INFORMATION AND OONTROL 3, 231-247 (1980}

The Application of the Ferranti Mercury Computer
to Linguistic Problems

MicraEL LEVISON

Department of Numerical Aulomalion, Birkbeck College, London

In a book published in 1958 (Booth ef al., 1958) and hereafter called
MRLP Booth, Brandwood, and Cleave discussed at some length the
various ways in which electronic computers could be applied to re-
solving linguiatic problems, and gave an sccount of the results ob-
tained at the Birkbeck College Computational Laboratory.

Since that time, the University of London has acquired a Ferranti
Mercury computer which, though primarily designed for the solution
of mathematical problems {and making use of floating point arith-
metic), has a large immediate-access store and a great speed which
make it very svitable for linguistic work. Thiy ncquisition has made
it possible $o put into practice on a full scale many of the ideas which
the book contained.

The present paper elaborates upon some of these ideas with par-
ticular reference to the way in which they are affected by the design
of the Mercury. The paper is divided into several sections and the
first devoted to a description of the Mercury insofar as it affecta the
design of linguistic programmes, The basic ideas behind the dietion-
ary searching methods described in Section V appeared in MRLP. The
minor discrepancies between some of the mathematical results in this
section and the corresponding ones in MRLP are due to the assump-
tion in the latter that this size of dictionary is large. It will become
apparent that this assumption cannot always be made in dealing with
the Mercury.

I. DESCRIPTION OF THE FERRANTI MERCURY COMPUTER

The Mercury computer as at present installed at the University of
London Computer Unit is a one-address, pure binary, floating point
machine with a core store of 1024 40-bit registers and a magnetic drum
backing store of 16384 40-bit registers. In the following text the terms
“register’” and “location’ are used to refer to places in the computer
stores; “word” will be used exclusively in the linguistic sense.

! {z] is used throughout to denote “the integral part of z.”
231

232 LEVISON

The core store is divided into 32 parts called “pages,” numbered from
0 to 31, each containing 32 40-bit registers, while the backing store is
divided into 512 similar parts, numbered from 0 to 511, known as “sec-
tors.” Access to the backing store is by means of “drum instructions”
which transfer the contents of any sector to any page or vice versa. It
is possgible to isolate blocks of sectors to prevent them from being over-
written.

The 40-bit registers mentioned above are called “long” registers. Each
may be considered as two 20-bit “medium” registers, and each of these
may be considered as two 10-bit “short” or “half”’ registers.

Floating point numbers, when stored in the ecomputer, oceupy one
long register each, 10 bits being used to represent the exponent, and 30
bits to represent the fractional part,

The computer has a 40-bit accumulator in which operations in floating
point arithmetic may be performed. The contents of any long register
may be copied into the accumulator and vice versa.

Each machine instruction occupies one medium register, the most sig-
nificant 7 bits of which give the function, the next 3 the “B-digits”
{(whose use is explained below}, and the remaining 10 either an address
or an integer modulo 2" (depending on the function). Instructions can
be obeyed only in the first half of the core store (pages 0~15) and are
obeyed sequentially unless a “jump’ instruction is encountered. Access
to the second half of the core store is by drum and accumulator instrue-
tions only.

The short registers may be used for storing 10-bit integers which may
be considered either as integers (modulo 2'%) in the range 0 to 1023 or
as integers {modula 2'°) in the range —512 to 511, or as addresses,

The machine also has 7 10-bit “B-lines” (denoted by B1, B2, ---,
B7) in which simple arithmetical and logical operations with integers
(module 2'°) may be performed.

Instructions may be divided into two main types. In those instrue-
tions which operate on B-lines, the B-digits mentioned above specify
the B-line on which the operation is to be performed. The other instruc-
tions are said to be “B-modifiable”—that is to say, the contents of a
B-iine are added {(modulo 2°) to the address part of the instruction
immediately before the function is performed, the B-line (if any)} by
which the instruetion is to be B-modified being specified by the B-digits.
The machine may be considered as having an eighth B-line, B0, which
is always zero regardless of which operations are performed on &

FERRANT! COMPUTER AND LINGUISTIC PROBLEMS 233

In addition, there is an extra set of instructions which operaie only
on B7 and which are themselves B-modifiable. B7, when used with these
instructions, is called the Short Accumulator or Sac.

