
[Mechanical Translation, vol.5, no.2, November 1958; pp. 74-83] 

 
The Storage Problem† 
William S. Cooper, Massachusetts Institute of Technology, Cambridge, Massachusetts 

The bulkiness of linguistic reference data,  contrasted with the limited capacity of 
existing random-access memory units, has aroused interest in means of conserv- 
ing storage space.    A dictionary, for example,  can be  considerably compressed, 
yet at the same time virtually all of its usefulness can be retained. Various ap- 
proaches to compression are described and evaluated.   One of them is singled out 
for extensive treatment.    This  approach allows  considerable  compression of the 
"argument" part of each dictionary entry,   yet it introduces no chance of lookup 
error,  provided the item to be looked up is indeed in the dictionary. 

The Storage Problem 

A DIGITAL COMPUTER can be used to process 
a staggering quantity of data.   Data that is to be 
processed needs not tax the memory of the com- 
puter,   since it can be dealt with a little at a 
time, and then disposed of.   Sometimes, how- 
ever, the processing itself requires  a large 
store of reference data, and such data must re- 
main accessible throughout the processing — 
and preferably in the most efficient memory 
medium available.    The mechanical translation 
process falls into this  class;   it is inevitable 
that dictionary or glossary information of some 
kind must be  stored in quantity for reference. 
Other long tables of linguistic data may also be 
found useful for translation.    The proportion of 
this  reference data that can be  stored in the 
high-speed memory units depends partly on the 
capacity of the units,  and partly on the clever- 
ness of the programmer. 

The capacity of most high-speed, random- 
access memory units which are presently in 
use for MT experiments is small compared with 

†      This work was supported in part by the U. S. 
Army (Signal Corps),   the U. S. Air Force 
(Office of Scientific Research,   Air Research 
and Development Command), and the U.S.Navy 
( Office of Naval Research); and in part by the 
National Science Foundation. 

1.    M.M. Astrahan, "The role of large memory 
in scientific communications,"  Research and 
Engineering (Datamation) 4,   34-39 (Nov.-Dec. 
1958). 

linguists'  needs.    Without sophisticated packing 
techniques,   even the information in a small 
pocket dictionary could hardly be fitted into the 
high-speed storage of these computers. Special 
arrangements  of the dictionary help (for ex- 
ample,   maintenance of a short subdictionary 
of the most common words in high-speed stor- 
age ),  but it is still necessary to be frugal with 
memory space.    Large  capacity,   high-speed 
storage units are being developed,    and these 
should eventually ease the problem, but mean- 
time  stop-gap techniques for stretching the ef- 
fective  capacity of existing storage facilities 
are needed. 

The programmer is  thus faced with the task 
of shrinking the dictionary to a minimum vol- 
ume, without substantially impairing its use- 
fulness.    The obvious approach is to attempt to 
code the data in question into a form that is 
more compact, but that retains all the original 
information.   An example would be the follow- 
ing rule:   "For English, delete every 'u'  that 
follows a 'q'. "   Note that this coding process is 
reversible, for the more compact, coded form 
may be expanded back to its  original form by 
the rule:   "Insert a 'u' after every 'q ' ."  

However, the formulation of rules as simple 
as the foregoing is highly empirical.   Further- 
more,  simple rules rarely provide a useful de- 
gree of contraction.    On the other hand,   more 
complex coding operations lead to the ridiculous 
situation in which storage  space equalling that 
required by the dictionary is needed to encode 
the material to be looked up or read out.   So 
such recoding approaches, at least at present, 
seem rather unrewarding. 



Storage Problem 75 

Argument Compression 

A more practical approach is to settle for the 
compression of only part of each entry.    The 
name "argument compression"  derives from 
the viewpoint that a dictionary can be  con- 
sidered as a function.    If   X   symbolizes the 
word or phrase to be looked up,  the dictionary 
specifies the value of   F(X).   For example,   a 
French-English dictionary might yield the func- 
tion value   F(X)   =   "n.,boy"   if the  argument 
X   =   "garçon"  were looked up.   An entry in the 
dictionary is thought of as the pair [X, F(X)] for 
some particular   X.    Argument compression is 
confined to whittling down the length of   X for 
every entry. 

