PBML

The Prague Bulletin of Mathematical Linguistics
NUMBER 96 OCTOBER 2011 89-98

eppex: Epochal Phrase Table Extraction
for Statistical Machine Translation

Ceslav Przywara, Ondfej Bojar

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Abstract

We present a tool that extracts phrase pairs from a word-aligned parallel corpus and filters
them on the fly based on a user-defined frequency threshold. The bulk of phrase pairs to be
scored is much reduced, making the whole phrase table construction process faster with no
significant harm to the ultimate phrase table quality as measured by BLEU. Technically, our
tool is an alternative to the extract component of the phrase-extract toolkit bundled with Moses
SMT software and covers some of the functionality of sigfilter.

1. Motivation

Phrase tables in Statistical Machine Translation (SMT) systems generally take the
form of a list of pairs of phrases s and t, s being the phrase from the source language
and t being the phrase from the target language, along with scores that should reflect
the goodness of translating s as t. The standard approach to obtain such scores is
to use maximum likelihood probability of the phrase t given the phrase s and vice versa.
The probabilities p(s[t) and p(t|s) are often referred to as forward and reverse translation
probabilities.

To estimate p(s|t) and p(tls), frequency counts C(t,s), C(s) and C(t) are usually
collected from the entire training corpus. For substantial coverage of source and target
languages, such corpora are often very big so all phrase pairs and their counts cannot
fit in the physical memory of the computer. To overcome this limitation, phrase table
construction methods often simply dump observed phrases to local disk and sort and

© 2011 PBML. All rights reserved. Corresponding author: bojar@ufal.mff.cuni.cz
Cite as: Ceslav Przywara, Ondfej Bojar. eppex: Epochal Phrase Table Extraction for Statistical Machine Trans-
lation. The Prague Bulletin of Mathematical Linguistics No. 96, 2011, pp. 89-98.

doi: 10.2478/v10108-011-0014-1.

PBML 96 OCTOBER 2011

count them on disk. This approach allows to construct phrase tables of size limited
only by the capacity of the disk. The obvious drawback of this solution is that much
more time is needed to build the table.

Moses (Koehn et al., 2007), an open-source SMT toolkit with a full set of tools re-
quired for SMT system training, adheres to this concept. Both of the two main com-
ponents used to construct phrase tables (extract to observe phrases and scorer to score
them) treat their input as an unbounded stream of data, keeping only limited span of
this stream in physical memory and using local disk for temporary storage.

It is known that phrase table quality is not strictly determined by its size. Johnson
et al. (2007) presented a method for the reduction of phrase table size causing no harm
to translation quality as measured by BLEU (Papineni et al., 2002). Their method
employs significance testing of phrase pair co-occurrence in the parallel corpus to
distinguish between valuable phrase pairs and random noise. Because significance
testing of phrase pair co-occurrences is based on their frequencies, the method was
designed as a post-processing filter applied to a finished phrase table. The phrase
table extraction process and its runtime requirements are unaffected by this method.

In this paper, we present eppex, a tool designed as a drop-in alternative for extract
component in Moses training. Like extract, our tool extracts phrase pairs from a word-
aligned parallel corpus. Unlike extract, eppex filters out phrase pairs with frequency
below a user-defined threshold. As a result, the subsequent sorting and scoring have
to process a reduced set of phrase pairs, so the whole phrase table extraction pipeline
requires less time to finish.

In the rest of the paper we present the implementation details and results of the
experiments aiming at comparison of the standard approach, the standard approach
with additional significance filtering and the epochal extraction with respect to trans-
lation quality and runtime performance.

2. Implementation

Our tool, just like the extract component, processes the input parallel corpus in a
single pass. Our implementation reuses the code from extract that implements the ex-
traction of individual phrase pairs from word-aligned parallel corpora as proposed by
Och and Ney (2003). In contrast to extract, extracted phrase pairs are not immediately
printed to a temporary storage on the disk, but instead they are fed into an algorithm
that on the fly filters out low frequency items.

