Language Modeling

Kenneth Heafield heafield@cs.cmu.edu

University of Edinburgh & Carnegie Mellon

September 7, 2011

MT Marathon 2011

Language Models

Public domain photo from the New York Zoological Society.

< ロ > < 回 > < 回 > < 回 >

æ

What is a Language Model?

A probability distribution p over strings (usually sentences).

Examples

 $\log p(\langle s \rangle \text{ iran is one of the few countries }.</s \rangle) = -11.7990$ $\log p(\langle s \rangle \text{ iran is one of the many countries }.</s \rangle) = -12.9443$ $\log p(\langle s \rangle \text{ our advice on how to choose }</s \rangle) = -16.0042$

Language Model Applications

Biasing Towards Fluency

 $\texttt{output}^* = \underset{\texttt{output}}{\texttt{argmax}} p(\texttt{output}) p(\texttt{output} | \texttt{input})$

- Machine translation
- Speech recognition
- Optical character recognition

Analyzing Text

p(input)

- Information retrieval
- Essay grading
- Language detection

Language Model Desiderata

Assign high probability to natural text. Larger p(corpus) is better.

$$\log_2 Perplexity = -rac{1}{|corpus|} \log_2 p(corpus)$$

Unseen Data

Use separate data to train and evaluate models.

Estimating p

First Try

- Obtain a corpus.
- Ount how many times each sentence occurs.
- Apply maximum likelihood: $p(s) \propto \text{count}(s)$.

Problem

New sentences have 0 probability $\implies p(\text{unseen corpus}) = 0$.

▲ 伊 ▶ ▲ 王 ▶

Smoothing

Estimate the probability of unseen events. When data is sparse, generalize.

First Type of Smoothing

Break a sentence up using independence assumptions.

Types of Language Models

Model how a sentence is generated.

- N-gram Markov model
- Hidden Markov model
- Decision trees
- Statistical parser probability [Schwartz et al 2011]

N-Gram Markov Model: Applying the Chain Rule

	$\log p($		ightarrow iran)
	log p(<s> iran</s>		ightarrow is)
	$\log p($ iran is		ightarrow one)
	$\log p($ iran is	one	\rightarrow of)
	$\log p($ iran is	one of	ightarrow the)
	$\log p($ iran is	one of the	\rightarrow few)
	log p(<s> iran is</s>	one of the few	ightarrow countries	5)
	log p(<s> iran is</s>	one of the few countries	ightarrow .)
+	$\log p($ iran is	one of the few countries .	ightarrow m s)
=	$\log p($ iran is	one of the few countries .)

æ

• (1) • (1) • (1)

N-Gram Markov Model: Applying the Chain Rule

$\log p($	ightarrow iran)= -3	3.33437
$\log p($ iran	ightarrow is)= -1	1.05931
$\log p($ iran is	ightarrow one)= -1	1.80743
$\log p($ iran is one	\rightarrow of)= -().03705
$\log p($ iran is one of	ightarrow the)=	???
$\log p($ iran is one of the	$\rightarrow few$)=	???
$\log p($ iran is one of the few	ightarrow countrie	es)=	???
$\log p($ iran is one of the few countries	ightarrow .)=	???
$+ \log p(\langle s \rangle \text{ iran is one of the few countries }$	ightarrow m s)=	???
$= \log p(\langle s \rangle \text{ iran is one of the few countries }$.)=	???

æ

• (1) • (1) • (1)

Markov Assumption

$\log p()$	ightarrow iran)= -3.33437
$\log p($ iran	ightarrow is)= -1.05931
$\log p($ iran is	ightarrow one)= -1.80743
$\log p($ iran is one	\rightarrow of)= -0.03705
$\log p($ iran is one of	ightarrow the)= -0.08317
$\log p($ iran is one of the	$\rightarrow {\sf few}$)= -1.20788
$\log p(<$ s> iran is one of the few	ightarrow countrie	es) = -1.62030
log p(<s> iran is one of the few countries</s>	ightarrow .)= -2.60261
$+ \log p($ iran is one of the few countries	$. \rightarrow $)= -0.04688
$= \log p(\langle s \rangle \text{ iran is one of the few countries})$.)= -11.79900

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Modified Kneser-Ney

The Markov Assumption

Close words are better predictors than far words.

