
[Mechanical Translation, Vol.6, November 1961]

A Formula Finder for the Automatic Synthesis of Translation Algorithms

by Vincent E. Giuliano*, Computation Laboratory of Harvard University

A system of procedures and computer programs is proposed for the
semi-automatic synthesis of Russian-English translation algorithms.

For the purposes of automatic formula finding, a large corpus of
Russian scientific and technical text may be processed by an automatic
Russian-English dictionary, the resulting word-by-word translation post-
edited according to a systematic procedure, and the final translation trans-
cribed back onto magnetic tape for input to a computer. The operation of
the proposed system is based on the automatic comparison of magnetic
tapes containing the original automatic dictionary outputs with ones
containing the parallel post-edited texts. It is expected that, when given
proper clues, the formula finder will be capable of synthesizing algorithms
that can be used to convert one text into the other.

The clues corresponding to a desired algorithm consist mainly of a
list of logical variables that might in some combination govern the appli-
cation of a specified post-editing transformation. Whenever a product of
the transformation is found in the post-edited text, the formula finder
examines the truth value configuration of the given variables in the auto-
matic dictionary output. After examining all instances of the transforma-
tion, the formula finder ascertains whether the given variables can be
combined into a logical formula that implies the given transformation. The
formula finder compounds the given variables into a valid and optimal
translation algorithm if it is at all possible to do so.

The automatic production of accurate and reliable
sentence-by-sentence translations between pairs of
natural languages must await the resolution of com-
plex syntactic and semantic problems whose solutions
must ultimately be expressed as machinable algorithms.
These are well-defined rules that operate on auto-
matically interpretable information units. The central
goal of much current research in the field of automatic
language translation is to find and test such algorithms.
For example, certain syntactic algorithms presently
being studied at the Harvard Computation Laboratory
are designed to remove many of the ambiguities of
case and tense residual from word-by-word analyses
of Russian. These particular algorithms reflect the
governing influences of certain types of words upon
their close neighbors, and hopefully will clear the way
for the discovery of more sophisticated procedures to
deal with larger phrases and clauses.

Problems of testing translation algorithms by ma-
chine have been discussed elsewhere and automatic
programming systems are being devised to facilitate
the communication of algorithms from man to ma-
chine.1,2 The present paper is concerned with the

*
 Now at Arthur D. Little, Inc. This work was supported by the

National Science Foundation through a grant to Harvard University.
The writer acknowledges the close collaboration of Professor Anthony
Oettinger and of his other colleagues at the Harvard Computation
Laboratory.

semiautomatic synthesis of translation algorithms from
empirical data, a means of formula finding that might
eventually supplement current research methods. The
proposed formula finder is a system of computer pro-
grams that will compare an extensive body of Russian
text with its parallel English translation. When given
proper clues by linguists, the programs will synthesize
algorithms that can be used to transform one text into
the other.

The formula finder system to be discussed here is
compatible with the translating programs operating
at Harvard.3,4,5 Russian is therefore taken as the source
language for translation, English as the target lan-
guage. Nevertheless, the logical principles used in de-
signing the formula finder are not language-dependent.
These principles could be employed in the design of
similar formula finders capable of operating with other
given pairs of mutually translatable natural or artificial
languages.

While an automatic formula finder may eventually
serve as an important aid for research in automatic
language translation, such a system cannot replace
the linguists and other scholars currently engaged in
this activity. The algorithms synthesized by the pro-
posed formula finder are guaranteed to work only on
the experimental corpus of text examined by the ma-
chine; they will be only approximately valid when ap-
plied to other texts. The synthesized algorithms must

11

be examined, evaluated, and perhaps revised or gen-
eralized in the light of long experience with the lan-
guages by monitoring human linguists.

1. Translation Transformations

It is convenient to introduce a few symbolic conven-
tions. The sentences in a corpus of Russian text to be
translated or analyzed will be thought of as serially-
numbered, the symbol sj being used to denote the jth
sentence. Words, punctuation marks, special symbols,
and other components of sentences will also be thought
of as being numbered within their sentences, and the
symbol wij will be used to identify the ith component
of the jth sentence.