The B-lines and Sac can be tested for sign or for equality to zero, and
“jumps” made conditional on the results of the test,

Input and ontput are by means of five-hole tape to or from the five
least, significant digits of any specified short register.

A short “binary” input routine is kept on sectors 0 and 1 of the drum
and cannot be overwritten. I't is used to read in one of several comprehen-
give interpretive input routines. The one most suited to linguistic pro-
grams is called PIG F and is read to sectors 2 to 63 of the drum. This
in its turn interprets the program tape and assembies the program be-
ginning in sector 128. The program is then brought into pages 1 to 15
of the core store in sections called “chapters” determined by the pro-
grammer, each small enough (i.e. less than 960 instructions) to be con-
tained in these 15 pages, and is entered.

The times of the instructions which concern the linguist are as follows:
B-line, Sac and Jump instructions 1 beat or 60 usee
Accumulator copying instructions - 2 beats or 120 usec
Drum. transfers:

Sector transfer time 734 msec
Average time of random access 834 msec

After the transfer of an odd sector any even sector is in position for

the start of transfer 1 msec later, and vice versa,

Input instruction 1 heat
But no further énput instruction can be cbeyed until 5 msee have elapsed.
Output instruction 1 beat

But no further output instruction ean be obeyed until 30 msec have
elapsed.

II. WORD STORAGE

In order to run linguistic programs, one must be able to code words of
real language into numerical form for storage in the computer, and to
compare words by subtraction for equality and for alpbhabetical order.

Now, the fact that the Mercury is a floating point machine impylies
that additions and subtractions into its accumulator are almost always
acecompanied by some shifting and a poessible resultant loss of digits,

234 LEVISON

even if the exponents are equal and if “non-normalizing” addition and
subtraction instructions are used. For linguistic purposes, however, it is
essential that no such loss of digits occurs, and that any additions or
subtractions required are performed in “fixed point” form. Such opera-
tions must therefore be performed 10 bits at a time in the B-lines or in
Sas, the accumulator being used only as & momentary store, or to trans-
fer the contents of one long register of the core store to another.

It is convenient to code the English alphabet into numerieal form as
follows:

A=1B=2C=3 - ,% = 2.

Fach of these numbers may then be expressed by a group of 5 bits
called a “binary character.” For storage, words are divided into pairs of
characters beginning at the left, each pair of being stored in a short
register in the form 2% -+ 8. Such pairs of characters are called “letter-
pairs.” From what has been said above about the Mercury, it is clear
that letter-pairs form a convenient basic unit in the machine comparison
of two words.

For simplicity, words may be stored as a fixed number of letter-pairs
{e.g., as 8 letter-pairs, stored in 2 long registers), the absence of a let-
ter being denoted by a zero.

Thus, for example, the word “CERTIFICATE"” may be written as
the 8 letter-pairs:

CE, RT, IF, IC, AT, -, ——, ——
and these stored as:
101, 506, 204, 201, 52, 160, 0, 0
= 8.32 4 5, cer, cee, wee, o+, 5.32 4 0, 0.32 + 0, 0.32 + 0.

The conversion from a sequence of binary characters on a tape (each
character representing one letter) to this form is, of course, carried out
by the computer itself.

1t is evident that if each of a set of words is expressed as k letter-pairs
in this manner (where k is some fixed number) and the resulting 10 &
bits considered in each case to be a 10k-bit posifive integer, then the
ascending vumerical order of these integers is precisely equivalent to the
alphabetical order of the words they represent.

Notation: If word W, is alphabetically before word Wy, we shall write
W, & Wy, ete.