To carry out the filtration within manageable memory demands, we employ an
algorithm for approximate frequency counting proposed by Manku and Motwani
(2002). Their Lossy Counting algorithm expects two user-defined thresholds: support
s € (0,1) and error e € (0,1), such that e < s. At any point of time (after being
fed with N items) the algorithm can output the list of items with their approximate
frequencies and guarantee the following:

¢ All items whose true frequency exceeds sN are output (no false negatives).

90

Ceslav Przywara, Ondfej Bojar eppex: Epochal Phrase Table Extraction (89-98)

* No item whose true frequency is less than (s — €)N is output (few false positives).
¢ Estimated frequencies are less than the true frequencies by at most eN.
o The space used by the algorithm is O(1 logeN).

2.1. Lossy Counting Algorithm

The Lossy Counting algorithm conceptually divides the incoming stream of items
into epochs of fixed size w = [%] (thus the name epochal extraction). In order to de-
liver the frequency estimates, the algorithm maintains a data structure D consisting
of triples (e, f, A), where e is an element from the stream, f is its estimated frequency
and A is the maximum possible error in f. When a new item e arrives, a lookup for
e in D is performed. If e is already present, its frequency f is incremented by one.
Otherwise a new triple (e, 1, T — 1) is added to D, where T denotes the ID of current
epoch (with IDs starting from 1).

At the end of each epoch (determined by N = 0 mod w), the algorithm prunes off
all items whose maximum true frequency is small. Formally, at the end of the epoch T,
all triples satisfying the condition f + A < T are removed from D. When all elements
in the stream have been processed, the algorithm returns all triples (e, f, A) where
f>(s—e)N.

The idea behind the algorithm is that frequent elements show up more than once
within each epoch so their frequencies are increased enough to survive the filtering.

2.2. Memory Management

To optimize the usage and access speed of the memory, we implement a couple of
tricks. First, we explicitly store the vocabulary of the phrases read so far. The phrases
are then represented as vectors of word indices instead of full strings. (The vocabulary
is not subject to pruning at epoch boundaries for efficiency reasons.)

Second, we take advantage of the fact the vocabulary size of MT corpora usually
is on the order of millions. We therefore represent words as 4-byte integers allow-
ing to store up to 4 billions of word types. Using directly the pointer to the string
representation of the word would be more expensive in a 64-bit environment.

Third, we optimize the process of memory allocation for newly created word types
by using memory pools as implemented in the Boost library.

2.3. Usage

Eppex is implemented as C++ program and does not require any special libraries
to compile and run, except for moderately recent version of gcc. The authors did not
attempt to compile eppex on Windows, but the code is free of system-dependent hacks,
so porting to Windows should be fairly straightforward.

Eppex input and output format is fully compatible with that of extract. We also keep
the command line syntax very similar. The main change is that instead of the max-

91

PBML 96 OCTOBER 2011

phrase-length parameter, one has to specify the € and s values for the Lossy Counting
algorithm. A different pair of thresholds can be given for each phrase pair length!
allowing for a more fine-grained pruning.

The command line syntax is:

eppex tgt src align extract lossy-counter [lossy-counter-2 [...]] \
[orientation [--model [wbe|phrase|hier]-[msd|mslr|mono] 1]

Every lossy-counter specifies the error and support for the Lossy Counting al-
gorithm for phrases of a length within an interval. The parameter takes the form
length:error:support, where length is either a number or an interval specification and
error and support are two floats. For example, to keep in all phrase pairs with length 1
and prune all phrase pairs of length from 2 to 4 with e =2 x 1077 ands =8 x 1077,
two lossy counters must be declared as: 1:0:0 2-4:2e-7:8e-7.2

Phrases of length not covered by any lossy-counter are not extracted at all, effec-
tively setting also the max-phrase-length.

No defaults for lossy-counters are provided, because reasonable settings heavily
depend on the corpus. Eppex at its end and also a faster single-purpose tool counter
report the total number of extracted phrases of all lengths, allowing to set the thresh-
olds.

