Margin Infused Relaxed Algorithm (MIRA) for Moses

Eva Hasler, Barry Haddow, Philipp Koehn

Institute for Language, Cognition and Computation, University of Edinburgh

September 7, 2011

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work

1 Introduction

- Background
- Motivation

2 MIRA implementation for Moses

- Selecting constraints
- Main parameters
- Stopping criterion and final weight selection
- Parallelization
- Usage

3 Experiments

• MERT and MIRA results for models with core features

- MIRA results for models with large feature sets
- Parallelization
- Start weights

Outline	Introduction •00000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Background				

Log-linear model

- typical core features of statistical machine translation (SMT) models: phrase translation model, language model, reordering model
- generative features as well as arbitrary features (no probabilistic interpretation), e.g. word or phrase penalty
- \bullet combined in a log-linear model \rightarrow weighted score of all feature functions

$$P(\mathbf{e},\mathbf{d}|\mathbf{f}) = \frac{\exp\sum_{k=1}^{K} \lambda_k h_k(\mathbf{e},\mathbf{d},\mathbf{f})}{\sum_{\mathbf{e}',\mathbf{d}'} \exp\sum_{k=1}^{K} \lambda_k h_k(\mathbf{e}',\mathbf{d}',\mathbf{f})}$$

Outline	Introduction ○●○○○○	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Background				

Adding features

- can improve discriminative power by adding more feature functions h_k
- more fine-grained, e.g. binary phrase features
- by assigning a weight λ_i to each of them, let the parameter tuning algorithm choose useful features
- features growing in the thousands or millions pose a challenge for parameter tuning algorithms..

$$h_k(f_i, e_i) = \begin{cases} 1, & \text{if } f_i = \text{``kleines Haus'' and } e_i = \text{``small house''} \\ 0, & \text{otherwise} \end{cases}$$

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Background				

MIRA [Crammer and Singer, 2003]

- online large margin algorithm (originally for multi-class classification)
- ultra-conservative: weights are only updated when algorithm makes a mistake
- online update with margin-dependent learning rate
- margin can be tied to a loss function like BLEU
- tune model such that model score difference between two translations reflects the loss in BLEU between them
- important: selection of oracle translations and competing translations

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Background				

Tuning weights with MIRA

Initialize: weight vector w

Loop: For t = 1, 2, ..., T (T = max. number of epochs)

- For all input sentences $f_i \in \{f_1, ..., f_n\}$:
- translate f_i with current weights \rightarrow n-best list(s) of e_i
- select oracle translation e_i^* and competing translation(s) e_{ij}

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• form constraints of the form

$$(\mathbf{h}(e^*_i) - \mathbf{h}(e_{ij})) \cdot \mathbf{w} \geq loss(e^*_i, e_{ij}) \quad \forall j$$

• seek smallest update w' subject to constraints

Output: averaged final weight vector w

Outline	Introduction 0000●0	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Background				

Constrained optimization problem

$$\mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + C \sum_j \xi_j$$

subject to
$$\forall i \in V$$

$$loss_j - \Delta \mathbf{h}_j \cdot \mathbf{w} \leq \xi_j, \quad \forall j \in J \subseteq \{1, .., m\}$$

Update rule

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \sum_j \alpha_j \Delta \mathbf{h}_j$$

Solving for step size α in case of a single constraint

$$\alpha = \min\left\{C, \frac{loss - \Delta \mathbf{h} \cdot \mathbf{w}}{\|\Delta \mathbf{h}\|^2}\right\}$$

Outline	Introduction ○○○○○●	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Motivation				

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation: Problems with Minimum Error Rate Training

- can only tune 15-30 parameters reliably
- needs reasonable start weights
- results vary considerably between different runs

Outline	Introduction ○○○○●	MIRA implementation for Moses	Experiments 000000	Conclusions and Future worl
Motivation				

Motivation: Problems with Minimum Error Rate Training

- can only tune 15-30 parameters reliably
- needs reasonable start weights
- results vary considerably between different runs

 $\ensuremath{\mathsf{MIRA}}\xspace$ has been suggested for tuning $\ensuremath{\mathsf{MT}}\xspace$ system with larger feature sets

- [Arun and Koehn, 2007] explored training a phrase-based SMT system in a discriminative fashion with MIRA
- [Watanabe et al., 2007], [Chiang et al., 2009] added thousands of features to their baseline systems and tuned with MIRA

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ ()