Although argument compression is a compro- 
mise measure, it is nevertheless a very useful 
one.   Certainly in applications where the  argu- 
ments  are long and the function values  short, 
it is most valuable.    But even when both   X   and 
F(X) are long, argument compression paves the 
way for some very convenient arrangements. 
The components of an entry   [X, F(X)]  may be 
separated physically in storage,  so long as an 
indication of the location of F(X) is obtained by 
finding  X.    ( The indication could be the ma- 
chine address of   F(X),   which would be stored 
along with   X;  or perhaps the location of   F(X) 
could be made derivable from the machine ad- 
dress of  X.)   In particular,   the compressed 
X's could be kept in core storage, for example, 
and the uncompressed   F(X)'s relegated to tape. 
In many circumstances, the greater facility with 
which lookup operations can be performed might 
recommend this  arrangement.    Furthermore, a 
useful element of   F(X),   such as a part-of- 
speech tag, might be allowed to accompany   X 
in high-speed storage.    If each   F(X)  comprises 
several words,  it might be practical to list on 
tape all words appearing in at least one F(X); 
then F(X) could be indicated by serial numbers 
accompanying   X   in core storage.    These ex- 
amples point to the variety of factors that may 
make argument compression worth while. 

Argument compression is unlike the revers- 
ible encoding process  previously described. 
All that is  required of an argument compres- 
sion process is that it leave the arguments suf- 
ficiently intact to allow one of the entries to be 
singled out as the  correct one.   Consequently, 
a wide variety of devices is  available.   These 
devices  can be divided into methods that com- 
press each argument individually and methods 
that compress each argument in a manner dic- 
tated by the arguments of neighboring entries. 

Suppose that every argument has   N   charac- 
ters,  or fewer;   the first type of device  com- 
presses by discarding information from each 
argument in some ad hoc manner,  so that the 
remainder has the desired length of   N' charac- 
ters.    The truncation of every argument after 
its   Nth  character would be  a crude  example. 
Equally unsophisticated would be the removal 
of some arbitrary portion of each argument, 
say,   every third character.    A little better is 
the system that replaces  each argument by its 
"check sum,"  which is merely the  sum of its 
characters  when the  characters  are  regarded 
as  digits  in some number system.    In binary 
computers,  arguments  must,  of course, lie in 
binary form.    One  can capitalize on this by 
forming a "logical check sum";   each argument 
can be divided into sections of length   N',   and 
the logical sum or product of the sections taken. 
More complicated schemes  can be devised at 
will.   In all instances,   the   X   to be looked up 
must be mutilated in the same fashion as were 
the entry arguments and then looked up by an 
ordinary search routine. 

In general,  automatic dictionaries  are sus- 
ceptible to two kinds of error: 
Error  1.   When   X   is indeed in the dictionary, 

either no value or a mistaken value 
of   F(X)   is yielded by the lookup 
program. 

Error  2.   When   X   is not in the dictionary,  an 
F(X) is assigned to it anyway and is, 
therefore,  extraneous. 

The compression devices described in the pre- 
ceding paragraph introduce the possibility of 
both kinds of error, the reason being that there 
is no guarantee against two or more different 
arguments being compressed down to the same 
form.   However, the probability of this happen- 
ing is surprisingly low2  if the desired length 
N'   is large enough and if the system of com- 
pression is sufficiently "random."   If the in- 
stances of two arguments being compressed in- 
to the same form are few enough,   Error 1 can 
be eliminated by listing the problematic argu- 
ments separately in the computer and by check- 
ing  X  against the exceptions list before it is 
looked up.    And there is always the resort of 
trying slightly modified compression schemes 
until one that introduces a low error risk is 
found. 

