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Abstract

This paper describes the University of Ed-
inburgh’s (UEDIN) phrase-based submis-
sions to the translation and medical trans-
lation shared tasks of the 2014 Work-
shop on Statistical Machine Translation
(WMT). We participated in all language
pairs. We have improved upon our 2013
system by i) using generalized represen-
tations, specifically automatic word clus-
ters for translations out of English, ii) us-
ing unsupervised character-based models
to translate unknown words in Russian-
English and Hindi-English pairs, iii) syn-
thesizing Hindi data from closely-related
Urdu data, and iv) building huge language
on the common crawl corpus.

1 Translation Task

Our baseline systems are based on the setup de-
scribed in (Durrani et al., 2013b) that we used
for the Eighth Workshop on Statistical Machine
Translation (Bojar et al., 2013). The notable fea-
tures of these systems are described in the follow-
ing section. The experiments that we carried out
for this year’s translation task are described in the
following sections.

1.1 Baseline

We trained our systems with the following set-
tings: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, hierarchical lexicalized re-
ordering (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM)

(Durrani et al., 2013a) with 4 count-based sup-
portive features, sparse domain indicator, phrase
length, and count bin features (Blunsom and Os-
borne, 2008; Chiang et al., 2009), a distortion limit
of 6, maximum phrase-length of 5, 100-best trans-
lation options, Minimum Bayes Risk decoding
(Kumar and Byrne, 2004), Cube Pruning (Huang
and Chiang, 2007), with a stack-size of 1000
during tuning and 5000 during test and the no-
reordering-over-punctuation heuristic (Koehn and
Haddow, 2009). We used POS and morphologi-
cal tags as additional factors in phrase translation
models (Koehn and Hoang, 2007) for German-
English language pairs. We also trained target se-
quence models on the in-domain subset of the par-
allel corpus using Kneser-Ney smoothed 7-gram
models. We used syntactic-preordering (Collins
et al., 2005) and compound splitting (Koehn and
Knight, 2003) for German-to-English systems.
We used trivia tokenizer for tokenizing Hindi.

The systems were tuned on a very large tun-
ing set consisting of the test sets from 2008-2012,
with a total of 13,071 sentences. We used news-
test 2013 for the dev experiments. For Russian-
English pairs news-test 2012 was used for tuning
and for Hindi-English pairs, we divided the news-
dev 2014 into two halves, used the first half for
tuning and second for dev experiments.

1.2 Using Generalized Word Representations

We explored the use of automatic word clusters
in phrase-based models (Durrani et al., 2014a).
We computed the clusters with GIZA++’s mkcls
(Och, 1999) on the source and target side of the
parallel training corpus. Clusters are word classes
that are optimized to reduce n-gram perplexity.
By generating a cluster identifier for each out-
put word, we are able to add an n-gram model
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over these identifiers as an additional scoring func-
tion. The inclusion of such an additional factor
is trivial given the factored model implementation
(Koehn and Hoang, 2007) of Moses (Koehn et al.,
2007). The n-gram model is trained in the similar
way as the regular language model. We trained
domain-specific language models separately and
then linearly interpolated them using SRILM with
weights optimized on the tuning set (Schwenk and
Koehn, 2008).

We also trained OSM models over cluster-ids
(?). The lexically driven OSM model falls back to
very small context sizes of two to three operations
due to data sparsity. Learning operation sequences
over cluster-ids enables us to learn richer trans-
lation and reordering patterns that can generalize
better in sparse data conditions. Table 1 shows
gains from adding target LM and OSM models
over cluster-ids. Using word clusters was found
more useful translating from English-to-*.

from English into English

Lang B0 +Cid ∆ B0 +Cid ∆

de 20.60 20.85 +0.25 27.44 27.34 -0.10
cs 18.84 19.39 +0.55 26.42 26.42 ±0.00
fr 30.73 30.82 +0.09 31.64 31.76 +0.12
ru 18.78 19.67 +0.89 24.45 24.63 +0.18
hi 10.39 10.52 +0.13 15.48 15.26 -0.22

Table 1: Using Word Clusters in Phrase-based and
OSM models – B0 = System without Clusters,
+Cid = with Cluster

We also trained OSM models over POS and
morph tags. For the English-to-German sys-
tem we added an OSM model over [pos, morph]
(source:pos, target:morph) and for the German-
to-English system we added an OSM model over
[morph,pos] (source:morph, target:pos), a config-
uration that was found to work best in our previous
experiments (Birch et al., 2013). Table 2 shows
gains from additionally using OSM models over
POS/morph tags.