FERRANTI COMPUTER AND LINGUISTIC PROBLEMS 235

Iil. WORD COMPARISON

To compare two words of & letter-pairs each for equality or for al-
phabetical order, it is necessary to compare the letter-pairs of one to the
letter-pairs of the other, one by one, starting with the most significant.
The comparison continues until (1) two corresponding pairs are found
which are unequal, or (2) two corresponding pairs are found which are
equal and equal to zero, or (3) all the corresponding pairs have been
compared and found equal.

In case (1) the alphabetically earlier pair belongs to the alphabetically
earlier word. In cases (2), (3) the words are equal.

Let W4 , W3 be two words having as their k letter-pairs (e, a1, *
o) and (Be,B1, -+ »Be-1) respectively. Then the above rules are repre-
sented diagrammatically in Fig. 1.

IV. LETTER-PAIR COMPARISON

It will be appreciated that in coding letter-pairs into the form pre-
viously described, the resulting 10-bit integers are considered to be in
the range 0 to 1023. For the purpose of examination of sign however,
10-bit integers in the B-lines or Sac are considered to lie in the range
—512 to 511, each number in this range being identical in form with that
one in the range 0 to 1023 to which it is equivalent modulo 2'°.

Tt follows that, within the machine, an integer in the range 512 to 1023
is considered to be less than one in the range 0 to 511, whereas for lin-

guistic purposes it is necessary to consider it as being greater.

Cempare &
iso fetter - pairs .

’ &j v Bi
N

l Add1toi !—I

Fic. 1. Word comparison. 1, Wa << Wy ;3 2, W Wa;3, Wo= Wy, (Diagram
conventions: E is the the point of entry and the other circles the alternative points
of exit of the programme. Blocks with & double line to the left contain the initial
gettings of the various parameters. Diamonds contain guestions with Yes/No
answers.)

o™

236

Fic. 2. Complete letter-pair comparison. 1, a > 8; 2, a X f;3,a = 8

The following rules must therefore be applied when comparing two
letter pairs o, 8, in order to overcome this difficulty:

1. fa < Qand g = 0, then o 35> 8.

2. ez 0and 8 < 0, then 8 > a.

3 Hfaz0andsz0,orif e <Oandg <0, thena>>, =, or K g8

according as ¢ — 8 >, =, or < 0.
These rules are represented diagrammatically in Fig. 2.

Of course, this complication only arises if it is necessary to compare
the letter-pairs for alphabetical order. If it is merely required to deter-
mine equality or inequality, a much simplified form of eomparison may
be used (Fig. 3).

V. DICTIONARY SEARCHING

The purpose of any linguistic program is to read into the computer
and to operate on the words of some text and to output some information
about the text {e.g. a glossary, or a translation).

In the course of this it is sometimes found necessary to search a set of
words {a “dictionary”) previously stored in the computer in order (1)
to discover whether or not a given ‘“text word” is present in the diction-
ary, and/or (2) to obtain about the text word some information (e.g.
its translation, or its part of speech) which has been stored side by side
with the dietionary in the computer.

There are several methods available for dictionary searching and the
basic ones are described and compared below.

FERRANTI COMPUTER AND LINGUISTIC PROBLEMS 237

A. Tug Dirgcr METHOD

In this method, the dictionary words themselves are not stored af all.
Instead, the information required about any dictionary word is stored '
in that jocation whose address bears some given arithmetical one-to-one
relationship to the code number representing the word.

The method, though needing far the fewest number of machine
instructions of any of the methods deseribed, is nevertheless quite im-
practicable (except possibly if the “words’ are restricted to one or two
letters). Thereason is that, for words of a givenlength, it requires the com-
puter store to have as many locations as there are possible letter com-
binations of that length, while in fact only a very small fraction of these
combinations—less than 1 in 10° if words are restricted to 12 letters—
are actually words.