2.    D.Panov,  "Concerning the problem of ma- 
chine translation of languages, " Publication of 
The Academy of Sciences of the U.S. S. R., 
pp. 9-10,   1956. 



76 W. S. Cooper 

Such systems have a special advantage: if N' 
is set equal to or less than the length of a ma- 
chine address, and every argument can be com- 
pressed to length   N', then each  F(X),   or an 
indication of the location of F(X), can be stored 
in the register whose address equals the com- 
pressed form of   X.   Not only is the storing of 
X  avoided completely, but the lookup is imme- 
diate and involves no   trial-and-error system. 
When data from short dictionaries or subdic- 
tionaries is to be stored in a machine featuring 
multiple address instructions,   this arrange- 
ment may be ideal. 

The second type of device for argument com- 
pression depends on some special ordering of 
the dictionary entries.   Then only the relation- 
ships between the arguments of succeeding en- 
tries need be stored. Here is an instance where 
the   relationships   between   arguments are   so 
simple that they are known a priori:   A table of 
the cube roots of the positive integers may be 
stored merely by storing the ascending values 
of the cube roots in successive registers;   the 
z th  register then contains 3√z, and arguments 
may be dispensed with. 

Unfortunately, dictionary arguments are not 
as tightly interrelated as numerical arguments 
usually are.   But the imposition of some order- 
ing —  say, alphabetic —  immediately creates 
redundancy in the left-hand columns of a list. 
For example,   the following eight words might 
be found as arguments of consecutive entries in 
a French-English dictionary: 

garçon 
garçonnier 
garde 
gardon 
garer 

   gargantuesque 
gargariser 
garnir 

Only the underlined part of each word differs 
from its upstairs neighbor.   It has been sug- 
gested3   that certain redundant parts of each 
entry could be deleted and replaced by an indi- 
cation of the number of letters to be brought 
down from the preceding entry.   For example, 
this dictionary segment could be stored as: 

3.    W.N.Locke and A.D.Booth (editors),   Ma- 
chine Translation of Languages, (The Techno- 
logy Press of M.I.T. and John Wiley and Sons, 
Inc., New York, May 1955),   Chap. 5, "Some 
problems   of  the   'word',"   by  W. E. Bull, 
C. Africa and D. Teichroew. 

0garçon 
6nier 
3de 
4on 
3er 
3gantuesque 
5riser 
3nir 

This representation has the advantage of being 
reversible, for the dictionary arguments could 
be reconstructed in full.   Neither Error 1 nor 
Error 2 would occur.   The disadvantage of the 
representation is that the compressed forms 
are of unequal length, some of them still being 
very long. 

It is a striking and apparently little-known 
fact that if a word is known to be in the list, it 
is unnecessary to store anything but the follow- 
ing list,  which consists of an indication of the 
number of letters to be brought down and the 
first letter of the remainder of each word: 

-- 
6n 
3d 
4o 
3e 
3g 
5r 
3n 

Furthermore, if the list is based on the equiva- 
lent binary spelling of words rather than on 
their alphabetic spelling, it is necessary to store 
only the number of binary digits to be brought 
down from the preceding entry —  the first digit 
in the remainder is always a one. 

The rest of this paper develops the idea and 
describes the way a word can be looked up in 
such a list. We call this system "constituent 
compression." It has the following features: 

a) There is no risk of Error 1.  
b) It compresses to a high degree.   In a bi- 

nary machine it can shrink an N-bit word down 
to as few as  N'   =   log 2 N  bits. 

c) The lookup method is fairly complicated 
and slow,  although perhaps no more so than the 
alternative that would be forced by longer argu- 
ments .    Provision for looking up several words 
at one time makes the lookup program more 
efficient. 

d) In applications where an Error 2 is pos- 
sible, the probability of such can be lowered at 
the cost of retaining, somewhere in the com- 
puter,   more information from the original 
argument list. 