Lang B0 +OSMp,m ∆

en-de 20.44 20.60 +0.16
de-en 27.24 27.44 +0.20

Table 2: Using POS and Morph Tags in
OSM models – B0 = Baseline, +OSMp,m =
POS/Morph-based OSM

1.3 Unsupervised Transliteration Model
Last year, our Russian-English systems performed
badly on the human evaluation. In comparison
other participants that used transliteration did well.
We could not train a transliteration system due
to unavailability of a transliteration training data.
This year we used an EM-based method to in-
duce unsupervised transliteration models (Durrani
et al., 2014b). We extracted transliteration pairs
automatically from the word-aligned parallel data
and used it to learn a transliteration system. We
then built transliteration phrase-tables for trans-
lating OOV words and used the post-decoding
method (Method 2 as described in the paper) to
translate these.

Pair Training OOV B0 +Tr ∆

ru-en 232K 1356 24.63 25.06 +0.41
en-ru 232K 681 19.67 19.91 +0.24
hi-en 38K 503 14.67 15.48 +0.81
en-hi 38K 394 11.76 12.83 +1.07

Table 3: Using Unsupervised Transliteration
Model – Training = Extracted Transliteration Cor-
pus (types), OOV = Out-of-vocabulary words (to-
kens) B0 = System without Transliteration, +Tr

= Transliterating OOVs

Table 3 shows the number (types) of translit-
eration pairs extracted using unsupervised min-
ing, number of OOV words (tokens) in each pair
and the gains achieved by transliterating unknown
words.

1.4 Synthesizing Hindi Data from Urdu
Hindi and Urdu are closely related language pairs
that share grammatical structure and have a large
overlap in vocabulary. This provides a strong
motivation to transform any Urdu-English paral-
lel data into Hindi-English by translating the Urdu
part into Hindi. We made use of the Urdu-English
segment of the Indic multi-parallel corpus (Post
et al., 2012) which contains roughly 87K sentence
pairs. The Hindi-English segment of this corpus
is a subset of parallel data made available for the
translation task but is completely disjoint from the
Urdu-English segment.

We initially trained a Urdu-to-Hindi SMT sys-
tem using a very tiny EMILLE1 corpus (Baker

1EMILLE corpus contains roughly 12000 sentences of
Hindi and Urdu comparable data. From these we were able
to sentence align 7000 sentences to build an Urdu-to-Hindi
system.
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et al., 2002). But we found this system to be use-
less for translating the Urdu part of Indic data due
to domain mismatch and huge number of OOV
words (approximately 310K tokens). To reduce
sparsity we synthesized additional phrase-tables
using interpolation and transliteration.

Interpolation: We trained two phrase transla-
tion tables p(ūi|ēi) and p(ēi|h̄i), from Urdu-
English (Indic corpus) and Hindi-English (Hin-
dEnCorp (Bojar et al., 2014)) bilingual cor-
pora. Given the phrase-table for Urdu-English
p(ūi|ēi) and the phrase-table for English-Hindi
p(ēi|h̄i), we estimated a Urdu-Hindi phrase-table
p(ūi|h̄i) using the well-known convolution model
(Utiyama and Isahara, 2007; Wu and Wang, 2007):

p(ūi|h̄i) =
∑
ēi

p(ūi|ēi)p(ēi|h̄i)

The number of entries in the baseline Urdu-to-
Hindi phrase-table were approximately 254K. Us-
ing interpolation we were able to build a phrase-
table containing roughly 10M phrases. This re-
duced the number of OOV tokens from 310K to
approximately 50K.

