Chapter 11

Tree-based models

Statistical Machine Translation

Tree-Based Models

- Traditional statistical models operate on sequences of words
- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German-English translation
 - long distance agreement (e.g., subject-verb) in output
- \Rightarrow Translation models based on tree representation of language
 - significant ongoing research
 - state-of-the art for some language pairs

Phrase Structure Grammar

- Phrase structure
 - noun phrases: the big man, a house, ...
 - prepositional phrases: at 5 o'clock, in Edinburgh, ...
 - verb phrases: going out of business, eat chicken, ...
 - adjective phrases, ...
- Context-free Grammars (CFG)
 - non-terminal symbols: phrase structure labels, part-of-speech tags
 - terminal symbols: words
 - production rules: NT \rightarrow [NT,T]+ example: NP \rightarrow DET NN

Phrase Structure Grammar

Phrase structure grammar tree for an English sentence (as produced Collins' parser)

Synchronous Phrase Structure Grammar

• English rule

 $\rm NP \rightarrow DET JJ NN$

• French rule

 $\mathrm{NP}\,\rightarrow\,\mathrm{DET}\,\,\mathrm{NN}\,\,\mathrm{JJ}$

• Synchronous rule (indices indicate alignment):

 $\mathrm{NP} \rightarrow \mathrm{DET}_1 \ \mathrm{NN}_2 \ \mathrm{JJ}_3 \ \big| \ \mathrm{DET}_1 \ \mathrm{JJ}_3 \ \mathrm{NN}_2$

Synchronous Grammar Rules

• Nonterminal rules

 $\mathsf{NP} \to \mathsf{DET}_1 \ \mathsf{NN}_2 \ \mathsf{JJ}_3 \ \big| \ \mathsf{DET}_1 \ \mathsf{JJ}_3 \ \mathsf{NN}_2$

• Terminal rules

 $N \rightarrow maison \mid house$ $NP \rightarrow la maison bleue \mid the blue house$

• Mixed rules

 $NP \rightarrow la maison JJ_1 \mid the JJ_1 house$

Tree-Based Translation Model

- Translation by parsing
 - synchronous grammar has to parse entire input sentence
 - output tree is generated at the same time
 - process is broken up into a number of rule applications
- Translation probability

$$SCORE(TREE, E, F) = \prod_{i} RULE_{i}$$

• Many ways to assign probabilities to rules

Aligned Tree Pair

Phrase structure grammar trees with word alignment (German–English sentence pair.)

Reordering Rule

• Synchronous grammar rule

 $VP \rightarrow PPER_1 NP_2$ aushändigen | passing on $PP_1 NP_2$

- Note:
 - one word $\operatorname{aush}\ddot{\operatorname{andigen}}$ mapped to two words $\operatorname{passing}$ on ok
 - but: fully non-terminal rule not possible (one-to-one mapping constraint for nonterminals)

Another Rule

• Subtree alignment

• Synchronous grammar rule (stripping out English internal structure)

 $PRO/PP \rightarrow Ihnen \mid to you$

• Rule with internal structure

$$PRO/PP \rightarrow Ihnen \begin{vmatrix} TO & PRP \\ | & | \\ to & you \end{vmatrix}$$

Another Rule

 $\bullet\,$ Translation of German werde to English shall be

Internal Structure

• Stripping out internal structure

```
VP \rightarrow werde VP_1 \mid shall be VP_1
```

```
\Rightarrow synchronous context free grammar
```

• Maintaining internal structure

 \Rightarrow synchronous tree substitution grammar

Learning Synchronous Grammars

- Extracting rules from a word-aligned parallel corpus
- First: Hierarchical phrase-based model
 - only one non-terminal symbol \boldsymbol{x}
 - no linguistic syntax, just a formally syntactic model
- Then: Synchronous phrase structure model
 - non-terminals for words and phrases: NP, VP, PP, ADJ, ...
 - corpus must also be parsed with syntactic parser

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Extracting Hierarchical Phrase Translation Rules