An essential subsystem of the formula finder is an
automatic Russian-English dictionary operating on
inflected Russian word forms, i.e., a so-called “full
paradigm” dictionary.4 Although the Harvard diction-
ary contains Russian word stems, transformations of its
outputs are provided that make the dictionary behave
as if its words were represented by their full para-
digms.5 The transformation Td performed by the auto-
matic dictionary replaces each Russian word wij with
an entire dictionary entry Wij for that word on mag-
netic tape, i.e., Wij = Td(wij). When wij is a punc-

tuation mark or special symbol, Td replaces the symbol
with a “dummy” dictionary entry Wij containing only
that symbol and an appropriate amount of fill. Each
regular dictionary entry is presumed to contain a Rus-
sian word, a complete set of English correspondents
for that word, and coded grammatical data character-
izing the Russian word and its correspondents in de-
tail. Entries from the Harvard Automatic Dictionary,
printed from magnetic tape, are shown in Fig. 1. A
typical Russian word is shown transliterated and
marked α, the English meanings are marked β, and the
coded data are marked γ. Part of the coded data, for
example, reads ND11N100. These characters convey
the information that the word притяжение functions
as a noun (N), that it is declinable (D), that it be-
longs to a certain subclass of inanimate nouns (II),
that it is neuter (N), that it functions in the singular
only (1), and that it has no special forms (00). The
other code characters, N 10.00, A0, and A1, indicate
other pertinent properties of the word.6

The word-by-word transformation of the automatic
dictionary Td induces a transformation on the sen-
tences. Each sentence sj is replaced by a set of con-
catenated dictionary entries Sj = Wij called an aug-
mented sentence. The basic research output of an

12

FIGURE 1
ENTRIES IN THE HARVARD AUTOMATIC DICTIONARY

FIGURE 2
MACHINE-PRODUCED WORD-BY-WORD TRANSLATION, AFTER POST-EDITING

automatic dictionary is the set of augmented sentences
S1,S2 S3, . . .,Sp recorded on magnetic tape. This output
will be called the augmented text for the given corpus.
(In earlier publications, it has sometimes been referred
to as the text-ordered sub-dictionary.4) The augmented
text contains both the original textual data and the
additional lexical data present in the dictionary. It is
the logical input to any further automatic process that
improves the translation by performing syntactic or
semantic transformations.

Word-by-word translations produced by an auto-
matic dictionary can be converted into smooth and
idiomatic translations by post-editors familiar with the
technical field of the material translated and having a
slight knowledge of Russian.4,5 A post-edited section
of a word-by-word translation is shown in Fig. 2. The
print is produced by a machine program that edits the
data in an augmented text into a readable format. The
post-editor has drawn arrows on the machine-pro-
duced print indicating a choice of English correspond-
ents and word order. He has also inserted some short
English words and has indicated other modifications
in the printed text. At the date of this writing, about
40,000 running words of Russian text have been trans-

lated with the Harvard dictionary and post-edited in
this manner.

The post-editor effectively behaves like a classical
“black box” of electrical circuit theory. He determines
a syntactic and semantic transformation Ts that carries
the word-by-word translation into a smooth and idio-
matic translation. Although the output of this trans-
formation can be measured for various values of the
input, the internal operation of the post-editor cannot
be viewed. While the post-editor may produce perfect
copy, it does not necessarily follow that he, or anyone
else for that matter, completely understands the proc-
ess used in translating.

The operation of the formula finder is based on the
machine comparison of augmented texts produced by
an automatic dictionary and post-edited translations
of the same texts. The post-edited translation of each
Sj will be represented by Ej = Ts(Sj) = TsTd(wij)
where Td is the automatic dictionary transformation,
and Ts is the transformation determined by the post-
editor. The formula finder simultaneously examines
each Sj and its corresponding Ej. It establishes corre-
spondences between the parallel texts and synthesizes

13

algorithms defining portions of Ts valid for the experi-
mental corpus.

The transformation Ts defines only one of the many
possible mappings of the given Russian corpus into a
valid translation, namely, that actually used by the
post-editors. Use of other post-editors, or even the
same post-editors at different times, would result in
somewhat different definitions of Ts. The non-unique-
ness of the post-editing transformation need not be a
serious problem at present, however, provided that
steps are taken to insure the self-consistency of Ts. At
this stage of research, what is desired is a single valid
system of rules for translating, not a catalogue of rules
for obtaining all alternative valid translations. Empha-
sis is therefore to be placed on the use of a fixed set of
post-editing conventions designed to lead to as simple
and self-consistent a definition of Ts as possible.

2. Translation Algorithms

A tabular definition of Ts is provided by the list of Sj
and corresponding Ej. This definition amounts essen-
tially to a dictionary of sentences in the experimental
corpus and their translations into English. Since it is
obviously not possible to store or even to generate all
meaningful Russian sentences, this definition is not
useful when it comes to translating other Russian texts.
What is needed is a factorization of Ts into a product
of machinable algorithms applicable to situations com-
monly occurring within sentences. For purposes of
automatic formula finding, a specific type of factoriza-
tion is assumed:

Ts = A1A2A3A4...An (1)

where the Ar are elementary transformations having
the Wij as their arguments; they are called basic
algorithms.