Transliteration: Urdu and Hindi are written in
different scripts (Arabic and Devanagri respec-
tively). We added a transliteration component
to our Urdu-to-Hindi system. An unsupervised
transliteration model is learned from the word-
alignments of Urdu-Hindi parallel data. We were
able to extract around 2800 transliteration pairs.
To learn a richer transliteration model, we addi-
tionally fed the interpolated phrase-table, as de-
scribed above, to the transliteration miner. We
were able to mine additional 21000 translitera-
tion pairs and built a Urdu-Hindi character-based
model from it. The transliteration module can
be used to translate the 50K OOV words but
previous research (Durrani et al., 2010; Nakov
and Tiedemann, 2012) has shown that translit-
eration is useful for more than just translating
OOV words when translating closely related lan-
guage pairs. To fully capitalize on the large over-
lap in Hindi–Urdu vocabulary, we transliterated
each word in the Urdu test-data into Hindi and
produced a phrase-table with 100-best transliter-
ations. The two synthesized (triangulated and
transliterated) phrase-tables are then used along
with the baseline Urdu-to-Hindi phrase-table in
a log-linear model. Detailed results on Urdu-to-
Hindi baseline and improvements obtained from

using transliteration and triangulated phrase-tables
are presented in Durrani and Koehn (2014). Using
our best Urdu-to-Hindi system, we translated the
Urdu part of the multi-indic corpus to form Hindi-
English parallel data. Table 4 shows results from
using the synthesized Hindi-English corpus in iso-
lation (Syn) and on top of the baseline system
(B0 + Syn).

Pair B0 Syn ∆ B0 + Syn ∆

hi-en 14.28 10.49 -3.79 14.72 +0.44
en-hi 10.59 9.01 -1.58 11.76 +1.17

Table 4: Evaluating Synthesized (Syn) Hindi-
English Parallel Data, B0 = System without Syn-
thesized Data

1.5 Huge Language Models

Our unconstrained submissions use an additional
language model trained on web pages from the
2012, 2013, and winter 2013 CommonCrawl.2

The additional language model is the only differ-
ence between the constrained and unconstrained
submissions; we did not use additional parallel
data. These language models were trained on text
provided by the CommonCrawl foundation, which
they converted to UTF-8 after stripping HTML.
Languages were detected using the Compact Lan-
guage Detection 23 and, except for Hindi where
we lack tools, sentences were split with the Eu-
roparl sentence splitter (Koehn, 2005). All text
was then deduplicated, minimizing the impact of
boilerplate, such as social media sharing buttons.
We then tokenized and truecased the text as usual.
Statistics are shown in Table 5. A full description
of the pipeline, including a public data release, ap-
pears in Buck et al. (2014).

Lang Lines (B) Tokens (B) Bytes

en 59.13 975.63 5.14 TiB
de 3.87 51.93 317.46 GiB
fr 3.04 49.31 273.96 GiB
ru 1.79 21.41 220.62 GiB
cs 0.47 5.79 34.67 GiB
hi 0.01 0.28 3.39 GiB

Table 5: Size of huge language model training data

We built unpruned modified Kneser-Ney lan-
guage models using lmplz (Heafield et al., 2013).

2http://commoncrawl.org
3https://code.google.com/p/cld2/
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Pair B0 +L

newstest 2013 2014 2013 2014

en-de 20.85 20.10 – 20.61 +0.51
en-cs 19.39 21.00 20.03 +0.64 21.60 +0.60
en-ru 19.90 28.70 20.80 +0.90 29.90 +1.20
en-hi 11.43 11.10 12.83 +1.40 12.50 +1.40
hi-en 15.48 13.90 – 14.80 +0.90

Table 6: Gains obtained by using huge language
models – B0 = Baseline, +L = Adding Huge LM

While the Hindi and Czech models are small
enough to run directly, models for other languages
are quite large.We therefore created a filter that op-
erates directly on files in KenLM trie binary for-
mat, preserving only n-grams whose words all ap-
pear in the target side vocabulary of at least one
source sentence. For example, an English lan-
guage model trained on just the 2012 and 2013
crawls takes 3.5 TB without any quantization. Af-
ter filtering to the Hindi-English tuning set, the
model fit in 908 GB, again without quantization.
We were then able to tune the system on a machine
with 1 TB RAM. Results are shown in Table 6; we
did not submit to English-French because the sys-
tem takes too long to tune.

1.6 Miscellaneous

Hindi-English: 1) A large number of Hindi sen-
tences in the Hindi-English parallel corpus were
ending with a full-stop “.”, although the end-of-
the-sentence marker in Hindi is “Danda” (|). Re-
placing full-stops with Danda gave improvement
of +0.20 for hi-en and +0.40 in en-hi. 2) Using
Wiki subtitles did not give any improvement in
BLEU and were in fact harmful for the en-hi di-
rection.

