translation Models

Adam Lopez
University of Edinburgh \rightarrow Johns Hopkins University

Finite-State Models

Finite-State Models

- Very simple models get us pretty far!

Finite-State Models

- Very simple models get us pretty far!
- There's no data like more data.

Finite-State Models

- Very simple models get us pretty far!
- There's no data like more data.
- Word-based models follow intuitions, but not all.

Finite-State Models

- Very simple models get us pretty far!
- There's no data like more data.
- Word-based models follow intuitions, but not all.
- Phrase-based models are similar, but more effective.

Finite-State Models

- Very simple models get us pretty far!
- There's no data like more data.
- Word-based models follow intuitions, but not all.
- Phrase-based models are similar, but more effective.
- All of these models are weighted regular languages.

Finite-State Models

- Very simple models get us pretty far!
- There's no data like more data.
- Word-based models follow intuitions, but not all.
- Phrase-based models are similar, but more effective.
- All of these models are weighted regular languages.
- Need dynamic programming with approximations.

Finite-State Models

- Very simple models get us pretty far!
- There's no data like more data.
- Word-based models follow intuitions, but not all.
- Phrase-based models are similar, but more effective.
- All of these models are weighted regular languages.
- Need dynamic programming with approximations.
- Is this the best we can do?

Overview

model

联合国安全理事会的五个 常任 理事 国都

However，the sky remained clear under the strong north wind ．

Two Problems

- Exact decoding requires exponential time.
- This is a consequence of arbitrary permutation.
- But in translation reordering is not arbitrary!
- Parameterization of reordering is weak.
- No generalization!

la empresa tiene enemigos fuertes en Europa . the company has strong enemies in Europe .

Garcia and associates .

Garcia y asociados .
Carlos Garcia has three associates .
\downarrow

|
Carlos Garcia tiene tres asociados .
his associates are not strong .

sui asociados no son fuentes .
Garcia has a company also .
Garcia tambien tiene una empress.
its clients are angry .
sus clientes estan enfadados .
the associates are also angry .
los asociados tambien estan enfadados
the clients and the associates are enemies .

los clientes y los asociados son enemigos .
the company has three groups .

la empress tiene tres grupos .
its groups are in Europe .

sus grupos estan en Europa .
the modern groups sell strong pharmaceuticals.

los grupos modernos venden medicinas fuertes.
the groups do not sell zanzanine .

los grupos no venden zanzanina .
the small groups are not modern .

la empresa tiene enemigos fuentes en Europa . the company has strong enemies in Europe .

Garcia and associates .

Garcia y asociados .
Carlos Garcia has three associates .

Carlos Garcia tiene tres asociados .
his associates are not strong .

sui asociados no son fuentes .
Garcia has a company also .

Garcia tambien tiene una empress .
its clients are angry .
sus clientes estan enfadados .
the associates are also angry .
los asociados tambien estan enfadados
the clients and the associates are enemies .

los clientes y los asociados son enemigos .
the company has three groups .
1
la empresa tiene tres grupos .
its groups are in Europe .

sus grupos estan en Europa .
the modern groups sell strong pharmaceuticals.
the groups do not sell zanzanine .

los grupos no venden zanzanina .

la empress tiene enemigos fuertes en Europa. the company has strong enemies in Europe .

Same pattern: SN JJ \rightarrow JJ AN

sus asourados 110 solituentes.
Garcia has a company also .
Garcia tambien tiene una empress .
its clients are angry .
sur clientes estan enfadados .
the associates are also angry .
los asociados tambien estan enfadados
susgrupos estaneen europa •
the modern groups sell strong pharmaceuticals.

los grupos modernos venden medicinas fuertes the groups do not sell zanzanine .

los grupos no venden zanzanina .
the small groups are not modern.
os grupos pequenos no son modernos .

la empresa tiene enemigos fuentes en Europa .

 the company has strong enemies in Europe .
Same pattern: AN JJ \rightarrow JJ RN

Finite-state models do not capture this generalization.

sus asociauos no soniluerles •
Garcia has a company also .