3. Experiments

We compared our tool against two other methods of phrase table construction that
were already introduced in the beginning of the paper:

1. the extract component of Moses toolkit, i.e. the baseline,

2. the sigfilter program, which is a re-implementation of significance testing phrase

table filter described by Johnson et al. (2007) and is also bundled with Moses.

The baseline scenario has no options to adjust: all phrase pairs extracted from the
corpus are included in the final phrase table. When applying sigfilter, at least one of
two options has to be set: the cutoff threshold or the pruning threshold. By setting the
cutoff threshold to n, all but the top n phrase pairs, sorted by the forward probability
P(tls), will be removed. Johnson et al. (2007) recommend the cutoff of 30. The prun-
ing threshold determines the minimum level of negative-log-p-value that a particular
phrase pair (s, t) has to reach under Fisher’s exact test that calculates probability of ob-
served two by two contingency table based on frequency counts C(s), C(t) and C(s, t).
A particularly interesting settings for this threshold are values & — € and o+ €, where
a = log(N) and e is appropriately small positive number. The former is the largest

Phrase pair length is defined as the length of the longer of the phrases.

2 All phrases of length 2—4 are stored together in one counter. To treat them separately, the counter has
to be split in three: 2:2e-7:8e-7 3:2e-7:8e-7 4:2e-7:8e-7.

92

Ceslav Przywara, Ondfej Bojar eppex: Epochal Phrase Table Extraction (89-98)

threshold that results in keeping all the 1-1-1 phrase pairs? in the table, whereas the
latter is the smallest threshold that results in all such phrase pairs being removed.

With eppex, a separate lossy counting may be instantiated for each phrase pair
length, allowing to filter them with different values of sN (positive) and (s — €)N
(negative) thresholds. Depending on the corpus, the values of support and error have
to be adjusted. The effect of sigfilter with o + € pruning may be approximated: set-
ting support s such that sN < 1 will preserve all of the 1-1-1 phrases (like in « — €),
while setting support s and error € to satisfy (s — €)N > 1 will result in their complete
removal (like in & + €).

3.1. Data

We evaluate the extraction methods on English-Czech translation trained on the
corpus CzEng (Bojar and Zabokrtsky, 2009) with a few additions and a large Czech
language model. See Marecek et al. (2011) for the exact setup of the system “cu-bojar”.

The complete parallel corpus for our experiments with phrase extraction is 8.4M
sentence pairs; 107.2M English and 93.2M Czech tokens.

Our tuning and testing data come from the WMT 2011 Translation Task®.

3.2. Benchmarking

The training process of Moses SMT takes place in nine steps.2 The steps cover the
whole training pipeline including word alignment, lexical table construction, phrase
table construction and more. The phrase table construction itself is done in two steps,
phrase extraction and phrase scoring, which might be even further split into following
substeps: (1) phrase extraction that produces direct and reverse phrase table halves
(without scores yet); (2) gzipping, (3) sorting and (4) scoring of the direct table; (5)
gzipping, (6) sorting and (7) scoring of the reverse table; (8) sorting of the scored
reverse table; (9) consolidation of the scored direct and reverse tables; (10) gzipping
of the consolidated phrase table.

The default implementation in Moses training script train-model.perl does not use
any parallelization of the sequence (steps 2—4 and 5-7 could be run in parallel). The
gzipping in steps 2 and 5 is somewhat dubious but everybody seems to use it.2

We benchmark phrase table construction by measuring CPU time, wall clock time
and memory requirements of all the substeps. To measure the memory with a rea-
sonable precision, we save a copy of stat and status files from /proc/[pid]/ directory of
the measured process(es) every second.

3 A phrase pair (s,t) is called 1-1-1,if C(s) = 1,C(t) = 1and C(s,t) = 1.
4http://www.statmt.org/wmt1l/translation-task.html
Shttp://www.statmt.org/moses/?n=FactoredTraining.HomePage

6We discovered that the option —dont-zip of train-moses.perl has been broken since it was introduced.