B. Tue Lingar MerHOD {(ALPHABETICAL ORDER)

The words of the dictionary are arranged in alphabetical order and
stored in the machine. The text word is then compared with each in
turn, starting with the first, using the word comparison illustrated in
Fig. 1 with the letter-pair comparison illustrated in Fig. 2. until (1) a
dictionary word is found which is the same as the text word, or (2)
a dictionary word is found which isalphabetically later than the text word,

Form 3

g~

Nﬂ

Yes

Fig. 3. Abbreviated letter-pair comparison. 1, a # 8; 2, & =

238 LEVISON

or (3) the last word of the dietionary is passed without {1) or (2) oc-
curring. In cases (2}, (3) the text word is not present in the dictionary.

Ii the dictionary contains N words, the average number of word com-
parisons required by this method to locate a text word which is in it will
be 14(N + 1). The average number required to detect the absence of a
text word from it is BN(N + 3)/(N + 1). These formulas are very
approximate, being based on assumptions about the distribution of text
words relative to the dictionary. (See Appendix.)

C. Tae Linear MetHop (FREQUENCY ORDER)

This is similar to the previous method. The dictionary words are ar-
ranged, however, not in alphabetical order but in the order of probable
frequency of occurrence.

The text word is again compared with each dictionary word in turn,
this time until (1) a dictionary word is found which is the same as the
text word, or {2) the last word of the dictionary is passed without (1)
oceurring.

In this method the abbreviated form of letter-pair comparison illus-
trated in Fig. 3 may be used, sinee it is only desired to ascertain whether
or not dictionary and text words are exactly the same,

The average number of word comparisons to locate by this mct.hod a
text word which is present in the dictionary is clearly less than the aver-
age number required by the previous method, being, in fact, N/(y +
log, &), if Zipf’s law holds. (See Appendix.) However, to determine if a
text word is not present it is necessary to compare it with every word
in the dictionary.

Furthermore, this method can hardly be used by the glossary-maker
who, before making his glossary, would not know in which position in
the dictionary to enter an unlocated text word, and who is anyway try-
ing to arrange the text words in alphabetical order.

D. Tee LogaritaMIc (0R Bracxkerine} METHOD

Once again let the dictionary contain ¥ words, and let these be ar-
ranged in alphabetical order ccoupying “dictionary positioms” 0 to
(N - 1),

The principle behind this method is as follows:—

Suppose we compare the text word, W, with the word Dg about
half way down the dictionary. Then either

(1) We = Dy, or (2) W & DH, or (3) Wt» Dyg.

FERRANTI COMPUTER AND LINGUISTIC PROBLEMS 2390

In case (1) we have located W» in the dictionary. In case {2) we
have discovered that W can only occur in the half of the dicticnary
before Dy . In case {(3) Wy can only occur in the half of the dictionary
after Dg.

In cases (2), (3) we repeat the whole process but with the appropri-
ate half-dictionary replacing the whole, i.e., we compare W with the
“quarter-way” word (case 2) or with the “three.quarter-way” word
(case 3}; and so on,

At each step either the text word is located in the dictionary or the
range of the dictionary in which it can oceur is halved. After, at most,
{loge N']' such steps this range has been reduced to one word only (if the
text word has not heen located) and a final word comparison indicates
either that this word is the same as the text word or that the text word
is not in the dictionary.

It will be seen later that the most convenient position for Dy is not,
in fact, 14N,

Now, the maximum number of dietionary words which one ean search
in m comparisons by this method is 2* — 1 (proved below), and it is
found that complexities occur in programing the search if N is not of the
form 2™ — 1 (m integral).

To overcome these complexities we choose the integer m such that

T N <2 =1

and expand the dictionary to contain (2™ — 1) words by adding to it,
in dietionary positions ¥ to (2™ — 2), “dummy”’ words, each consisting
of letter-pairs 1023 (i.e., ensuring that, in any word comparison between
a dictionary word Wp in this range and a text word Wy, we obtain
We € Wp).