Garcia tambien tiene una empress .
its clients are angry .
sus clientes estan enfadados .
the associates are also angry .
los asociados tambien estan enfadados
the modern groups sell strong pharmaceuticals.

los grupos modernos venden medicinas fuertes the groups do not sell zanzanine .

los grupos no venden zanzanina .

Context-Free Grammar

Context-Free Grammar

S \rightarrow NP VP

$\mathrm{NP} \rightarrow$ watashi wa
NP \rightarrow hako wo
VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

Context-Free Grammar

S

S \rightarrow NP VP

NP \rightarrow watashi wa
NP \rightarrow hako wo
VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

Context-Free Grammar

S

$$
\begin{aligned}
\mathrm{S} & \rightarrow \text { NP VP } \\
\mathrm{NP} & \rightarrow \text { watashi wa } \\
\mathrm{NP} & \rightarrow \text { hako wo } \\
\mathrm{VP} & \rightarrow \text { NP V } \\
\mathrm{V} & \rightarrow \text { akemasu }
\end{aligned}
$$

Context-Free Grammar

$$
\begin{aligned}
\mathrm{S} & \rightarrow \text { NP VP } \\
\mathrm{NP} & \rightarrow \text { watashi wa } \\
\mathrm{NP} & \rightarrow \text { hako wo } \\
\mathrm{VP} & \rightarrow \text { NP V } \\
\mathrm{V} & \rightarrow \text { akemasu }
\end{aligned}
$$

Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}$ VP

NP \rightarrow watashi wa

$\mathrm{NP} \rightarrow$ hako wo
VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

Context-Free Grammar

Context-Free Grammar

Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow$ watashi wa $\mathrm{NP} \rightarrow$ hako wo
$\mathrm{VP} \rightarrow \mathrm{NP}$ V
$\mathrm{V} \rightarrow$ akemasu

Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
NP \rightarrow watashi wa
NP \rightarrow hako wo
VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow$ watashi wa
NP \rightarrow hako wo
VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

hako wo

Context-Free Grammar

Context-Free Grammar

Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
NP \rightarrow watashi wa NP \rightarrow hako wo VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

hako wo
akemasu

Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
NP \rightarrow watashi wa NP \rightarrow hako wo VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

hako wo akemasu
watashi wa hako wo akemasu

Synchronous Context-Free Grammar

S \rightarrow NP VP

NP \rightarrow watashi wa
NP \rightarrow hako wo
VP \rightarrow NP V
$\mathrm{V} \rightarrow$ akemasu

Synchronous Context-Free Grammar

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{~S} \rightarrow \mathrm{NP} \text { VP } \\
\mathrm{NP} \rightarrow \text { watashi wa } & \mathrm{NP} \rightarrow \mathrm{I} \\
\mathrm{NP} \rightarrow \text { hako wo } & \mathrm{NP} \rightarrow \text { the box } \\
\mathrm{VP} \rightarrow \mathrm{NP} \mathrm{~V} & \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
\mathrm{~V} \rightarrow \text { akemasu } & \mathrm{V} \rightarrow \text { open }
\end{array}
$$

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box $\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

S

S

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box $\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

S $\cdots \cdots$

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2} \\
\mathrm{NP} & \rightarrow \text { watashi wa } / \mathrm{I} \\
\mathrm{NP} & \rightarrow \text { hako wo } / \text { the box } \\
\mathrm{VP} & \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2} \\
\mathrm{~V} & \rightarrow \text { akemasu / open }
\end{aligned}
$$

Synchronous Context-Free Grammar

$$
S
$$

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box $\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$

$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box $\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box $\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$N P \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box $\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
NP \rightarrow hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
NP \rightarrow watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

hako wo
the box
$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
NP \rightarrow hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
$\mathrm{V} \rightarrow$ akemasu / open

Synchronous Context-Free Grammar

hako wo
the box
$\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}$
$\mathrm{NP} \rightarrow$ watashi wa / I
$\mathrm{NP} \rightarrow$ hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
V \rightarrow akemasu / open

Synchronous Context-Free Grammar

hako wo akemasu
open
the box

$$
\mathrm{S} \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2}
$$

NP \rightarrow watashi wa / I
NP \rightarrow hako wo / the box
$\mathrm{VP} \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2}$
V \rightarrow akemasu / open

Synchronous Context-Free Grammar

Synchronous Context-Free Grammar

watashi wa hako wo akemasu

Synchronous Context-Free Grammar

watashi wa hako wo akemasu I open the box

Translation as Parsing

watashi wa hako wo akemasu

Translation as Parsing

watashi wa hako wo akemasu

Translation as Parsing

watashi wa hako wo akemasu

Translation as Parsing

watashi wa NP

hako wo akemasu

watashi wa hako wo akemasu

the box

I open the box

Decoding

Decoding

- In general, there are an exponential number of possible parse trees for a sentence.