A. THE LOGICAL STRUCTURE OF BASIC
ALGORITHMS

The basic algorithms to be derived by the formula
finder are presumed to have a certain logical structure,
the motivation for which has been given elsewhere.2,4

It must be possible to state each Ar algorithm in a
form similar to that of a logical implication:

Dr:Wr → Br (2)

where Dr and Wr are open sentences* stated in the
language of a first order logical calculus, and Br
is an editing action. When translating by machine, the
action Br is to be taken in textual contexts where logi-
cal propositions corresponding to Dr and Wr are both
true. The distinction between Dr, called the deter-
miner formula, and Wr, called the working formula,
is treated in Ref. 2. Roughly speaking, Dr states the
general condition for applicability of a given algorithm
(for example, the presence of a genitive noun), while
Wr contains the detailed logic of the algorithm. Both

* Open sentences are logical entities sometimes referred to in the
literature as statement matrices or propositional functions. The usage
followed here is that suggested by Quine in Ref. 7.

Dr and Wr are compounded out of certain admissible
predicates and the usual connective functors of the
propositional calculus: • for and, ∨ for or, and ~ for
not.

The predicates used in the Dr and Wr formulas
must be functions of the Wij. A typical predicate
might, for example, correspond to the statement: “wij
is a verb.” At a given position in an augmented Rus-
sian text, the values of i and j are fixed numbers and
the predicates correspond to propositions that are
either true or false. In other words, textual position
serves as a basis for quantifying the i and j variables
in open sentences while translating. It is sometimes
convenient to use a single name to denote either a
predicate or any of the propositions associated with
that predicate for specific values of i and j. Accord-
ingly, the term variable will be used to denote either
a predicate or any of the binary valued propositions
obtainable from it by assigning particular values to
i and j. Variables will be represented by the symbols
φ1,φ2,φ3, ... φn, etc. The specification of an admissible
variable at a given text position is the truth value of
the proposition. Only variables that can be specified
automatically are admissible; the automatic specifica-
tion of variables is discussed in part 4 of this paper.

At each contextual position, Dr and Wr become
closed sentences that are either true or false. The
truth values of the closed sentences are determined by
the specifications of the component variables. The
truth value associated with a given formula in a given
context will be called the evaluation of the formula
for that context.

From the viewpoint of automatic formula finding
and testing, it is desirable to search for algorithms that
are free of interaction, algorithms that can be derived
and studied in isolation from one another. A sufficient
condition for the independence of two algorithms Ar
and Ar , is that they commute, i.e., that ArAr, Sj =
Ar,ArSj for every Sj. It is possible to give examples of
noncommuting basic algorithms, in particular, algo-
rithms involving permutations of word order. For ex-
ample, suppose that the action transformation E(i-1,i)
leads to the exchange of the translations of the (i-l)st
and ith text words. The algorithms Dr:Wr → E(i-l,i)
and Dr:Wr → E(i,i + l) obviously do not commute if
there are values of i and j that make both Dr and Wr
true propositions.

The problem of algorithm noncommutativity can
be greatly alleviated by restricting the types of ad-
missible modifications that can be made while post-
editing. If the post-editing transformation Ts is to be
approximated by a product of commuting algorithms,
then it must be kept as simple, straightforward, and
self-consistent as possible. The post-editing instruc-
tions listed in Part 3 of this paper are framed with this
objective in mind. In particular, word order inter-
changes are discouraged. Even assuming restrictions
on Ts, however, it may still not be possible to express
the complete transformation Ts as a product of com-
muting basic algorithms. The primitive formula finder

14

discussed here can synthesize only a single basic algo-
rithm at a time. The validity of each derived algorithm
will therefore depend to some extent on whether it is
free of interaction with the others.

B. A SAMPLE TRANSLATION ALGORITHM

Most of the syntactic and semantic algorithms pro-
posed in the literature of machine translation can be
stated as basic algorithms or as chains of basic algo-
rithms. For example, a rule selected out of several
given by Fargo and Rubin will be considered: 8,*

“Rule number III—‘Translation of genitive suffix’
1. Is immediately preceding item: a noun
without К, personal pron. or participle with a
noun function?

(a) If yes, translate suffix by of
(b) if no, see 2. . . ."

Predicates φ, involved in the algorithm are:
N(i) wij is a Russian noun
G(i) wij is in the genitive
“K”(i) wij is the Russian word “К”
PP(i) wij is a personal pronoun
PA(i) wij is a participle
NF(i) wij can function as a noun

(3)
Since the same rule holds for all sentences, the in-

dex j is suppressed in the symbolic names for the
predicates. Information enabling the automatic specifi-
cation of each of these variables is present in the form
of grammatical codes in the entries of the Harvard
Automatic Dictionary. The indicated action Br can
also be assigned a symbolic name, INS(xxx,i) standing
for insert the string of characters xxx before the trans-
lation of wij. When applying the rule to nouns, the
determiner formula is N(i) • G(i). The complete
basic algorithm is:
N(i) • G(i) : [N(i-l) •