93

PBML 96 OCTOBER 2011

We run all the steps on a single machine for comparability of the results. Although
the machine is a standard node in a cluster, we keep jobs of other users away by re-
serving all memory of the machine for our job. The machine runs the 64-bit version of
Ubuntu 10.04 server edition on 2 Core4 AMD Opteron 2.8 Ghz processors with 32 GB
of RAM in total. All the input and output files were read and written to a locally
mounted hard disk.

4. Results

Table 1 presents all the experiments and their settings. We compare the baseline,
the recommended default settings for significance filtering and two eppex runs: one
with mild pruning that left in all shorter phrase pairs (denoted as eppex 1-in) and one
harsher that filters out all phrase pairs with single occurrence only (eppex 1-out).

Name Description
baseline standard Moses pipeline with extract component
eppex 1-in the pipeline with eppex: all phrase pairs of length 1-3 kept in,
longer phrase pairs pruned with max. positive threshold of 8
eppex l-out the pipeline with eppex: all single-occurring phrase pairs re-
moved, phrase pairs pruned with max. positive threshold of 8
sigfilter a-e baseline followed by sigfilter with pruning threshold o — €
sigfilter a+e baseline followed by sigfilter with pruning threshold « + €
sigfilter 30 baseline followed by sigfilter with cutoff threshold of 30

Table 1. List of the experiments and their settings

4.1. Translation quality

We evaluate translation quality automatically using BLEU. The complete SMT sys-
tem includes also a language model (always identical) and a distortion model. For
eppex setups, the distortion model was always built from the same (pruned) set of
phrase pairs as the phrase table. In each setup separately, model weights are opti-
mized using Moses MERT.

Table 2 presents BLEU scores obtained in the experiments and the respective phrase
table sizes. For both of the test sets, the top three results were obtained in baseline, sig-
filter 30 and eppex 1-in experiments, but all the differences are rather small and could
be also attributed to the randomness of MERT.Z The baseline scenario ranked best on
wmtll set (BLEU score 18.22), while the eppex 1-in scenario topped on wmtl0 set

7We did not invest the computing resources necessary to estimate the confidence bounds covering op-
timizer instability (Clark et al., 2011).

94

Ceslav Przywara, Ondfej Bojar eppex: Epochal Phrase Table Extraction (89-98)

Final phrase table size BLEU score

Experiment | phrase pairs | .gz file size | wmt10 | wmtll

baseline 153.6 M 3.68 GB 17.36 18.22
sigfilter 30 137.0M 3.36 GB 17.48 18.13
sigfilter a-e 924 M 2.39 GB 17.23 17.87
eppex 1-in 571 M 1.28 GB 17.60 18.10
sigfilter a+e 35.0M 0.86 GB 17.31 17.99
eppex l-out 14.4 M 0.33 GB 17.23 17.94

Table 2. Phrase table sizes and BLEU scores for all experiments

(BLEU score 17.60). However, the phrase table extracted in eppex 1-in occupied only
1.28 GB space on disk, being less than half of the size of the baseline (3.68 GB) and
sigfilter 30 (3.36 GB) phrase tables.

Harsher pruning in both eppex and sigfilter can reduce the phrase table size up to
one tenth of the baseline with only negligible loss in BLEU.

4.2. Memory and time requirements

Table 3 presents in detail physical memory peaks for all experiments. In eppex
scenarios, it is the epochal extraction itself that is the most demanding part of the
pipeline, consuming 19.2 GB (1-in) and 16.7 GB (1-out) of memory. In all the other ex-
periments the memory consumption is considerably lower and the scorer component
is responsible for the peak, except for the cases when « =+ e significance filtering is
applied.