Doubts

- Grammatical structure
- Topical coherence
- Words tend to repeat

Modified Kneser-Ney

Estimating an N-Gram Model

First Try

$$p(<\!\!\mathrm{s}\!\!>\mathrm{iran}\ \mathrm{is}
ightarrow \mathrm{one}) = rac{\mathrm{count}(<\!\!\mathrm{s}\!\!>\mathrm{iran}\ \mathrm{is}\ \mathrm{one})}{\mathrm{count}(<\!\!\mathrm{s}\!\!>\mathrm{iran}\ \mathrm{is})}$$

This maximizes probability of the training data.

Problem

Is $p(\langle s \rangle \text{ iran is } \rightarrow \text{ of}) = 0$ because it was not seen?

< 同 × I = >

Backing off in an N-Gram Model

Use the longest matching history. Charge a backoff penalty for unused history.

$$\log p(\langle s \rangle \text{ iran } \rightarrow is) = \log p(\langle s \rangle \text{ iran } \rightarrow is)$$

 $\log p(\text{iran is} \rightarrow \text{of}) = \log p(\text{of}) + \text{backoff}(\text{iran is}) + \text{backoff}(\text{is})$

Backing off in an N-Gram Model

Use the longest matching history. Charge a backoff penalty for unused history.

$$\log p(\langle s \rangle \text{ iran } \rightarrow is) = \log p(\langle s \rangle \text{ iran } \rightarrow is)$$

 $\log p(\text{iran is} \rightarrow \text{of}) = \log p(\text{of}) + \text{backoff}(\text{iran is}) + \text{backoff}(\text{is})$

What this implies

- Keep all *n*-grams up to length N
- Every *n*-gram has a probability
- For n < N, every *n*-gram has a backoff penalty

Example Language Model

Unigrams					
Words	log p	Back			
<s></s>	-∞	-2.0			
iran	-4.1	-0.8			
is	-2.5	-1.4			
one	-3.3	-0.9			
of	-2.5	-1.1			

Bigrams				
Words	log p	Back		
$<\!\!\mathrm{s}\!\!>$ iran	-3.3	-1.2		
iran is	-1.7	-0.4		
is one	-2.0	-0.9		
one of	-1.4	-0.6		

Trigrams			
Words log			
$<\!\!s\!\!>$ iran is	-1.1		
iran is one	-2.0		
is one of	-0.3		

æ

-≣->

- 4 回 ト 4 三 ト 4

Modified Kneser-Ney

Example Queries

Unigrams					
Words	log p	Back			
<s></s>	-∞	-2.0			
iran	-4.1	-0.8			
is	-2.5	-1.4			
one	-3.3	-0.9			
of	-2.5	-1.1			

Bigrams					
Words	log p	Back			
<s $>$ iran	-3.3	-1.2			
iran is	-1.7	-0.4			
is one	-2.0	-0.9			
one of	-1.4	-0.6			

Trigrams			
Words	log p		
$<\!\!s\!\!>$ iran is	-1.1		
iran is one	-2.0		
is one of	-0.3		

æ

-≣->

G	luer	v:	$\langle s \rangle$	iran	is
		, ·	~~~		

$$\log p(\langle s \rangle \text{ iran } \rightarrow is) = -1.1$$

Query: iran is of	
$\log p(of)$	-2.5
Backoff(is)	-1.4
Backoff(iran is)	+ -0.4
$\log p(\text{iran is} \rightarrow \text{of})$	= -4.3

・ロト ・回ト ・ ヨト・

Two kinds of smoothing: the Markov assumption and backing off.

Next: Where do the probability and backoff come from? (Hint: more smoothing)

Where do p and backoff come from?

Count *n*-grams in a large monolingual corpus, apply smoothing.

Smoothing Strategies

- Add a constant to each count (including 0)
- Good-Turing
- Witten-Bell
- Kneser-Ney
- Modified Kneser-Ney

Modified Kneser-Ney

Modified Kneser-Ney

Typically the best on unseen data and BLEU score.