Decoding

- In general, there are an exponential number of possible parse trees for a sentence.
- Dynamic programming to the rescue!

Parsing

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
S \rightarrow PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw
$\begin{array}{llll}\mathrm{I}_{1} & \text { saw }_{2} & \text { her }_{3} & \text { duck }_{4}\end{array}$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw
$X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)$
$P R P_{0,1} \leftarrow\left(w_{1}=\mathrm{I}\right) \wedge(P R P \rightarrow \mathrm{I})$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
$\mathrm{VB} \rightarrow$ duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw
$X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)$
$P R P_{0,1} \leftarrow\left(w_{1}=\mathrm{I}\right) \wedge(P R P \rightarrow \mathrm{I})$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

$$
V B D_{1,2} \quad P R P_{2,3} \quad V B_{3,4}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

$$
V B D_{1,2} \quad P R P_{2,3} \quad V B_{3,4}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN

PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN

PRP \rightarrow her
PRP \rightarrow I
$N P_{2,4} \leftarrow P R P \Phi_{2,3} \wedge N N_{3,4} \wedge(N P \rightarrow P R P \oiint N N)$
PRP\$ \rightarrow her
$S \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
$\mathrm{VB} \rightarrow$ duck
VP \rightarrow VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw
$X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w)$
$X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN

PRP \rightarrow her
PRP \rightarrow I
$N P_{2,4} \leftarrow P R P \Phi_{2,3} \wedge N N_{3,4} \wedge(N P \rightarrow P R P \oiint N N)$
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow$ VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
$\mathrm{VBD} \rightarrow$ saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow \mathrm{VBD}$ NP
VP \rightarrow VBD SBAR
$\mathrm{VBD} \rightarrow$ saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

Parsing

$\mathrm{NN} \rightarrow$ duck
NP \rightarrow PRP\$ NN
PRP \rightarrow her
PRP \rightarrow I
PRP\$ \rightarrow her
$\mathrm{S} \rightarrow$ PRP VP
SBAR \rightarrow PRP VB
VB \rightarrow duck
$\mathrm{VP} \rightarrow$ VBD NP
VP \rightarrow VBD SBAR
VBD \rightarrow saw

$$
\begin{aligned}
& X_{i, i+1} \leftarrow\left(w_{i+1}=w\right) \wedge(X \rightarrow w) \\
& X_{i, j} \leftarrow Y_{i, k} \wedge Z_{k, j} \wedge(X \rightarrow Y Z)
\end{aligned}
$$

Parsing

Parsing

Parsing

Parsing

Parsing

Analysis

Parsing

Analysis

$O\left(N n^{2}\right)$ nodes $O\left(G n^{3}\right)$ edges

Language Models Again

- Language models are finite-state (i.e. regular).
- Our translation model is context-free.
- We can again compute full model via intersection.
- Result is also context-free.
- Bad news for context-free language models and context-free translation models...
- Context-free languages not closed under intersection.
- Computation is in PSPACE!

Language Models Again

- Basic DP strategy: nodes include category, span, and left and right language model context.
- While polynomial, this still tends to be too slow to do exactly.
- Various forms of pruning are generally used.
- Finding efficient algorithms is currently an area of very active research.

The Big Question

The Big Question

Where do the categories come from?

The Big Question

Where do the categories come from?
Answer \#1: there are no categories!