Russian-English: We tried to improve word-
alignments by integrating a transliteration sub-
model into GIZA++ word aligner. The probabil-
ity of a word pair is calculated as an interpola-
tion of the transliteration probability and transla-
tion probability stored in the t-table of the differ-
ent alignment models used by the GIZA++ aligner.
This interpolation is done for all iterations of all
alignment models (See Sajjad et al. (2013) for de-
tails). Due to shortage of time we could only run it
for Russian-to-English. The improved alignments
gave a gain of +0.21 on news-test 2013 and +0.40
on news-test 2014.

Pair GIZA++ Fast Align ∆

de-en 24.02 23.89 –.13
fr-en 30.78 30.66 –.12
es-en 34.07 34.24 +.17
cs-en 22.63 22.44 –.19
ru-en 31.68 32.03 +.35
en-de 18.04 17.88 –.16
en-fr 28.96 28.83 –.13
en-es 34.15 34.32 +.17
en-cs 15.70 16.02 +.32

avg +.03

Table 7: Comparison of fast word alignment
method (Dyer et al., 2013) against GIZA++
(WMT 2013 data condition, test on new-
stest2012). The method was not used in the official
submission.

Pair Baseline MSD Hier. MSD Hier. MSLR

de-en 27.04 27.10 +.06 27.17 +.13
fr-en 31.63 - 31.65 +.02
es-en 31.20 31.14 –.06 31.25 +.05
cs-en 26.11 26.32 +.21 26.26 +.15
ru-en 24.09 24.01 –.08 24.19 +.11
en-de 20.43 20.34 –.09 20.32 -.11
en-fr 30.54 - 30.52 –.02
en-es 30.36 30.44 +.08 30.51 +.15
en-cs 18.53 18.59 +.06 18.66 +.13
en-ru 18.37 18.47 +.10 18.19 –.18

avg + .035 +.045

Table 8: Hierarchical lexicalized reordering model
(Galley and Manning, 2008).

Fast align: In preliminary experiments, we
compared the fast word alignment method by
Dyer et al. (2013) against our traditional use of
GIZA++. Results are quite mixed (Table 7), rang-
ing from a gain of +.35 for Russian-English to a
loss of –.19 for Czech-English. We stayed with
GIZA++ for all of our other experiments.

Hierarchical lexicalized reordering model:
We explored the use of the hierarchical lexicalized
reordering model (Galley and Manning, 2008)
in two variants: using the same orientations as
our traditional model (monotone, discontinuous,
swap), and one that distinguishes the discontin-
uous orientations to the left and right. Table 8
shows slight improvements with these models, so
we used them in our baseline.

Threshold filtering of phrase table: We exper-
imented with discarding some phrase table entry
due to their low probability. We found that phrase
translations with the phrase translation probability
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φ(f |e)<10−4 can be safely discarded with almost
no change in translations. However, discarding
phrase translations with the inverse phrase transla-
tion probability φ(e|f)<10−4 is more risky, espe-
cially with morphologically rich target languages,
so we kept those.

1.7 Summary

Table 9 shows cumulative gains obtained from us-
ing word classes, transliteration and big language
models4 over the baseline system. Our German-
English constrained systems were used for EU-
Bridge system combination, a collaborative effort
to improve the state-of-the-art in machine transla-
tion (See Freitag et al. (2014) for details).

from English into English

Lang B0 B1 ∆ B0 B1 ∆

de 20.44 20.85 +0.41 27.24 27.44 +0.20
cs 18.84 20.03 +1.19 26.42 26.42 ±0.00
fr 30.73 30.82 +0.09 31.64 31.76 +0.12
ru 18.78 20.81 +2.03 24.45 25.21 +0.76
hi 9.27 12.83 +3.56 14.08 15.48 +1.40

Table 9: Cumulative gains obtained for each lan-
guage – B0 = Baseline, B1 = Best System

2 Medical Translation Task

For the medical translation task, the organisers
supplied several medical domain corpora (detailed
on the task website), as well some out-of-domain
patent data, and also all the data available for the
constrained track of the news translation task was
permitted. In general, we attempted to use all of
this data, except for the LDC Gigaword language
model data (for reasons of time) and we divided
the data into “in-domain” and “out-of-domain”
corpora. The data sets are summarised in Tables
10 and 11.