Storage Problem 77 

Terminology of Constituent Compression 

An argument in a dictionary is a string of al- 
phabetic characters, but we must endow it with 
numerical properties.   It is possible to identify 
each character with a digit in the number sys- 
tem with radix   r,  where   r   is at least as large 
as the number of different characters to be 
dealt with.   But since the argument must cer- 
tainly become a series of digits when it is 
placed in storage, it is probably more natural 
to regard the coded string as the character 
string.   In this case, the radix  r   would simply 
be the base of the computer, e.g.,   r  =  2  for 
binary computers. 

Imagine that the arguments are arranged in a 
vertical  list.   Append  leading   zeros   to  the 
shorter   arguments   until all have a common 
length of  N characters.   If there are M argu- 
ments  all told,   the list resembles  an   MxN 
matrix having the augmented argument  A     as 
its typical row: 

 A1 =   a 1,1 …  a 1,n … a 1,N 

(1) Am =  a m,1 … a m,n … a m,N 

 AM = a M,1 … a M,n … a M,N 

The lower-case   a's   are individual characters 
which are considered as digits,   and a row  A 
is a single number.   Our ordering restriction 
requires that 

(2) Ai  <Ai+ 1 < . . . < A j < . . . < A k - 1 < A k  

under the convention   l ≤i <j<k ≤M. 

Next in some number system with radix s 
(usually  s=r), we form a strictly decreasing 
series of  N   non-negative integers: 

(3) b 1 >b 2 >. . .>b n >. . .>b N - 1 >b N  

When  some   a m,n from (1) is written after 
the corresponding bn    from (3),   the combina- 
tion is called a constituent of Am ,   and might 
be denoted   bn a m,n where the conjunction de- 
notes "write end to end" rather than "multiply." 
When it is not desirable to specify a particular 
n,   C m   denotes any one of the  N  constituents 
of  Am .   Every constituent can be read    as a 
number in some system with radix as large as 



78 W. S. Cooper 

 



Storage Problem 79 

 



80 W. S. Cooper 

 

  

There seem to be at least two approaches to 
performing the search.   The first uses a carrier 
that is equipped to record as many as   N   con- 
stituents at a time.   In the second, the carrier 
contains at most one constituent at a time.   The 
approaches are most easily described and dis- 
tinguished by means of flow diagrams.   They 
will be discussed in the following two sections. 

Search Using a Multiconstituent Carrier 

Figure 2 illustrates how a search might pro- 
ceed.    Given the initial conditions of box  (a), 
the loop is traversed   M  times,   one cycle for 
each successive position   m.   Boxes (b) and 
(c) may be regarded as maintenance rules for 
the carrier,   to bring it up to date with    m. 
Box (d) makes the crucial decision of whether 
or not to nominate the current value of    m. 
An arrow should be interpreted as "replaces, " 
and   c(z)   means   "contents of   z." 

A special format for the carrier may be help- 
ful.   Let the carrier be simply an  N-digit reg- 
ister in the computer: 

(4) d 1 d 2 . . . d n . . . d N - 1 d N  

At box (a), every   dn  is set equal to zero.   In 

order to place a constituent  Cm
m-1   =  bn am,n 

in the carrier,   set   dn    at the value of   am,n 

To remove it,  set  dn    =  0  once again.   It can 

be shown that no two constituents need ever 

share the same   dn    in the carrier.   The format 

for the carrier described by (4) allows boxes 

(b),   (c) and possibly (d) to be  executed effi- 

ciently with shifting operations, especially if 

the sequence (3) is  judiciously chosen so that 

its members dictate the amount of shift.   Also, 

with format (4),   the question of box (d) may be 

rephrased   into   a  weaker  form:   "Is   each 

d n ≤ x  ?"   where   x n   is the   n  th    digit of   X. 



Storage Problem 81 

In a binary machine, format (4) for the carrier 
may be exploited further.    The question of box 
(d)  becomes,     "Is   xn   =   1   for  every  n for 
which    dn   =   1 ?"    Logical  operations   give a 
fast answer. 