- Count *n*-grams in corpus
- Adjust counts
- Ompute discounted probabilities
- Optional: Interpolate models across orders
- Ompute backoffs from probabilities

Adjusted Counts

An *n*-gram is consulted only if an n + 1-gram was not found. \Longrightarrow Lower order probabilities condition on backing off.

Adjusted Counts

An *n*-gram is consulted only if an n + 1-gram was not found. \Longrightarrow Lower order probabilities condition on backing off.

Lower order (n < N)

 $adjusted(w_1^n) = number of unique extensions = |\{w_1^n v \in corpus\}|$

Highest order (N)

 $adjusted(w_1^N) = count(w_1^N)$

▲ □ ▶ ▲ □ ▶ ▲

Discounting

Make space for unobserved *n*-grams.

$$p_{\mathsf{disc}}(w_1^{n-1} o w_n) = rac{\mathsf{adjusted}(w_1^n) - D(\mathsf{adjusted}(w_1^n))}{\mathsf{adjusted}(w_1^{n-1})}$$

D is different for counts 0, 1, 2, and any count \geq 3..

A ≥ ▶

Interpolation

If p(is) is high, then $p(\langle s \rangle \text{ iran } \rightarrow \text{ is})$ probably is too.

$$\begin{split} p(<\!\!\mathrm{s}\!\!>\mathrm{iran}\rightarrow\mathrm{is}) &= \lambda_0 \frac{1}{|\mathrm{vocabulary}|} \\ &+ \lambda_1 p_{\mathrm{disc}}(\mathrm{is}) \\ &+ \lambda_2 p_{\mathrm{disc}}(\mathrm{iran}\rightarrow\mathrm{is}) \\ &+ \lambda_3 p_{\mathrm{disc}}(<\!\!\mathrm{s}\!\!>\mathrm{iran}\rightarrow\mathrm{is}) \end{split}$$

The λ_i are weights and complicated to estimate.

A ≥ ▶

Backoff is charged when an *n*-gram is not found:

$$p(<\!\!\mathrm{s}\!\!>\mathrm{iran}
ightarrow \mathrm{of})=p(\mathrm{of})+\mathsf{Backoff}(<\!\!\mathrm{s}\!\!>\mathrm{iran})+\mathsf{Backoff}(\mathrm{iran})$$

This penalty depends on how strongly predicts following words:

$$\mathsf{Backoff}(<\!\!\mathrm{s}\!\!>\mathrm{iran}) = \frac{1 - \sum_{\mathsf{x} \text{ extends } <\!\!\mathrm{s}\!\!>\mathrm{iran}} p(<\!\!\mathrm{s}\!\!>\mathrm{iran} \rightarrow \mathsf{x})}{1 - \sum_{\mathsf{x} \text{ extends } <\!\!\mathrm{s}\!\!>\mathrm{iran}} p(\mathrm{iran} \rightarrow \mathsf{x})}$$

Unknown Words

We expect to see new words.

As Implemented in SRILM

Default Probability is 0. Moses thresholds to e^{-100} .

-unk Give some leftover probability to unknown words.

Empirical Use part of the corpus to estimate the probability.

Andreas Stolcke, SRILM's lead author, recommends empirical.

My Recommendation

Use another feature that counts unknown words. Let MERT figure out the unknown word penalty.

Modified Kneser-Ney Summary

Several Types of Smoothing

- Independence assumption: the Markov model
- Backing off
- Discounting probabilities
- Interpolation
- Unknown words

Optional (not covered)

Word classes: parts of speech or a class for numbers

Optimizing Backofl Data Structures Results

Outline

- Estimating
 - Modified Kneser-Ney
- 2 Applying
 - Optimizing Backoff
 State
 - Data Structures
 - Probing
 - Trie
 - Chop
 - Results
 - Perplexity
 - Translation

(The part that Moses calls.)