• need method for tuning feature-rich system within Moses toolkit for progress in feature engineering

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Selecting cons	traints			

MIRA implementation for Moses

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Selecting const	raints			

Constraints for computing weight updates

- oracle and hypothesis selection (1): [Chiang et al., 2008]
 - 10-best list according to best model score
 - "good" 10-best list (*hope*) according to $\hat{\mathbf{e}} = \arg \max_{\mathbf{e}} (\text{model score}(\mathbf{e}) + \operatorname{approx.} BLEU \text{ score}(\mathbf{e}))$ (best from this list is oracle)
 - "bad" 10-best list (*fear*) according to
 - $\hat{e} = arg max_e$ (model score(e) approx. BLEU score(e))

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• pair translations for all lists

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Selecting con	straints			

- Constraints for computing weight updates
 - oracle and hypothesis selection (1): [Chiang et al., 2008]
 - 10-best list according to best model score
 - "good" 10-best list (*hope*) according to $\hat{\mathbf{e}} = \arg \max_{\mathbf{e}} (\text{model score}(\mathbf{e}) + \operatorname{approx.} BLEU \text{ score}(\mathbf{e}))$ (best from this list is oracle)
 - "bad" 10-best list (*fear*) according to
 - $\hat{e} = arg max_e$ (model score(e) approx. BLEU score(e))

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- pair translations for all lists
- oracle and hypothesis selection (2): use only the *hope* and *fear* lists

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work
	000000	000000	000000	
Selecting co	nstraints			

- Constraints for computing weight updates
 - oracle and hypothesis selection (1): [Chiang et al., 2008]
 - 10-best list according to best model score
 - "good" 10-best list (hope) according to $\hat{e} = arg max_e$ (model score(e) + approx. BLEU score(e)) (best from this list is oracle)
 - "bad" 10-best list (*fear*) according to
 - $\hat{e} = arg max_e \text{ (model score(e) approx. BLEU score(e))}$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- pair translations for all lists
- oracle and hypothesis selection (2): use only the *hope* and *fear* lists

Solving optimization problems

- number and type of constraints can vary
- closed-form solution for update with single constraint
- Hildreth's algorithm for multiple constraints

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work
		000000		
Main paramete	ers			

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

--nbest,n size of n-best lists

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work
		000000		
Main paramete	ers			

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Main paramete	ers			

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work
Main paramete	rs			

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work	
		000000			
Main parameters					

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--**slack** MIRA updates can be regularized (def: 0.01); smaller values mean more regularization, 0 means no regularization (parameter C in objective)

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work	
		000000			
Main parameters					

--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists or 3 n-best lists as mentioned above

--nbest,n size of n-best lists

--shuffle shuffle dev. set to avoid sequence bias (def: false)

--average-weights compute final weights over all seen weight vectors (def: false) or only those of the current epoch

--batch-size number of sentences processed as batch (def: 1)

--**slack** MIRA updates can be regularized (def: 0.01); smaller values mean more regularization, 0 means no regularization (parameter C in objective)

--sentence-bleu (def: true), --history-of-1best (def: false) sentence-level BLEU (+1 for n>1) or approximate document-level BLEU using a history as suggested by [Chiang et al., 2008]

Outline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work	
		000000			
Stopping criterion and final weight selection					

Stopping criterion and final weight selection

- MIRA stops when no update has been performed during a full epoch
- when during three consecutive epochs the sum of all updates in each dimension has not changed by more than a predefined value
- possible to set a decreasing learning rate that reduces update size as training progresses

• final weights:

best weights according to performance on held-out set during 5-10 training epochs (further epochs do not seem to improve results)

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Parallelization				

Parallelization with iterative parameter mixing

- parallelization of online learning methods not straightforward, because updates build on top of each other sequentially
- *iterative parameter mixing*: [McDonald et al., 2010] proposed variation of parameter mixing strategy

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Parallelization				

Parallelization with iterative parameter mixing

- parallelization of online learning methods not straightforward, because updates build on top of each other sequentially
- *iterative parameter mixing*: [McDonald et al., 2010] proposed variation of parameter mixing strategy
- training data is split into *n* shards, *n* processors
- each processor updates its weight vector only according to its shard