Figure 3 illustrates the problem of looking up 
X= 001   111   010  100  010  01l  001   100 by using 
only the constituent list in Figure 1.    Each line 
of Figure 3 shows the state of the search after 
the main cycle of Figure 2 has been performed. 
The special format (4) has been used to display 
the contents of the carrier.    In place of a value 
of  m,   either  F(Am)   or its machine address 
could have been stored in the nominator. 

Search Using a Single-Constituent Carrier 

If the test of box (d) in Figure 2 remains un- 
wieldy in spite of attempted streamlining, a dif- 
ferent approach is needed.   Figure 4 displays a 
search method in which the carrier is never re- 
quired to carry more than one constituent at a 
time.   Therefore special formats for the carrier 
need not be devised.   Figure 5 illustrates   the 
same problem as did Figure 3.     This time, 
however, the flow diagram of Figure 4  was 
used for its solution. 

Explanation of the Procedures 

The   lookup   procedures   of   Figure   2    and 
Figure 4 work on the same principle.   Since 
the binary case is the most easily visualized, 
we will take as  our illustration the argument 
matrix of Figure  1.    Dotted horizontal lines 
extend from above the boxed one-bits to the 
right edge of the matrix.   Because the list is 
ordered in ascending magnitude, two little the- 
orems may be proved: 

Theorem I: Starting at each boxed one-bit, a 
"chain" of 1's extends downward 
until a dotted line is reached (or 
possibly farther). 

Theorem II: Starting just above each boxed one- 
bit,   a chain of zeros extends up- 
ward until a dotted line is reached 
(or possibly farther). 

By using the information in the constituent lists, 
a "cross-sectional" view of the chain of   1's of 
Theorem   I   is  reconstructed in the carrier for 
each position   m.    The search of Figure   2   re- 
constructs cross-sections of all of these chains 
(as is apparent in Figure 3), whereas the search 
of Figure 4 keeps track only of one chain at a 
time.   In either search,  every position   m    is 



82 W. S. Cooper 

 

 



Storage Problem 83 

stop rule that assures us that the remaining 
X's may be ignored at position m. 

An elaborate but efficient program utilizes 
both of the preceding stop rules:   as   m   in- 
creases, a rising floor value of  y  is determi- 
nable from the first rule, whereas the second 
rule determines a ceiling value of   y  at   each 
cycle.    Only those X's  of (5) carrying sub- 
scripts between the floor and ceiling values of 
y  need be considered during any given cycle. 

Throughout the discussion, we have assumed 
that  X  =  Aj   for some argument  Aj;   that is 
that  X is indeed to be found in the  dictionary. 
If we leave the system as it stands,   an error 
of the type described previously as Error 2 is 
certain to occur whenever a word not contained 
in the dictionary is looked up.   For some spe- 
cial applications, the situation could never arise. 
With a large enough dictionary, it might arise 
seldom enough to make the errors forgiveable. 
Otherwise, it would be necessary to supplement 
the constituent list with further information 
about the arguments.   A few of the rightmost 
columns of matrix (1) could be stored,   in ad- 
dition to the constituent list, thereby supplying 
a few "check digits" for each argument.   In or- 
der to use the information,   the check digits 
from    A m   would be compared against the cor- 
responding digits  in   X   at some stage before 
F(Am) could be accepted officially as the cor- 
rect nominee.    The extra information needed 
might reclaim much of the space saved by com- 
pression, but on the other hand, one is free to 
relegate the check information to a slower stor- 
age medium,   perhaps  along with the    F(X)'s. 
If this sort of error check were programmed, 
the risk of an occurrence of Error  2 could be 
reduced to negligible proportions. 

I am indebted to V.H.Yngve, K.C.Knowlton, 
F.C.Helwig, and M. M. Jones for their sugges- 
tions and criticism. 