Optimizing Backoff Data Structures Results

Toolkits

Downloadable Baselines

SRI Popular and considered fast but high-memory

IRST Open source, low-memory, single-threaded

Rand Low-memory lossy compression

MIT Mostly estimates models but also does queries

Papers Without Code

TPT Better memory locality Sheffield Lossy compression techniques

Optimizing Backoff Data Structures Results

Toolkits

Downloadable Baselines

SRI Popular and considered fast but high-memory

IRST Open source, low-memory, single-threaded

Rand Low-memory lossy compression

MIT Mostly estimates models but also does queries

Papers Without Code

TPT Better memory locality

Sheffield Lossy compression techniques

Released Later

Berkeley Java; slow and high memory

Optimizing Backofl Data Structures Results

Why I Wrote KenLM

Decoding takes too long

- Answer queries quickly
- Load quickly with memory mapping
- Thread-safe

(日)

æ

Optimizing Backofl Data Structures Results

Why I Wrote KenLM

Decoding takes too long

- Answer queries quickly
- Load quickly with memory mapping
- Thread-safe

Bigger models

Conserve memory

Image: A matrix and a matrix

Optimizing Backofl Data Structures Results

Why I Wrote KenLM

Decoding takes too long

- Answer queries quickly
- Load quickly with memory mapping
- Thread-safe

Bigger models

Conserve memory

SRI doesn't compile

• Distribute and compile with decoders

< A > <

Optimizing Backoff Data Structures Results

Example Language Model

Unigrams					
Words	log p	Back			
<s></s>	-∞	-2.0			
iran	-4.1	-0.8			
is	-2.5	-1.4			
one	-3.3	-0.9			
of	-2.5	-1.1			

Bigrams				
Words	log p	Back		
$<\!\!\mathrm{s}\!\!>$ iran	-3.3	-1.2		
iran is	-1.7	-0.4		
is one	-2.0	-0.9		
one of	-1.4	-0.6		

Trigrams			
Words	log p		
$<\!\!s\!\!>$ iran is	-1.1		
iran is one	-2.0		
is one of	-0.3		

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Optimizing Backoff Data Structures Results

Example Queries

Unigrams				
Words log p Back				
<s></s>	-∞	-2.0		
iran	-4.1	-0.8		
is	-2.5	-1.4		
one	-3.3	-0.9		
of	-2.5	-1.1		

Bigrams				
Words	log p	Back		
<s $>$ iran	-3.3	-1.2		
iran is	-1.7	-0.4		
is one	-2.0	-0.9		
one of	-1.4	-0.6		

Trigrams			
Words	log p		
$<\!\!s\!\!>$ iran is	-1.1		
iran is one	-2.0		
is one of	-0.3		

æ

Query: $\langle s \rangle$ fram i	> iran is	<s></s>	y:)uery	Q
-----------------------------------	-----------	---------	----	-------	---

$$\log p(\langle s \rangle \text{ iran } \rightarrow \text{ is}) = -1.1$$

Query: iran is of	
$\log p(of)$	-2.5
Backoff(is)	-1.4
Backoff(iran is)	+ -0.4
$\log p(\text{iran is} \rightarrow \text{of})$	= -4.3

イロト イ団ト イヨト イヨト

Optimizing Backoff Data Structures Results

Lookups Performed by Queries

$<\!\!s\!\!>$ iran is

Score

 $\log p(\langle s \rangle \text{ iran } \rightarrow \text{ is}) = -1.1$

iran is of

Lookup	
1 of	
is of (not foun	d)
3 is	
iran is	
Score	
$\log p(of)$	-2.5
Backoff(is)	-1.4
Backoff(iran is)	+ -0.4
) 4.0

문▶ 문

イロト イヨト イヨト イ

Optimizing Backoff Data Structures Results

Lookups Performed by Queries

$<\!\!s\!\!>$ iran is

Score

 $\log p(\langle s \rangle \text{ iran } \rightarrow \text{ is}) = -1.1$

iran is of

Lookup	
1 of	
is of (not foun	d)
3 is	
iran is	
Score	
1 (f.)	
$\log p(\text{or})$	-2.5
Backoff(is)	-2.5 -1.4
Backoff(is) Backoff(iran is)	-2.5 -1.4 + -0.4

문▶ 문

イロト イヨト イヨト イ

Optimizing Backoff Data Structures Results

Lookups Performed by Queries

<s> iran is</s>	iran is of		
Lookup		Lookup	
is	State	 of 	
Iran is	Backoff(is)	a is of (not found)	d)
S ≤ s > iran is	Backoff(iran is)	is	
		🥖 iran is	
Score		Score	
$\log p(\text{ iran} \rightarrow \text{is}) = -1.1$		$\log p(of)$	-2.5
		Backoff(is)	-1.4
		Backoff(iran is)	+ -0.4
		$\log p(\text{iran is} \rightarrow \text{of})$) = -4.3