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Parallelization				

Parallelization with iterative parameter mixing

- parallelization of online learning methods not straightforward, because updates build on top of each other sequentially
- *iterative parameter mixing*: [McDonald et al., 2010] proposed variation of parameter mixing strategy
- training data is split into *n* shards, *n* processors
- each processor updates its weight vector only according to its shard
- resulting *n* weight vectors are mixed after each training epoch
- McDonald et al. showed that iterative parameter mixing yields performance as good as or better than training serially

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work
Usage				

MIRA implementation currently located in sourceforge git repository git://mosesdecoder.git.sourceforge.net/gitroot/mosesdecoder/mosesdecoder, branch *miramerge*

To start MIRA, run: mira -f moses.ini -i source-file -r reference-file or training-expt.perl -config expt.cfg -exec

- if jobs=n, *n* > 1 in config file, several mira processes are started with mpirun
- training script decodes heldout set with dumped weight file and computes BLEU score on heldout set

 caching of translation options should be switched off in moses.ini file ([use-persistent-cache] 0)

Outline	Introduction 000000	MIRA implementation for Moses	Experiments	Conclusions and Future work

Data and experimental setup:

 news commentary corpus (~85K/100K parallel sentences), nc-dev, nc-devtest, nc-test, news-test

- language pairs en-de, en-fr, de-en
- one oracle and one hypothesis translation per example (1 hope/1 fear)
- sentence-level BLEU (+1 for n-grams with n > 1)
- uniform start weights
- 8 parallel processors

Outline Introduction

MIRA implementation for Moses

Experiments •••••• Conclusions and Future work

MERT and MIRA results for models with core features

MERT and MIRA results for models with 14 core features

Lang. pair	BLEU(dev test)	σ	BLEU(test1)	BLEU(test2)
en-de	17.6	0.083	15.1	11.0
en-tr	28.2	0.045	15.2	17.7
de-en	26.5	0.082	22.9	15.5

Average results of 3 MERT runs

Lang. pair	BLEU(dev test)	σ	BLEU(test1)	BLEU(test2)
en-de	17.7	0.013	14.9	11.1
en-fr	28.3	0.077	15.2	17.8
de-en	26.6	0.041	23.2	15.4
en-de	17.6	0.024	14.8	11.2
en-fr	28.0	0.059	15.3	17.8
de-en	26.5	0.039	23.3	15.3

Average results of 3 shuffled MIRA runs (top: 10 epochs, bottom: 5)

500

 Outline
 Introduction
 MIRA implementation for Moses
 Experiments
 Conclusions and Future work

 000000
 000000
 0●0000
 0●0000
 0

Run times:

MERT using 8 threads:

10-21 hours for training (for 7-14 iterations)

MIRA using 8 parallel processors:

4 hours for 5 iterations, 8 hours for 10 iterations (plus some extra time for decoding devtest set)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline	Introduction 000000	MIRA implementation for Moses	Experiments	Conclusions and Future work				
MIRA results for models with large feature sets								

MIRA results for models with large feature sets

Lang. pair	en-de
core features core + word TB features	17.7 (0.981) 17.8 (0.984)
core + POS TB features	17.7 (0.986)

Average BLEU scores on dev. test set (3 MIRA runs) over 10 epochs, length ratio in brackets

- target word bigrams (TB): 33,300 active features
- POS bigrams: 1,400 active features
- comparable performance when training core + sparse features, possibly undertraining sparse features

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Outline	Introduction	MIRA	
	000000	0000	00

MIRA implementation for Moses

Experiments

Conclusions and Future worl

MIRA results for models with large feature sets

Feature name	Feature weight
Distortion	0.207147
WordPenalty	-1.34204
LM	0.645341
dlmb_ <s>:ART</s>	0.247516
dlmb_ <s>:NN</s>	-0.10823
dlmb_ADJ:NN	0.137049
dlmb_NN:ADJ	-0.164686

Example feature weights of model with core + POS TB features

 $\bullet~dlmb_-\!\!<\!\!s\!\!>:\!\!ART$ got positive weight, $dlmb_-\!\!<\!\!s\!\!>:\!\!NN$ got negative weight

 \rightarrow model prefers German sentences starting with determiner

• model learned that adjective is likely to preceed noun in German, not likely to follow noun

Outline	Introd 0000	uction MII 00 00	RA implementation for 1 00000	Moses Experiments 0000€0	Conclusions and Future work
Parallelization					
	_				
		Lang. pair	# processors	Best BLEU(dev. test	set)
			1	17.7	
			2	17.7	
		en-de	4	17.7	
			8	17.7	
	-		1	28.3	
			2	28.4	
		en-fr	4	28.2	
			8	28.3	