Formal Definition

• Recall: consistent phrase pairs

 (\bar{e}, \bar{f}) consistent with $A \Leftrightarrow$ $\forall e_i \in \bar{e} : (e_i, f_j) \in A \rightarrow f_j \in \bar{f}$ AND $\forall f_j \in \bar{f} : (e_i, f_j) \in A \rightarrow e_i \in \bar{e}$ AND $\exists e_i \in \bar{e}, f_j \in \bar{f} : (e_i, f_j) \in A$

• Let P be the set of all extracted phrase pairs (\bar{e}, \bar{f})

Formal Definition

• Extend recursively:

 $\begin{array}{l} \text{if } (\bar{e},\bar{f})\in P \text{ and } (\bar{e}_{\text{SUB}},\bar{f}_{\text{SUB}})\in P \\ \\ \text{AND } \bar{e}=\bar{e}_{\text{PRE}}+\bar{e}_{\text{SUB}}+\bar{e}_{\text{POST}} \\ \\ \text{AND } \bar{f}=\bar{f}_{\text{PRE}}+\bar{f}_{\text{SUB}}+\bar{f}_{\text{POST}} \\ \\ \text{AND } \bar{e}\neq\bar{e}_{\text{SUB}} \text{ AND } \bar{f}\neq\bar{f}_{\text{SUB}} \\ \\ \text{add } (e_{\text{PRE}}+\mathbf{X}+e_{\text{POST}},f_{\text{PRE}}+\mathbf{X}+f_{\text{POST}}) \text{ to } P \end{array}$

(note: any of $e_{
m PRE}$, $e_{
m POST}$, $f_{
m PRE}$, or $f_{
m POST}$ may be empty)

• Set of hierarchical phrase pairs is the closure under this extension mechanism

Comments

• Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

 $\mathbf{Y} \to \mathbf{X}_1 \, \, \mathbf{X}_2 \ \left| \begin{array}{c} \mathbf{X}_2 \ \textit{of} \, \mathbf{X}_1 \end{array} \right|$

- Typical restrictions to limit complexity [Chiang, 2005]
 - at most 2 nonterminal symbols
 - at least 1 but at most 5 words per language
 - span at most 15 words (counting gaps)

Learning Syntactic Translation Rules

Constraints on Syntactic Rules

- Same word alignment constraints as hierarchical models
- Hierarchical: rule can cover any span
 ⇔ syntactic rules must cover constituents in the tree
- Hierarchical: gaps may cover any span
 ⇔ gaps must cover constituents in the tree
- Much less rules are extracted (all things being equal)

Impossible Rules

Rules with Context

Too Many Rules Extractable

- Huge number of rules can be extracted (every alignable node may or may not be part of a rule → exponential number of rules)
- Need to limit which rules to extract
- Option 1: similar restriction as for hierarchical model (maximum span size, maximum number of terminals and non-terminals, etc.)
- Option 2: only extract minimal rules ("GHKM" rules)

Minimal Rules

Extract: set of smallest rules required to explain the sentence pair

Lexical Rule

Extracted rule: $\ensuremath{\operatorname{PRP}}\xspace \to \ensuremath{\operatorname{Ich}}\xspace\mid I$

Extracted rule: PRP \rightarrow Ihnen | you

Extracted rule: $DT \rightarrow die \mid some$

Extracted rule: NNS \rightarrow Anmerkungen | comments

Insertion Rule

Extracted rule: PP \rightarrow X | to PRP

Non-Lexical Rule

Extracted rule: NP \rightarrow x_1 x_2 \mid DT_1 NNS_2

Lexical Rule with Syntactic Context

Extracted rule: $VP \rightarrow X_1 X_2$ aushändigen | passing on PP₁ NP₂

Lexical Rule with Syntactic Context

Extracted rule: $VP \rightarrow werde x \mid shall be VP$ (ignoring internal structure)

Unaligned Source Words

Attach to neighboring words or higher nodes \rightarrow additional rules
Too Few Phrasal Rules?

- Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)
- But: phrasal rules very beneficial in phrase-based models
- Solutions
 - combine rules that contain a maximum number of symbols (as in hierarchical models, recall: "Option 1")
 - compose minimal rules to cover a maximum number of non-leaf nodes

Composed Rules

- Current rules $X_1 X_2 = NP$ $DT_1 NNS_1$ die = DT entsprechenden Anmerkungen = NNS some comments
- Composed rule die entsprechenden Anmerkungen = NP DT NNS | | some comments (1 non-leaf node: NP)

Composed Rules

Relaxing Tree Constraints

• Impossible rule

- Create new non-terminal label: MD+VB
- \Rightarrow New rule

Zollmann Venugopal Relaxation

- If span consists of two constituents , join them: $\mathbf{X} {+} \mathbf{Y}$
- If span conststs of three constituents, join them: X+Y+Z
- $\bullet\,$ If span covers constituents with the same parent x and include
 - every but the first child ${\bf Y},$ label as $X \backslash {\bf Y}$
 - every but the last child ${\rm Y}$, label as ${\rm X}/{\rm Y}$
- $\bullet\,$ For all other cases, label as $_{\rm FAIL}$
- \Rightarrow More rules can be extracted, but number of non-terminals blows up

Special Problem: Flat Structures

• Flat structures severely limit rule extraction

• Can only extract rules for individual words or entire phrase

Relaxation by Tree Binarization

Scoring Translation Rules

- Extract all rules from corpus
- Score based on counts
 - joint rule probability: $p(LHS, RHS_f, RHS_e)$
 - rule application probability: $p(\text{RHS}_f, \text{RHS}_e | \text{LHS})$
 - direct translation probability: $p(\text{RHS}_e|\text{RHS}_f, \text{LHS})$
 - noisy channel translation probability: $p(\text{RHS}_f|\text{RHS}_e, \text{LHS})$
 - lexical translation probability: $\prod_{e_i \in \text{RHS}_e} p(e_i | \text{RHS}_f, a)$

Syntactic Decoding

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence, a chart with translations for the ${\cal O}(n^2)$ spans has to be filled

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Complex rule: matching underlying constituent spans, and covering words

Bottom-Up Decoding

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Naive Algorithm

Input: Foreign sentence $\mathbf{f} = f_1, \dots f_{l_f}$, with syntax tree **Output:** English translation **e** 1: for all spans [start,end] (bottom up) do for all sequences s of hypotheses and words in span [start,end] do 2: for all rules r do 3: if rule r applies to chart sequence s then 4: create new hypothesis c5: add hypothesis c to chart 6: end if 7: end for 8: end for Q٠ 10. end for

11: **return** English translation **e** from best hypothesis in span $[0, l_f]$

Chart Organization

- Chart consists of cells that cover contiguous spans over the input sentence
- Each cell contains a set of hypotheses¹
- Hypothesis = translation of span with target-side constituent

 1 In the book, they are called chart entries.

Dynamic Programming

Applying rule creates new hypothesis

Dynamic Programming

Another hypothesis

Both hypotheses are indistiguishable in future search \longrightarrow can be recombined

Recombinable States

Recombinable?

NP: a cup of coffee

NP: a cup of coffee

NP: a mug of coffee

Recombinable States

Recombinable?

Yes, iff max. 2-gram language model is used

Recombinability

Hypotheses have to match in

- span of input words covered
- output constituent label
- first n-1 output words

not properly scored, since they lack context

• last n-1 output words

still affect scoring of subsequently added words, just like in phrase-based decoding

(n is the order of the n-gram language model)

Language Model Contexts

When merging hypotheses, internal language model contexts are absorbed

Stack Pruning

- Number of hypotheses in each chart cell explodes
- \Rightarrow need to discard bad hypotheses e.g., keep 100 best only
 - Different stacks for different output constituent labels?
 - Cost estimates
 - translation model cost known
 - language model cost for internal words known
 - \rightarrow estimates for initial words
 - outside cost estimate?

(how useful will be a NP covering input words 3-5 later on?)