This, however, is not always possible or convenient. For example,
suppose that the store were exactly large enough to hold a dictionary of
1500 words and that we wished to record a dictionary of 1450 words in
it, Then we could not expand this dictionary to the required 2047 words
by adding dummy words to it because there would be no physical loca-
tions in which to place the last 547 dummy words. Aetually, in this case,
it would be necessary to store dummy words only as far as the “three-
quarter-way”’ position of the expanded dictionary {position 1535), since
all the actual words occur before this, However, even this is not possible,

In such cases we can, instead, expand the dictionary imaeginarily, i.e.,
no dummy words are actually added, but the dictionary is searched as

240 LEVISON

i it contained 2™ — 1 words. Before taking any dictionary word D, to
compare it with the text word Wy, however, we examine its position
number, p. If p = N, no actual comparison takes place and we simply
say WT <« D? N

It is, of course, quite possible to combine these schemes and to store
some dummy -words physically and others imaginarily. In all cases the
“half-way” position is (2™ — 1), the “quarter-way” posttion is
(2™ — 1), and the “three-quarter-way” position (3.2™* — 1). The
dietionary positions with whose contents text words must be compared
in successive steps are P, , Py, + -+, P, , where

P1=2m_1"' 1, Pzﬂplz:lta?maz,
P3= Pz:hzmps, "',Pm=Pm-13|'—'1s
or, in general,
Pi= 2" — 1, P, =P,y + Ry(s=2,3,,m)

where B, = £ 27" and the sign is determined by the result at the pre-
ceding step.

The Logarithmic Search is illustrated diagrammatically in Fig. 4, the
dotted section being included i imaginary dummy words are used.

The absence of 2 text word from the dictionary will, of course. be dis-

covered in exactly m word comparisons, Also for each s = 1,2, ---, m
there are just 2" words of the dictionary reached with s comparisops.

4N Compars I
Vs .
mey _ ’ \ dicticnary wordiw, =D
©+ 'P':m-z | 5 ‘\paN #)_ Dy it position p‘._’.).i®
ra
\

/ with
'S \{" text word , Wy
i W, <«<D. W, >0
L P
Replace :Yes tee
r by [‘/g r] e +
Replace ‘Replace
Ho p by p-r pby pir
~ -~
et frag <

Fig. 4. Logarithmic dictionary search. 1, text word located in position p of
dietionary; 2, text word not in dictionary.

FERRANTI COMPUTER AND LINGUISTIC PROBLEMS 241

This is why the maximum number of dictionary words which can be
searched in m comparisons or less is 2™ — 1, that is,

Ll

>

Il
Now, suppose N # (2™ - 1), then some of the 2" words may be
dummy words. The number of actual words reached with s compari-

sons i
N+ 2™
“om—ti o |*

This makes the average number of comparisons per located text word
approximately m — 1.

There is a small refinement which might decrease this average very
slightly. Provided that they are in correct alphabetical position, there
is no reason why physical dummy words should be placed at the end
of the dictionary. Thus, for example, if the dictionary has the sequence

.-+, THATCH, THAW, THE, THEATRE, .-

we might put the dummy words between THAW and THE in the form
THD. It might be possible, by this means, to defer to (say) the half-
way position some very common word oceurring just before it. Of course,
one must choose as dummy words letter combinations which cannot be
real words, especially in machine translation if a stem/ending analysis
is in use. The refinement obviously eannot be used in making glossaries.

E. BeFINEMENTS

Among the further refinements available in dictionary searching are
those in which the dictionary is stored in several parts or ““files.”

For example, we might store ihe dicticnary in two files comprising
(1) common words, and (2} others; or in three files comprising (1)
words of 4 letters and less, (2) words of 5 to 8 letters, and (3) words of
more than 8 letters.

Bach file is searched, of course, by one of the methods already de-
seribed,

Of the various ways of partiticning the dictionary the one which con-
cerns us must here is partitioning by initial letters. The dictionary is

242 LEVISON

divided into files in such a way that the {appropriate) file in wl
given text word can occur may be determined from the initial let
letter-pair of the text word.