• best results during 10 epochs, mixing frequency 5

1

2

4

8

de-en

• doubling number of processors reduces training time by half

26.6 26.6

26.6

26.5

E 990

• no systematic differences for varying number of processors $\langle \square \rangle \cdot \langle \square \rangle \cdot \langle \square \rangle \cdot \langle \square \rangle$

Outline	e Introduc 00000	ction O	MIRA i	mplement 000	ation for N	Noses	Exper 0000	iments ○○●	Cond	clusions ar	id Future v	vork
Start w	Start weights											
	WP start	1	2	3	4	5	6	7	8	9	10	
	0.1	-0.3	-0.6	-0.9	-1.0	-1.1	-1.3	-1.3	-1.4	-1.5	-1.5	
	-1	-1.1	-1.2	-1.3	-1.4	-1.5	-1.5	-1.6	-1.6	-1.6	-1.7	

Word penalty weight after each epoch, uniform vs. preset start weight

- MERT usually initialized with feature weights from past experience (Im=0.5, tm=0.2, wp=-1, ..)
- MIRA results were achieved with uniform start weights (0.1)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• weights become similar after some epochs

Outline	Introduc	tion C	MIRA i	mplement 000	ation for N	loses	Exper 0000	iments ○○●	Cond	clusions ar	d Future w	/ork
Start w	eights											
	WP start	1	2	3	4	5	6	7	8	9	10	
	0.1	-0.3	-0.6	-0.9	-1.0	-1.1	-1.3	-1.3	-1.4	-1.5	-1.5	
	-1	-1.1	-1.2	-1.3	-1.4	-1.5	-1.5	-1.6	-1.6	-1.6	-1.7	

Word penalty weight after each epoch, uniform vs. preset start weight

- MERT usually initialized with feature weights from past experience (Im=0.5, tm=0.2, wp=-1, ..)
- MIRA results were achieved with uniform start weights (0.1)
- weights become similar after some epochs
- best result with uniform start weights: BLEU=17.68
- best result with preset start weights: BLEU=17.66
- performance reached more quickly with preset start weights

Dutline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work

Conclusions

- presented an open-source implementation of the Margin Infused Relaxed Algorithm for Moses toolkit
- reported results on core features sets and larger sparse feature sets
- showed that MIRA yields comparable performance to MERT with core features, can handle much larger feature sets
- can be run on parallel processors with negligible or no loss

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• works well with uniform start weights

Dutline	Introduction	MIRA implementation for Moses	Experiments	Conclusions and Future work

Conclusions

- presented an open-source implementation of the Margin Infused Relaxed Algorithm for Moses toolkit
- reported results on core features sets and larger sparse feature sets
- showed that MIRA yields comparable performance to MERT with core features, can handle much larger feature sets
- can be run on parallel processors with negligible or no loss
- works well with uniform start weights

Future work

- multi-threading
- validate for more language pairs and data sets
- more sparse features

Outline	Introduction 000000	MIRA implementation for Moses	Experiments 000000	Conclusions and Future work

Thank you!

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

Outline Introduction

Experiments 000000 Conclusions and Future work

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

🔋 Arun, A. and Koehn, P. (2007).

Online Learning Methods For Discriminative Training of Phrase Based Statistical Machine Translation. In *MT Summit XI, 2007*, Copenhagen.

- Chiang, D., Knight, K., and Wang, W. (2009).
 11,001 new features for statistical machine translation.
 In Proceedings of Human Language Technologies: The 2009 Annual Conference of the NACL, Stroudsburg, PA, USA. ACL.
- Chiang, D., Marton, Y., and Resnik, P. (2008). Online large-margin training of syntactic and structural translation features.

In Proceedings of EMNLP 08, Morristown, NJ, USA. ACL.

Crammer, K. and Singer, Y. (2003).
 Ultraconservative online algorithms for multiclass problems.
 Journal of Machine Learning Research, 3(4-5):951–991.

Outline Introductio

Experiments 000000 Conclusions and Future work

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- McDonald, R., Hall, K., and Mann, G. (2010).
 Distributed Training Strategies for the Structured Perceptron.
 In Human Language Technologies: The 2010 Annual Conference of the NACL, pages 456–464, Los Angeles, California. ACL.
- Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. (2007). Online large-margin training for statistical machine translation.

In *Proceedings of EMNLP-CoNLL*, pages 764–773, Prague. ACL.