Naive Algorithm: Blow-ups

• Many subspan sequences

for all sequences s of hypotheses and words in span [start,end]

• Many rules

for all rules \boldsymbol{r}

• Checking if a rule applies not trivial

rule r applies to chart sequence s

 \Rightarrow Unworkable

Solution

- Prefix tree data structure for rules
- Dotted rules
- Cube pruning

Storing Rules

- First concern: do they apply to span? \rightarrow have to match available hypotheses and input words
- Example rule

 $NP \rightarrow X_1 \text{ des } X_2 \mid NP_1 \text{ of the } NN_2$

- Check for applicability
 - is there an initial sub-span that with a hypothesis with constituent label NP?
 - is it followed by a sub-span over the word des?
 - is it followed by a final sub-span with a hypothesis with label NN?
- Sequence of relevant information

NP • des • NN • NP₁ of the NN₂

Trying to cover a span of six words with given rule

NP • des • NN \rightarrow NP: NP of the NN

das

Haus

des Architekten Frank

ank

Gehry

First: check for hypotheses with output constituent label NP

Found NP hypothesis in cell, matched first symbol of rule

Matched word des, matched second symbol of rule

Found a NN hypothesis in cell, matched last symbol of rule

Matched entire rule \rightarrow apply to create a NP hypothesis

Look up output words to create new hypothesis (note: there may be many matching underlying NP and NN hypotheses)

Checking Rules vs. Finding Rules

- What we showed:
 - given a rule
 - check if and how it can be applied
- But there are too many rules (millions) to check them all
- Instead:
 - given the underlying chart cells and input words
 - find which rules apply

Prefix Tree for Rules

$\begin{array}{c|c} \mbox{Highlighted Rules} \\ \mbox{NP} \rightarrow \mbox{NP}_1 \ \mbox{DET}_2 \ \mbox{NN}_3 & | & \mbox{NP}_1 \ \mbox{INP}_2 \ \mbox{NP}_1 \\ \mbox{NP} \rightarrow \mbox{NP}_1 \ \mbox{P}_1 \\ \mbox{NP} \rightarrow \mbox{NP}_1 \ \mbox{des NN}_2 \ \ \mbox{NP}_1 \ \mbox{of the NN}_2 \\ \mbox{NP} \rightarrow \mbox{NP}_1 \ \mbox{des NN}_2 \ \ \mbox{NP}_2 \ \mbox{NP}_1 \end{array}$

 $NP \rightarrow DET_1 NN_2 \mid DET_1 NN_2$ $NP \rightarrow das Haus \mid the house$

Dotted Rules: Key Insight

• If we can apply a rule like

 $\mathbf{p} \to \mathbf{A} \; \mathbf{B} \; \mathbf{C} \; \mid \; \mathbf{x}$

to a span

• Then we could have applied a rule like

 $q \rightarrow A B \mid y$

to a sub-span with the same starting word

 \Rightarrow We can re-use rule lookup by storing A B • (dotted rule)

Finding Applicable Rules in Prefix Tree

Covering the First Cell

Checking if Dotted Rule has Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

Moving on to the Next Cell

Taking Note of the Dotted Rule

Checking if Dotted Rule has Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

More of the Same

Moving on to the Next Cell

Covering a Longer Span

Cannot consume multiple words at once All rules are extensions of existing dotted rules Here: only extensions of span over das possible

Extensions of Span over das

Looking up Rules in the Prefix Tree

Taking Note of the Dotted Rule

Checking if Dotted Rules have Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

Even Larger Spans

Extend lists of dotted rules with cell constituent labels

Reflections

- Complexity $O(rn^3)$ with sentence length n and size of dotted rule list r
 - may introduce maximum size for spans that do not start at beginning
 - may limit size of dotted rule list (very arbitrary)
- Does the list of dotted rules explode?
- Yes, if there are many rules with neighboring target-side non-terminals
 - such rules apply in many places
 - rules with words are much more restricted

Difficult Rules

- Some rules may apply in too many ways
- Neighboring input non-terminals

 $v_{P} \rightarrow gibt \; x_{1} \; x_{2} \mid gives \; \text{NP}_{2} \; to \; \text{NP}_{1}$

- non-terminals may match many different pairs of spans
- especially a problem for hierarchical models (no constituent label restrictions)
- may be okay for syntax-models
- Three neighboring input non-terminals

 $VP \rightarrow trifft X_1 X_2 X_3 heute \mid meets NP_1 today PP_2 PP_3$

- will get out of hand even for syntax models

Where are we now?