æ

≣⇒

< □ > < □ > < □

Optimizing Backoff Data Structures Results

Stateful Query Pattern

$$\log p(\langle s \rangle \rightarrow iran) = -3.3$$

$$\log p(\langle s \rangle iran \rightarrow is) = -1.1$$

 $\log p($ iran is \rightarrow one) = -2.0

 $\log p($ is one \rightarrow of) = -0.3

イロト イヨト イヨト イヨト

æ

Optimizing Backoff Data Structures Results

Stateful Query Pattern

Backoff(<s>) $log \ p(<s> \rightarrow iran) = -3.3$ Backoff(iran), Backoff(<s> iran) $log \ p(<s> iran \rightarrow is) = -1.1$ Backoff(is), Backoff(iran is) $log \ p(iran is \rightarrow one) = -2.0$ Backoff(one), Backoff(is one) $log \ p(is one \rightarrow of) = -0.3$ Backoff(of), Backoff(one of)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Optimizing Backof Data Structures Results

Data Structures

Probing Fast. Uses hash tables.

Trie Small. Uses sorted arrays.

Chop Smaller. Trie with compressed pointers.

Key Subproblem

Sparse lookup: efficiently retrieve values for sparse keys

Optimizing Backofl Data Structures Results

Sparse Lookup Speed

Optimizing Backofl Data Structures Results

Sparse Lookup Speed

Optimizing Backof Data Structures Results

Linear Probing Hash Table

Store 64-bit hashes and ignore collisions.

Bigrams						
Words	Hash	log p	Back			
<s $>$ iran	0xf0ae9c2442c6920e	-3.3	-1.2			
iran is	0x959e48455f4a2e90	-1.7	-0.4			
is one	0x186a7caef34acf16	-2.0	-0.9			
one of	0xac66610314db8dac	-1.4	-0.6			

æ

イロト イ団ト イヨト イヨト

Optimizing Backof Data Structures Results

Linear Probing Hash Table

- 1.5 buckets/entry (so buckets = 6).
- Ideal bucket = hash mod buckets.
- Resolve bucket collisions using the next free bucket.

Bigrams					
Words	Ideal	Hash	log p	Back	
iran is	0	0x959e48455f4a2e90	-1.7	-0.4	
		0x0	0	0	
is one	2	0x186a7caef34acf16	-2.0	-0.9	
one of	2	0xac66610314db8dac	-1.4	-0.6	
<s $>$ iran	4	0xf0ae9c2442c6920e	-3.3	-1.2	
		0x0	0	0	
		Array			
		 Image: 1 - 1 			

D:-----

Heafield Language Modeling

_ -

Optimizing Backof Data Structures Results

Probing Data Structure

Un	igram	S
Words	log p	Back
<s></s>	-∞	-2.0
iran	-4.1	-0.8
is	-2.5	-1.4
one	-3.3	-0.9
of	-2.5	-1.1
	Ar	ray

Bigrams		
Words	log p	Back
<s $>$ iran	-3.3	-1.2
iran is	-1.7	-0.4
is one	-2.0	-0.9
one of	-1.4	-0.6
Probing	Hash T	able

Trigrams	
Words	log p
<s> iran is</s>	-1.1
iran is one	-2.0
is one of	-0.3
Probing Hash	Table

æ

≣⇒

▲ロト ▲間 ト ▲ 画 ト

Optimizing Backof Data Structures Results

Probing Hash Table Summary

Hash tables are fast. But memory is 24 bytes/entry.

Next: Saving memory with Trie.

▲ 伊 ▶ ▲ 王 ▶

Optimizing Backol Data Structures Results

Trie Uses Sorted Arrays

Sort in suffix order.