There are two basic ways of linking a letter (-pair} with the a
priate file. One is to give the files numbers having a direct arithm
relationship to'the letier (-pair). The other, less restricting, is to
ber the files in any convenient manner and to store 3 “file-directo
1e., a-special dictionary in which each “word” is an initial letter {-
and the “information” is the number of the appropriate file.

It is usually quick and practicable to search the file directory b
direct method.

V1. DICTIONARY SEARCHING ON THE MERCURY

Up to now it has been assumed that each of the N dictionary
is quickly and readily accessible in the computer. This is in fact
with the Mercury, provided that the dictionary is small enough
contained side by side with chapters of the program in the core
(i.e., of the order of 100200 words),

If, however, the Mercury is used to its best advantage and
2000-5000 words are stored, the words are no longer accessible
uolly, To reach them one must transfer an entire seclor of words
drum to core store. As this takes a relatively long time it is essent
do it as infrequently as possible, and one must therefore try to tr
the appropriate sector for a given text word first time,

For this purpose we must arrange to partition the dictionary inte
each sufficiently small to be contained on one sector. This will w
be dope in one of the following ways:

1. We partition the dictionary according to initial letters {or]
pairs). The correct sector is brought to the core store by one of the
letter techniques desecribed at the end of Seetion V,E. The latim
be complicated by the fact that some initial letfers (pairs) are
common than others, and their words may not be containable
single sector.

2, We-arrange the dictionary in alphabetical order and then .
it into sufficiently small sections, recording the alphabetically e
word of each in order in the core store. A search among these
words” will indicate the sector on which the given text word cam

Some space may possibly be saved by recording in the core sto
the earliest word of each sector but a short letter combination

242 LEVISON

divided into files in such a way that the (appropriate) file in
given text word can ocour may be determined from the initial
letter-pair of the text word.

There are two basic ways of linking a letter (-pair) with th
priate file. One is to give the files numbers having a direct ariti
relationship to'the letter (-pair). The other, less restricting, is
ber the files in any convenient manner and to store a ‘“file-direc
i.e., a-special dictionary in which each “word” is an initial lettes
and the “information’ is the number of the appropriate file.

1t is usually quick and practicable to search the file directory
direct method,

¥I. DICTIONARY SEARCHING ON THE MERCURY

Up to now it has been assumed that each of the N dictionar
is quickly and readily accessible in the computer. This is in fa
with the Mercury, provided that the dictionary is small enoug
contained side by side with chapters of the program in the cm
(ie., of the order of 100-200 words).

If, however, the Mercury is used to its best advantage anc
2000-5000 words are stored, the words are no longer accessible 1
ually. To reach them one must transfer an entire secfor of worc
dium to core store. As this takes a relatively long time it is esse:
do it as infrequently as possible, and one must therefore try to t
the appropriate sector for a given text word first time.

For this purpose we must arrange to partition the dictionary ini
each sufficiently small to be contained on one sector. This will
be done in one of the following ways:

1. We partition the dictionary aceording fo mitial letters {or
pairs). The correct secior is brought to the core store by one of the
letter techniques deseribed at the end of Section V,E. The latte
be complicated by the fact that some initial letters {pairs) are
common than others, and their words may not be containable
single sector.

2. We arrange the dictionary in alphabetical order and then
it into sufficiently small sections, recording the alphabetically e
word of each in order in the eore store. A search among these
words” will indicate the sector on which the given text word can

Some space may possibly be saved by recording in the core sto
the earliest word of each sector but a short letter combination

FERRANTI COMPUTER AND LINGUISTIC PROBLEMS 243

betically later than every word in one sector yet alphabetically earlier
than every word in the next. This will reduce the length of the key-words.

In both of the above eases, once the files have been chosen, we may
rearrange the words within them to suit any desired search method.