- We know which rules apply
- We know where they apply (each non-terminal tied to a span)
- But there are still many choices
 - many possible translations
 - each non-terminal may match multiple hypotheses
 - $\rightarrow\,$ number choices exponential with number of non-terminals

Rules with One Non-Terminal

Found applicable rules $PP \rightarrow des \ X \ \big| \ ... \ NP \ ...$

- Non-terminal will be filled any of h underlying matching hypotheses
- Choice of t lexical translations
- \Rightarrow Complexity O(ht)

(note: we may not group rules by target constituent label, so a rule NP \rightarrow des X | the NP would also be considered here as well)

Rules with Two Non-Terminals

Found applicable rule NP $\rightarrow x_1 \text{ des } x_2 \mid \text{NP}_1 \dots \text{NP}_2$

- Two non-terminal will be filled any of h underlying matching hypotheses each
- Choice of t lexical translations
- \Rightarrow Complexity $O(h^2t)$ a three-dimensional "cube" of choices

(note: rules may also reorder differently)

Cube Pruning

Arrange all the choices in a "cube"

(here: a square, generally a orthotope, also called a hyperrectangle)

Create the First Hypothesis

• Hypotheses created in cube: (0,0)
Add ("Pop") Hypothesis to Chart Cell

- Hypotheses created in cube: ϵ
- Hypotheses in chart cell stack: (0,0)

Create Neighboring Hypotheses

- Hypotheses created in cube: (0,1), (1,0)
- Hypotheses in chart cell stack: (0,0)

Pop Best Hypothesis to Chart Cell

- Hypotheses created in cube: (0,1)
- Hypotheses in chart cell stack: (0,0), (1,0)

Create Neighboring Hypotheses

- Hypotheses created in cube: (0,1), (1,1), (2,0)
- Hypotheses in chart cell stack: (0,0), (1,0)

More of the Same

- Hypotheses created in cube: (0,1), (1,2), (2,1), (2,0)
- Hypotheses in chart cell stack: (0,0), (1,0), (1,1)

Queue of Cubes

- Several groups of rules will apply to a given span
- Each of them will have a cube
- We can create a queue of cubes
- $\Rightarrow\,$ Always pop off the most promising hypothesis, regardless of cube

• May have separate queues for different target constituent labels

Bottom-Up Chart Decoding Algorithm

- 1: for all spans (bottom up) do
- 2: extend dotted rules
- 3: for all dotted rules do
- 4: find group of applicable rules
- 5: create a cube for it
- 6: create first hypothesis in cube
- 7: place cube in queue
- 8: end for
- 9: **for** specified number of pops **do**
- 10: pop off best hypothesis of any cube in queue
- 11: add it to the chart cell
- 12: create its neighbors
- 13: **end for**
- 14: extend dotted rules over constituent labels
- 15: end for

Two-Stage Decoding

- First stage: decoding without a language model (-LM decoding)
 - may be done exhaustively
 - eliminate dead ends
 - optionably prune out low scoring hypotheses
- Second stage: add language model
 - limited to packed chart obtained in first stage
- Note: essentially, we do two-stage decoding for each span at a time

Coarse-to-Fine

- Decode with increasingly complex model
- Examples
 - reduced language model [Zhang and Gildea, 2008]
 - reduced set of non-terminals [DeNero et al., 2009]
 - language model on clustered word classes [Petrov et al., 2008]

Outside Cost Estimation

- Which spans should be more emphasized in search?
- Initial decoding stage can provide outside cost estimates

• Use min/max language model costs to obtain admissible heuristic (or at least something that will guide search better)

Open Questions

- Where does the best translation fall out the beam?
- How accurate are LM estimates?
- Are particular types of rules too quickly discarded?
- Are there systemic problems with cube pruning?

Summary

- Synchronous context free grammars
- Extracting rules from a syntactically parsed parallel corpus
- Bottom-up decoding
- Chart organization: dynamic programming, stacks, pruning
- Prefix tree for rules
- Dotted rules
- Cube pruning