The Big Question

Where do the categories come from?
Answer \#1: there are no categories!
$X \rightarrow X_{1} X_{2} / X_{1} X_{2}$
$X \rightarrow X_{1} X_{2} / X_{2} X_{1}$
$X \rightarrow$ watashi wa / I
$X \rightarrow$ hako wo / the box
$X \rightarrow$ akemasu / open

The Big Question

Where do the categories come from?
Answer \#1: there are no categories!
$X \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} / \mathrm{X}_{1} \mathrm{X}_{2} \longleftarrow$ Keep order
$X \rightarrow X_{1} X_{2} / X_{2} X_{1}$
$X \rightarrow$ watashi wa / I
$X \rightarrow$ hako wo / the box
$X \rightarrow$ akemasu / open

The Big Question

Where do the categories come from?
Answer \#1: there are no categories!
$\begin{array}{ll}X \rightarrow X_{1} X_{2} / X_{1} X_{2} \longleftarrow & \text { Keep order } \\ X \rightarrow X_{1} X_{2} / X_{2} X_{1} & \text { Swap order }\end{array}$
$X \rightarrow$ watashi wa / I
$X \rightarrow$ hako wo / the box
$X \rightarrow$ akemasu / open

The Big Question

Where do the categories come from?
Answer \#1: there are no categories!
$\mathrm{X} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} / \mathrm{X}_{1} \mathrm{X}_{2} \longleftarrow$ Keep order
$X \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} / \mathrm{X}_{2} \mathrm{X}_{1} \longleftarrow$ Swap order
$\mathrm{X} \rightarrow$ watashi wa / I
$X \rightarrow$ hako wo / the box
$X \rightarrow$ akemasu / open

The Big Question

Where do the categories come from?
Answer \#1: there are no categories!
$\mathrm{X} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} / \mathrm{X}_{1} \mathrm{X}_{2} \longleftarrow$ Keep order $X \rightarrow X_{1} X_{2} / X_{2} X_{1} \longleftarrow$ Swap order $\mathrm{X} \rightarrow$ watashi wa / I $X \rightarrow$ hako wo / the box $X \rightarrow$ akemasu / open

Translate words or phrases

The Big Question

Where do the categories come from?
Answer \#1: there are no categories!

Inversion Transduction Grammar

Inversion Transduction Grammar

Parsing is polynomial. We must be giving up something in order to acheive polynomial complexity.

Inversion Transduction Grammar

Parsing is polynomial. We must be giving up something in order to acheive polynomial complexity.

$$
A B C D
$$

B D A C

Inversion Transduction Grammar

Parsing is polynomial. We must be giving up something in order to acheive polynomial complexity.

Inversion Transduction Grammar

Parsing is polynomial. We must be giving up something in order to acheive polynomial complexity.

ITG cannot produce this kind of reordering.

Inversion Transduction Grammar

Parsing is polynomial. We must be giving up something in order to acheive polynomial complexity.

ITG cannot produce this kind of reordering. Does this matter? Do such reorderings occur in real data?

Inversion Transduction Grammar

ITG cannot produce this kind of reordering. Does this matter? Do such reorderings occur in real data? YES!

Inversion Transduction Grammar

ITG cannot produce this kind of reordering.
Does this matter? Do such reorderings occur in real data?
YES! (but they're very rare)

Hierarchical Phrase-Based Translation

$X \rightarrow X_{1}$ hako wo X_{2} / X_{1} open X_{2}
$X \rightarrow$ hako wo / the box
$X \rightarrow$ akemasu / open

watashi wa
akemasu

the box

The Big Question

Where do the categories come from?

The Big Question

Where do the categories come from?
Answer \#2: from a parser.

The Big Question

Where do the categories come from?
Answer \#2: from a parser.

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{NP}_{1} \mathrm{VP}_{2} / \mathrm{NP}_{1} \mathrm{VP}_{2} \\
\mathrm{NP} & \rightarrow \text { watashi wa } / \mathrm{I} \\
\mathrm{NP} & \rightarrow \text { hako wo / the box } \\
\mathrm{VP} & \rightarrow \mathrm{NP}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1} \mathrm{NP}_{2} \\
\mathrm{~V} & \rightarrow \text { akemasu / open }
\end{aligned}
$$

Syntax-based Translation

Are reorderings in real data consistent with isomorphisms on linguistic parse trees?

Syntax-based Translation

I saw her duck

Are reorderings in real data consistent with isomorphisms on linguistic parse trees?