It is usually found convenient on the Mercury to take the fixed num-
ber of letter-pairs in & word to be 8. It is then possible to store 16 such
words on any sector or page. If, however, the logarithmic method is
used to search within the sector, it is more time-efficient to store only
156 (= 2 — 1). It is true that this leads to a wastage of 1 dictionary
position in every 16, but in some programs uses are found for these
apaces. '

Special routines are devised to deal with words of 17 or more letters,
but these are normally rare.

VIIL. SECTOR SEARCHING

We now come to consider which of the searching methods to use for
a sector of words once it is in the core store. Naturally the choice is made
on a time basis since the various methods produce identical results.

The time taken for a word comparison depends, of course, on the
number of letter-pairs which it is necessary to compare. If the words
being compared are the same, the average number of letter-pair com-
parisons required is [(§ <+ 1}/2} where j is the average number of letters
per word of the text {= 5 in most English texts). If the words are dif-
ferent, it will generally be sufficient to compare only the first letter-pair
(i.e., two words selected at random generally have different initial pairs)
but within the appropriate sector more will probably be necessary.

Reference to Figs. 2 and 3 reveals that the time taken for the abbre-
viated form of letier-pair comparison (Fig. 3) is constant, but that the
time for the full form (Tig. 2) is highly variable and, on average, some-
what longer.

Let L,F be the average times for a single word comparison using re-
spectively the full and abbreviated forms of letter-pair comparison. We
will not consider here to what extent L.F depend on the fixed number
of letter-pairs chosen for the words, but will assume this number to have
been selected previously. It is clear, however, from the preceding para-
graph that F is somewhat less than L {say, WL £ F £ 24L). And the
relative times taken to search the sector in the core store for & given
text word (where the sector contains N (= 2™ — 1) words) are shown
in Table 1.

244 LEVISON

TABLE I

Method of search Linear (alphabet) Linear (frequency) gmﬁ.ﬂl-

Average time to locate | } (N + 1)L 4 2~1L | NF/(log. N ++) | (m - 1)L
text word in general die-
tionary position

Average time to locate NL NF ml
text word in worst dic- :
tionary position

Avernge time to detect ab- | N(N +3)L/2{N + 1) NF mi
sence of text word from = Jm1f
dictionary
TABLE II
Linear Linear syt
Methed of search Logarithmic

(alphabet) {frequency)

Average time to locate text word in _L 4.6F 3L
general dictionary position

Average time to detect the absence of 8L 15F 4L
text word from dictionary

IfN =15 = 2" — 1 (ie., m = 4), Table I acquires the values now
shown in Table II.

It will be seen from this table that the logarithmic method is quicker,
on average, than the linear (alphabetical) method, but that there is
little difference in speed between the logarithmic and the linear (fre-
quency) methods. We have already seen, however, that the latter can-
not be used in making glossaries. In addition, one further consideration
prevails in machine translation when a stem/ending analysis is in use.

In a stem/ending analysis, if the text word is not located in the dic-
tionary, its last nonzero letter is removed and the dictionary searched
again for the new word (a ‘“‘stem”). This process continues either until
some stem is found in the dietionary or until no stem remains. The let-
ters removed are called the “ending.”

Suppose that the word has ¢ nonzero letters and that the ending (if
the stem is eventually located) has E letters. Then before locating the

FERRANTI COMPUTER AND LINGUISTIC PROBLEMS 245

TABLE III
Linear {frequency) Lfl:vgarithmic (L(Fl)v__l?%} for
Average time to lo- | E(NF + S}NF EtmL + 8) E(15F — 4L)
cate text word + I'm + (m -~ 1L + 4.6F — 3L
Average time of i gNF 4 (g - 138 | gml % (g — 1)S | ¢{I8F — 4L)
complete failure

stem there will be E unsuccessful searches and one suceessful one. If no
stem is found in the dictionary there will be g unsuccessful searches.

Suppose S to be the average time required to remove the last non-
zero letter of a text word. Then the relative search times, assuming the
dictionary to be arranged so that the sector appropriate to the text word
is appropriate to every stem, are shown in Table ITI.