In order to create systems for the medical trans-
lation tasks, we used phrase-based Moses with ex-
actly the same settings as for the news translation
task, including the OSM (Durrani et al., 2011),
and compound splitting Koehn and Knight (2003)
for German source. We did not use word clusters
(Section 1.2), as they did not give good results on
this task, but we have yet to find a reason for this.
For language model training, we decided not to
build separate models on each corpus as there was

4Cumulative gains do not include gains obtain from big
language models for hi-en and en-de.

Data Set cs-en de-en fr-en
coppa-in n n y
PatTR-in-claims n y y
PatTR-in-abstract n y y
PatTR-in-titles n y y
UMLS y y y
MuchMore n y n
EMEA y y y
WikiTitles y y y
PatTR-out n y y
coppa-out n n y
MultiUN n n y
czeng y n n
europarl y y y
news-comm y y y
commoncrawl y y y
FrEnGiga n n y

Table 10: Parallel data sets used in the medical
translation task. The sets above the line were clas-
sified as “in-domain” and those below as “out-of-
domain”.

Data Set cs de en fr
PIL n n y n
DrugBank n n y n
WikiArticles y y y y
PatTR-in-description n y y y
GENIA n n y n
FMA n n y n
AACT n n y n
PatTR-out-description n y y y

Table 11: Additional monolingual data used in
the medical translation task. Those above the line
were classified as “in-domain” and the one below
as “out-of-domain”. We also used the target sides
of all the parallel corpora for language modelling.

a large variation in corpus sizes. Instead we con-
catenated the in-domain target sides with the in-
domain extra monolingual data to create training
data for an in-domain language model, and simi-
larly for the out-of-domain data. The two language
models were interpolated using SRILM, minimis-
ing perplexity on the Khresmoi summary develop-
ment data.

During system development, we only had 500
sentences of development data (SUMMARY-DEV)
from the Khresmoi project, so we decided to se-
lect further development and devtest data from the
EMEA corpus, reasoning that it was fairly close
in domain to SUMMARY-DEV. We selected a tun-
ing set (5000 sentence pairs, which were added to
SUMMARY-DEV) and a devtest set (3000 sentence
pairs) from EMEA after first de-duplicating it, and
ignoring sentence pairs which were too short, or
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contained too many capital letters or numbers. The
EMEA contains many duplicated sentences, and
we removed all sentence pairs where either side
was a duplicate, reducing the size of the corpus
to about 25% of the original. We also removed
EMEA from Czeng, since otherwise it would over-
lap with our selected development sets.

We also experimented with modified Moore-
Lewis (Moore and Lewis, 2010; Axelrod et al.,
2011) data selection, using the EMEA corpus as
the in-domain corpus (for the language model re-
quired in MML) and selecting from all the out-of-
domain data.

When running on the final test set (SUMMARY-
TEST) we found that it was better to tune just on
SUMMARY-DEV, even though it was much smaller
than the EMEA dev set we had selected. All but
two (cs-en, de-en) of our submitted systems used
the MML selection, because it worked better on
our EMEA devtest set. However, as can be seen
from Table 12, systems built with all the data gen-
erally perform better. We concluded that EMEA
was not a good representative of the Khresmoi
data, perhaps because of domain differences, or
perhaps just because of the alignment noise that
appears (from informal inspection) to be present
in EMEA.

from English into English

in in+20 in+out in in+20 in+out

de 18.59 20.88 – 36.17 – 38.57
cs 18.78 23.45 23.77 30.12 – 36.32
fr 35.24 40.74 41.04 45.15 46.44 46.58

Table 12: Results (cased BLEU) on the khresmoi
summary test set. The “in” systems include all
in-domain data, the “in+20” systems also include
20% of the out-of-domain data and the “out” sys-
tems include all data. The submitted systems are
shown in italics, except for de-en and cs-en where
we submitted a “in+out” systems. For de-en, this
was tuned on SUMMARY-DEV plus the EMEA dev
set and scored 37.31, whilst for cs-en we included
LDC Giga in the LM, and scored 36.65.

For translating the Khresmoi queries, we used
the same systems as for the summaries, except that
generally we did not retune on the SUMMARY-DEV

data. We added a post-processing script to strip
out extraneous stop words, which improved BLEU,
but we would not expect it to matter in a real CLIR
system as it would do its own stop-word removal.
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