Of course not.

Syntax-based Translation

I saw her duck
yo la vi agacharse

Syntax-based Translation

Tree substitution grammar

I saw her duck
yo la vi agacharse

Syntax-based Translation

Tree substitution grammar weakly equivalent SCFG

I saw her duck
yo la vi agacharse

Syntax-based Translation

Tree substitution grammar

weakly equivalent SCFG

I saw her duck
VBD \rightarrow saw / vi
$\mathrm{VB} \rightarrow$ duck / agacharse $\mathrm{S} \rightarrow \mathrm{PRP}_{1} \mathrm{VP}_{2} / \mathrm{PRP}_{1} \mathrm{VP}_{2}$
PRP \rightarrow I / yo
$\mathrm{VP} \rightarrow \mathrm{VBD}_{1}$ her $\mathrm{VB}_{2} /$ la $\mathrm{VBD}_{1} \mathrm{VB}_{2}$

Syntax-based Translation

Tree substitution grammar

weakly equivalent SCFG

Problem: we need a parser!
I saw her duck

$$
\text { VBD } \rightarrow \text { saw / vi }
$$

VB \rightarrow duck / agacharse $\mathrm{S} \rightarrow \mathrm{PRP}_{1} \mathrm{VP}_{2} / \mathrm{PRP}_{1} \mathrm{VP}_{2}$
PRP \rightarrow I / yo
$\mathrm{VP} \rightarrow \mathrm{VBD}_{1}$ her $\mathrm{VB}_{2} /$ la $\mathrm{VBD}_{1} \mathrm{VB}_{2}$

The Big Question

Where do the categories come from?

The Big Question

Where do the categories come from?
Answer \#3: they are automatically induced!

The Big Question

Where do the categories come from?
Answer \#3: they are automatically induced!

This is an area of active research. www.clsp.jhu.edu/workshops/ws10/groups/msgismt/

Another Big Question...

Where do the grammars come from?

Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate expected counts of the unseen events.
- Choose new parameters to maximize likelihood, using expected counts as proxy for observed counts.

O Iterate.

- Guaranteed that likelihood is monotonically nondecreasing.

Can we apply it to other models?

- Sure, why not?
- The derivation structure of each model is simply a latent variable.
- We simply apply EM to each model structure.

Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate expected counts of the unseen events.
- Choose new parameters to maximize likelihood, using expected counts as proxy for observed counts.

O Iterate.

- Guaranteed that likelihood is monotonically nondecreasing.

Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate expected counts of the unseen events.
- Choose new parameters to maximize likelihood, using expected counts as proxy for observed counts.

O Iterate.

- Guaranteed that likelihood is monotonically nondecreasing.

Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calc ${ }^{-1 \text { nen }}$ ents.
- Cho
BAD:
Objective function is highly non-convex hood, using
d counts.
O Iterate.
- Guaranteed that likelihood is monotonically nondecreasing.

Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate expected counts of the unseen events.
- Choose new parameters to maximize likelihood, using expected counts as proxy for observed counts.

O Iterate.

- Guaranteed that likelihood is monotonically nondecreasing.

Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate expected counts of the unseen events.
- Choose new parameters to maximize likelihood, us nts.

WORSE:

O It
Computing expectations from a phrase-based model, given a sentence pair, is NP-Complete (by reduction to SAT; DeNero \& Klein, 2008)

Recap: Expectation Maximization

- Arbitrarily select a set of parameters (say, uniform).
- Calculate expected counts of the unseen events.
- Choose new parameters to maximize likelihood,

O It
Computing expectations from an SCFG model, given a sentence pair, is at least $O\left(n^{6}\right)$

Now What?

- Option \#1: approximate expectations
- Restrict computation to some tractable subset of the alignment space (arbitrarily biased).
- Markov chain Monte Carlo (very slow).

Now What?

- Option \#2: change the problem definition
- We already know how to learn word-to-word translation models efficiently.
- Idea: learn word-to-word alignments, extract most probable alignment, then treat it as observed.
- Learn phrase translations consistent with word alignments.
- Decouples alignment from model learning -- is this a good thing?