As it is probable that 4L < 15F, and since the average value of E
must be positive and is, in most languages, greater than 1, the scale is
tipped slightly towards the logarithmic method. This is far more marked
forany N > 15.

With all these preliminary factors deeided, the way is clear to apply
the Mercury to such problems 2s (1) the construction of glossaries, (2)
the construction of eoncordances, and (3) machine translation and
allied problems.

Appendix

THE DERIVATION OF THE MATHEMATICAL
RESULTS OF SECTIONS V,B, C

A. LocaTeEp WoORDS

Let the rth dictionary word be denoted by W, and let its relative fre-
quency of occurrence be f, . Suppose that T of the words occurring in a
given text are located in the dictionary. Then, number of occurrences
of W, is given by

f.T gf.

And the number of word comparisons required to reach W, by any linear
search = r, Therefore, the average number, A, of word comparisons/
located text word is given by

246 LEVISON

«=(&7)/(59)

If the dictionary is arranged in frequency order, thenfi = fa 2 -
Sx , and if, in addition, Zipf’s Law holds,

rf. = const. = M (say).

v

Therefore,

4= MN/(i M/r) = N/{y + log, N).

Dervirion: Let O be a fixed point on the straight line O_>X, and sup-
pose W, to be represented by a particle of mass f, on OX at a distance
7 from O, Then the center of mass of the particles representing the dic-
tionary is called the “centroid” of the dictionary.

Now suppose the dictionary to be arranged in alphabetical order.
Then Wl < Wg e <<Wg,andf1,f2, ---,fxaretoalargeextentin
random order. Thus common words, ete., will be found scattered over
the dictionary and the centroid will be very approximately at the mid-
point, 23(N + 1). ’

On this assumption,

N

for = %(N + 1)-Nf,

r=l

where
f= g Gitfok e+ f

Therefore,

4 = J5(N -+ 1).Nf/Nf = J5(N + 1).

It should be noted that while an assumption is made about the dis-
tribution of common words in the (computer) dictionary, no assumption
is made about their distribution over the alphabet. This is because there
is no reason to suppose that the dictionary words are themselves spread
evenly over the alphabet.

The approximation will be a good one if the dictionary contains (say)
only 16 letter words, or uncommon words, since then f, = f for all r,

FERRANTI COMPUTER AND LINGUISTIC PROBLEMS 247

B. Unnocarep Worbps

Derivtrron: If W,, Ws are sny two letter combinations with
W, << Wy, the set of all letter combinations z such that W. <z K Wy
is called the “alphabetical interval (W, Wa).”

Let Wy denote the *“null” word (every bit zero) and W’ the word
consisting of the single letier pair 1023,

Then if the dictionary is arranged in alphabetical order and a text word
is not located in it, the text word must lie exactly in one of (Wa, Wy),
(W, WS): T (WN-I s WN)’ (WN , W').

Now it is ¢lear that in any (real) language certain initial groups of
letters are more common than others so that the unlocated text words
will probably oceur more frequently in some alphabetical positions than
in cthers. However, in these alphabetical positions there will probably
be more dietionary words so that the alphabetical intervals will be cor-
respondingly smaller.

It is therefore reasonable to expect that the unlocated text words will
oceur fairly evenly among the (N + 1) alphabetical intervals.

Now if a text word isin (W,a, W,) (8 = 1,2, ---, N} the linear
(alphabetical) search requires ¢ word comparisons to detect its absence
from the dictionary; if in (Wy, W'), N. Therefore the average number
of word comparisons/unlocated text word

=(N+is)/(N+1)

sl
= LEN(N + 3)/(N¥ + 1).

ACENOWLEDGMENTS
The author would like to thank Dr. A D, Booth for his encouragement and ad-
vice, and Miss J. Metherell who typed the seript.
REcEIVED: MarcH 25, 1860,

REFERENCES

Boory, A. D, Branpwoon, L., and Cueavs, J. P. {1958). “Mechanical Resolution
of Linguistic Problemas."” Butterworths, London.