Experiment | VM peak in step
baseline 1.1 GB | scoring-e2f
sigfilter 30 1.1 GB | scoring-e2f
sigfilter a-e 54GB | sigfilter
eppex 1-in 19.2 GB phr-ext
sigfilter a+e 54GB | sigfilter
eppex l-out | 16.7 GB phr-ext

Table 3. Virtual memory peaks for all experiments

Table 4 compares CPU usage and wallclock times of all the substeps of the pipeline
in baseline and eppex scenarios. While the initial extraction of phrase pairs takes much
longer with eppex than with extract, subsequent steps finish much quicker in the eppex
scenario: total time required is less than half in case of 1-in pruning and less than 1/4

95

PBML 96 OCTOBER 2011
baseline eppex 1-in eppex 1-out
step CPU wallclock | CPU wallclock | CPU wallclock
phr-ext 1145 1152 4346 4360 4349 4361
gzip-f2e 590 662 183 226 86 114
gzip-e2f 593 641 185 276 87 132
sort-f2e 653 2257 304 822 196 564
sort-e2f 628 2844 315 810 199 567
score-f2e | 10516 10795 4493 4531 371 372
score-e2f | 9400 9622 2867 2902 340 340
sort-inv 358 1569 129 129 21 22
cons 754 1361 269 269 65 66
pt-gzip 791 881 258 259 65 65
TOTAL | 25428 31784 13349 14584 5779 6603
hh:mm:ss | 7:03:48 8:49:44 | 3:42:29 4:03:04 | 1:36:19 1:50:03

Table 4. CPU and wallclock times (in seconds) of the phrase table construction.

Sigf. settings -la+e -la-e -n 30
CPU wallclock CPU wallclock | CPU wallclock
Sigfilter alone | 18635 18248 19252 18449 2105 1141
TOTAL 44063 50032 44680 50233 27533 31784
hh:mm:ss 12:14:23 13:53:52 | 12:24:40 13:57:13 | 7:38:53 9:08:45

Table 5. CPU and wallclock times (in seconds) of significance filtering. The total
includes the time of baseline extraction: 7:03:48 (CPU) and 8:49:44 (wallclock).

in case of 1-out pruning compared to the baseline. Partial parallelization of the base-
line extraction as suggested above decreases the gains but eppex still remains safely
faster, esp. if eppex used the same optimization.

Significance filtering requires an additional amount of time (see Table 5) on top of
the baseline extraction. The most striking difference is between sigfilter o+ € and eppex
1-out. They are comparable in terms of BLEU score and phrase table size but sigfilter
took almost 14 hours while eppex 1-out finished in less than 2 hours.

5. Related and Future Work

We point out that the idea of using approximate frequency counting algorithms in
the field of NLP is not new. Goyal et al. (2009) used approximate n-gram frequency
counts to build language models, which they then applied successfully in SMT achiev-
ing no significant loss in BLEU.

96

Ceslav Przywara, Ondfej Bojar eppex: Epochal Phrase Table Extraction (89-98)

A recent feature of Moses is incremental training (probably related to the experi-
ments by Levenberg et al. (2010)) aiming at the reduction of time required to incorpo-
rate recent data into already trained models. The entire source and target corpora are
indexed in suffix arrays along with their alignments. Phrase extraction and scoring
happens on the fly when phrases are needed in translation, completely eliminating
the expensive batch retraining. Because the reduction of training time is the main ad-
vantage of eppex, we intend to perform a comprehensive comparison of this feature
with batch retraining utilizing eppex.

The epochal extraction in eppex also lends itself to incremental extraction: only the
counts in the current epoch have to be stored and reloaded when the model is to be
extended by new data. The setting of the thresholds, however, would require a fairly
large amount of training data to be processed in the first batch to estimate the values
that will lead to sufficient saturation of phrase table. Our initial experiment suggests
that for short phrase pair lengths it is beneficient to use no pruning at all.

Hardmeier (2010) presented memscore, an open-source tool to score phrases in mem-
ory that acts as a faster drop-in replacement for the sorting and the scorer in the
pipeline. By combining memscore and eppex into a single phrase extraction tool a fur-
ther speed up of phrase table construction process might be achieved.