Phrase Extraction

Phrase Extraction

watashi wa / I

Phrase Extraction

hako wo / the box

Phrase Extraction

hako wo akemasu / open the box

Phrase Extraction

Hierarchical Phrase Extraction

Hierarchical Phrase Extraction

Hierarchical Phrase Extraction

X_{1} akemasu / open X_{1}

Syntactic Phrase Extraction S

watashi
wa
hako
akemasu

Syntactic Phrase Extraction

 $\mathrm{NP} \quad \mathrm{VP} \quad \mathrm{VP} \rightarrow$ hako wo akemasu / open the box

Syntactic Phrase Extraction

$\mathrm{VP} \rightarrow \mathrm{NP}_{1}$ akemasu/ open NP_{1}

Summary

- Unsupervised learning over intractable models turns out to be a hard problem.
- Heuristic methods are widely used, but they offer no useful guarantees and are highly biased.
- Finding more elegant approximations is a topic of ongoing research.

Implementations

- Synchronous context-free translation models
- Moses -- www.statmt.org/moses
- cdec -- www.cdec-decoder.org
- Joshua -- www.cs.jhu.edu/~ccb/joshua

Datasets

- Proceedings of the European Parliament

O www.statmt.org/europarl

- Linguistic Data Consortium

O www.ldc.upenn.edu

Summary

- Many probabilistic translation models can be thought in terms of weighted (formal) languages.
- Dynamic programming is a common (though not universal!) decoding strategy.
- With these concepts in mind, you might be able to define models that capture other translation phenomena (e.g. morphosyntactics, semantics).

Recap

The Tower of Babel

Pieter Brueghel the Elder (1563)

GOOgle Language Tools

Translated search

Type a search phrase in your language. Google will find results in other languages and translate them for you to read.
Search for:
Translate and Search
Search pages written in:
\bigcirc Specific languages

My language:
English

Example: 1. Search for Bern tourist information.
2. We translate your query into French and German, and find French and German results.
3. Finally, we translate the French and German results back into your language.

Translate text

```
Bienvenue à Le Mans
```

\star
English
Translate

GOOgle Language Tools

Translated search

Type a search phrase in your language. Google will find results in other languages and translate them for you to read.

Search for:		Translate and Search
English		
Estonian		
Filipino		
Finnish		

GOOgle Language Tools

Translated search

Type a search phrase in your language. Google will find results in other languages and translate them for you to read.
Search for: English
Estonian
Filipino
Finnish
French
Galician
German
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian

pages written in:
omatically selected languages
cific languages
ch for Bern tourist information. anslate your query into French and German, and find French and German results.
ly, we translate the French and German results back into your language.
My language:
English \mathbf{V}
Translate and Search

French
Translate

2756 language pairs!

Statistical Machine Translation

Develop a statistical model of translation that can be learned from data and used to predict the correct English translation of new Chinese sentences.

Statistical Machine Translation

Statistical Machine Translation

 regular \& context-free languagesBayes' rule, maximum likelihood, expectation maximization
dynamic programming, graphs \& hypergraphs

The Data Deluge

- We are overwhelmed with data, but we can harness it to solve real problems.
- Formal tools help us model the data.
- Probabilistic tools help us learn models and make predictions.
- Algorithmic optimization methods make it all run.
- Tradeoffs: model expressivity vs. tractability.

We aren't there yet!

© ahgwijjm and gangdoenjang hobakipssam (from left). / Visual media reporters yigyeongmin kmin@chosun.com

In the evening, a cup of soju haemuljim enjoy together, it is ahgwijim. Crunchy bean sprouts and parsley, Styela clava toktok popping, flesh-year-old angler dotomhan tossed two sisters, grandma's homemade progress to the tremendous flavor. Agencies also direct fermentation soak for dessert. Sweet and rich, cool. The province is not meant to taste and a big shame assumptions are made to a home.

We aren't there yet!

- We still need:
- Better models of translation
- Based on linguistic insights
- Better approximations
- Better algorithms

> Research in both ASR and MT continues. The statistical approach is clearly dominant. The knowledge of linguists is added wherever it fits. And although we have made significant progress, we are very far from solving the problems.

Fred Jelinek
18 November 1932 - 14 September 2010