Unigrams Words $\log p$ Back $<s> -\infty -2.0$ iran -4.1 -0.8 is -2.5 -1.4 one -3.3 -0.9 of -2.5 -1.1

B	Sigram	IS
Words	$\log p$	Back
<s $>$ iran	-3.3	-1.2
iran is	-1.7	-0.4
one is	-2.3	-0.3
<s $>$ one	-2.3	-1.1
is one	-2.0	-0.9
one of	-1.4	-0.6

Trigrams	
Words	log p
<s> iran is</s>	-1.1
<s> one is</s>	-2.3
iran is one	-2.0
<s $>$ one of	-0.5

is one of -0.3

æ

- 4 同 ト 4 ヨ ト 4 ヨ ト

Optimizing Backof Data Structures Results

Sort in suffix order. Encode suffix using pointers.

Optimizing Backof Data Structures Results

Interpolation Search In Trie

Each trie node is a sorted array. **Bigrams:** * is Words log p Back Ptr <s> is -2.9 -1.0 0 iran is -1.7 -0.4 0 one is -2.3 -0.3 1

Interpolation Search $O(\log \log n)$

$$pivot = |A| \frac{key - A.first}{A.last - A.first}$$

Binary Search: O(logn)

$$pivot = \frac{|A|}{2}$$

Heafield Language Modeling

Optimizing Backof Data Structures Results

Saving Memory with Trie

Bit-Level Packing

Store word index and pointer using the minimum number of bits.

Optional Quantization

Cluster floats into 2^q bins, store q bits/float (same as IRSTLM).

< /i>
< /i>
< /i>
< /i>
< /i>
< /i>

Optimizing Backof Data Structures Results

Chop: Compress Trie Pointers

イロト イヨト イヨト イヨト

æ

Optimizing Backof Data Structures Results

Chop: Compress Trie Pointers

Offset	Ptr	Binary
0	0	000
1	0	000
2	1	001
3	2	010
4	2	010
5	3	011
6	5	101

Raj and Whittaker (2003)

æ

・ロト ・回ト ・ ヨト・

Optimizing Backof Data Structures Results

Chop: Compress Trie Pointers

ry	B	Ptr	Offset
00		0	0
00		0	1
01		1	2
10		2	3
10		2	4
11		3	5
01		5	6
)0)1 10 10 11)1		0 1 2 2 3 5	1 2 3 4 5 6

æ

- 4 目 ト - 日 ト - 4

Raj and Whittaker (2003)

Optimizing Backof Data Structures Results

Chop: Compress Trie Pointers

イロト イヨト イヨト

æ

Raj and Whittaker (2003)

Optimizing Backo Data Structures Results

Trie/Chop Summary

Save memory: bit packing, quantization, and pointer compression.

▲ 御 ▶ ▲ 王

Optimizing Backofl Data Structures Results

Outline

Estimating

Modified Kneser-Ney

2 Applying

- Optimizing Backoff
 - State
- Data Structures
 - Probing
 - Trie
 - Chop
- Results
 - Perplexity
 - Translation

▲ 御 ▶ ▲ 王

æ

Optimizing Backof Data Structures Results

Perplexity Task

Score the English Gigaword corpus.

Model

SRILM 5-gram from Europarl + De-duplicated News Crawl

Measurements

Queries/msExcludes loading and file reading timeLoaded MemoryResident after loadingPeak MemoryPeak virtual after scoring

< 同 × I = >

Optimizing Backof Data Structures Results

Perplexity Task: Exact Models

stimating Optimizing Backo Applying Results

Perplexity Task: Berkeley Always Quantizes to 19 bits

Optimizing Backof Data Structures Results

Perplexity Task: Quantized Models

Optimizing Backofl Data Structures Results

Translation Task

Translate 3003 sentences using Moses.

System

WMT 2011 French-English baseline, Europarl+News LM

Measurements

TimeTotal wall time, including loadingMemoryTotal resident memory after decoding

Optimizing Backofl Data Structures Results

Moses Benchmarks: 8 Threads

Optimizing Backof Data Structures Results

Moses Benchmarks: Single Threaded

Optimizing Backof Data Structures Results

Conclusion

Maximize speed and accuracy subject to memory. Probing > Trie > Chop > RandLM Stupidfor both speed and memory.

Moses8 0 5 fileDistributed with decoders:cdecKLanguageModelJoshuause_kenlm=true

kheafield.com/code/kenlm/