Furthermore, we expect the benefits of eppex to be even more significant when con-
fronted with larger training corpora, therefore we are in the process of its evaluation
on the 10° French-English corpus available as part of WMT training data.

6. Conclusions

We presented eppex, a tool for extraction of phrase pairs from word-aligned parallel
corpus capable of phrase pairs filtering on the fly based on a user-defined threshold.
Eppex is a drop-in alternative of extract component in Moses training toolkit. Our tool
is ready to use and it is available in Moses SVN trunk (in scripts/training/eppex).

We compared our tool against the baseline extraction and another common ap-
proach to phrase table filtration. By using eppex for phrase extraction we were able
to obtain translation quality comparable to the baseline, while at the same time both
the (wallclock) training time and phrase table size have been reduced by more than
a half or up to one tenth with harsher pruning. Although memory requirements are
significantly increased, they still lie within manageable limits.

7. Acknowledgment

This work has been supported by the grants EuroMatrixPlus (FP7-ICT-2007-3-231720
of the EU and 7E09003 of the Czech Republic), P406/10/P259, and MSM 0021620838.

97

PBML 96 OCTOBER 2011

Bibliography

Bojar, Ondtej and Zden&k Zabokrtsky. CzEng0.9: Large Parallel Treebank with Rich Annota-
tion. Prague Bulletin of Mathematical Linguistics, 92:63-83, 2009. ISSN 0032-6585.

Clark, Jonathan H., Chris Dyer, Alon Lavie, and Noah A. Smith. Better hypoth-
esis testing for statistical machine translation: Controlling for optimizer instabil-
ity. In Proc. of ACL/HLT, pages 176-181, Portland, Oregon, USA, June 2011. URL
http://www.aclweb.org/anthology/P11-2031.

Goyal, Amit, Hal Daumé, I1I, and Suresh Venkatasubramanian. Streaming for large scale NLP:
language modeling. In Proc. of HTL/NAACL, pages 512-520, Boulder, Colorado, 2009. URL
http://portal.acm.org/citation.cfm?id=1620754.1620829.

Hardmeier, Christian. Fast and Extensible Phrase Scoring for Statistical Machine Translation.
The Prague Bulletin of Mathematical Linguistics, 93:79-88, 2010.

Johnson,] Howard, Joel Martin, George Foster, and Roland Kuhn. Improving Translation Qual-
ity by Discarding Most of the Phrasetable. In Proc. of EMNLP and Computational Natural
Language Learning, pages 967-975, 2007.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proc. of ACL (Demonstration Session), pages 177-180, 2007.

Levenberg, Abby, Chris Callison-Burch, and Miles Osborne. Stream-based translation models
for statistical machine translation. In Proc. of HTL/NAACL, pages 394-402, Los Angeles,
California, 2010. URL http://portal.acm.org/citation.cfm?id=1857999.1858061.

Manku, Gurmeet Singh and Rajeev Motwani. Approximate Frequency Counts over Data
Streams. In Proceedings of the 28th International Conference on Very Large Data Bases, 2002.

x4

Marecek, David, Rudolf Rosa, Petra Galus¢dkovd, and Ondfej Bojar. Two-step translation with
grammatical post-processing. In Proc. of WMT, Edinburgh, UK, July 2011.

Och, Franz Josef and Hermann Ney. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19-51, 2003.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic

evaluation of machine translation. In Proc. of ACL, pages 311-318, Philadelphia, Pennsylva-
nia, 2002. URL http://dx.doi.org/10.3115/1073083.1073135.

Address for correspondence:
Ondfej Bojar
bojar@ufal.mff.cuni.cz

UK MFF UFAL

Malostranské nameésti 25

118 00 Praha 1, Czech Republic

98

	Motivation
	Implementation
	Lossy Counting Algorithm
	Memory Management
	Usage

	Experiments
	Data
	Benchmarking

	Results
	Translation quality
	Memory and time requirements

	Related and Future Work
	Conclusions
	Acknowledgment