~ “K” (i-2) VPP(i-l) VPA(i-l) • NF(i-l)]
→INS(of,i) (4)

C. TRIAL TRANSLATION AND FORMULA FINDING

The language of the logical calculus is simple and
mnemonic, and appears to be well suited for the for-
mulation of translation algorithms. A computer pro-
gram that interprets formulas stated in this language
is currently being used at Harvard as a tool for re-
search on Russian syntax. The program goes through a
large corpus of augmented text and selects all word
contexts that satisfy a given formula. The contexts are
then automatically edited, printed, and studied by
linguists.† A design for a more advanced system that
uses the language of basic algorithms, called trial
translator, has been proposed elsewhere.2 The trial
translator applies experimental basic algorithms to
augmented texts in order to produce improved trans-

* This algorithm is mentioned for illustrative purposes only; the
present writer does not assert that it is necessarily valid. The expres-
sion noun without K will be taken to mean noun not preceded by the
Russian preposition К, but the writer is not certain that this is the
meaning intended by the authors of the algorithm.

† The context-selecting program was written by W. Bossert.

lations. Its operation is based on the automatic as-
sociation of basic algorithms with dictionary entries,
the automatic specification of variables, and the auto-
matic evaluation of formulas.

The proposed formula finder and trial translator
systems are compatible; the former enables the semi-
automatic derivation of basic algorithms, the latter
enables the automatic testing of such algorithms. When
a linguist wishes to derive an algorithm, he furnishes
the formula finder with a definition of the action Br
that he wishes to study, a determiner formula Dr for
that action, and a list of variables φ1, φ2, ...φn that he
feels might be of importance in determining that ac-
tion. The formula finder compounds the given vari-
ables into a working formula Wr if it is at all possible
to do so, thus defining a complete basic algorithm
Dr:Wr → Br. The basic algorithm is produced in both
a readable format for human inspection and a ma-
chinable format for input to the trial translator. In-
formation feedback relationships will exist between
the formula finder system, the trial translator system,
and the monitoring human linguists; these are dis-
cussed in Part 5 of this paper.

The power of an algorithm synthesized by the for-
mula finder will depend on whether the most import-
ant lexical variables are included in the list φ1, φ2,,
φn. A derived working formula, when taken together
with the given Dr, will always describe sufficient con-
ditions for executing the given action Br in the experi-
mental corpus. In some cases, however, a derived Wr
might describe both necessary and sufficient conditions
for consummating the action Br, given that Dr is true.
Algorithms containing such working formulas will be
called maximal since they cannot be improved insofar
as the experimental corpus is concerned. In trial trans-
lating, both maximal and nonmaximal algorithms can
be used; a single action Br, can occur in several algo-
rithms having different determiner and working for-
mulas.

3. The Preparation of Parallel Texts

The proposed formula finder system is block-dia-
grammed in Figs. 3 and 4. The process divides natu-
rally into two parts. The first part, illustrated in Fig.
3, is concerned with the preparation of parallel texts;
the second part is concerned with the machine deriva-
tion of basic algorithms (Fig. 4).

The grist from which the formula finder is to syn-
thesize algorithms is a large and representative corpus
of Russian technical text. This corpus must be proc-
essed by an automatic dictionary and be available in
the form of augmented texts recorded on magnetic
tape. Machine-printed word-by-word translations
must also be prepared from the augmented texts and
made available for post-editing. Since the derived
formulas will be strictly valid only for the sentences in
the given corpus, it is important that the corpus be as
extensive and representative as possible. Initially,
there might be advantages to covering one or two
technical fields in depth, say electronics and instru-

15

FIGURE 3
THE PREPARATION OF PARALLEL TEXTS

mentation, and excluding material from other fields.
Later, after a certain number of fundamental algorithms
have been found and tested, the corpus could be ex-
tended to cover other technical fields having their
own particular idioms and constructions.

Our experience indicates that post-editing can
readily be accomplished by drawing lines and enter-
ing information on machine-produced prints like that
shown in Fig. 2. The information on a post-edited
print can rapidly be transcribed into conventional

running format by a typist who simply copies the
words at the heads of arrows.

A. POST-EDITING TEXTS

Post-editors must be confined to making transforma-
tions that are reasonably consistent and that can po-
tentially be automatized through the use of commuting
basic algorithms. Rules must therefore be provided
that limit the scope of Ts. The formulation of a con-
cise set of post-editing rules must await the detailed
designing and programming of a working system.
Nevertheless, it is possible to cite tentative rules that
illustrate the types of transformation that can most
probably be accommodated:

Post-editing Rules Governing Text Transformations
(1) The original Russian word order should be pre-

served whenever it is at all possible to do so and still
obtain a clear translation, even when a loss of elegance
results. For example, . . . колебаний напряжения
триггера . . . should be translated ... of the oscilla-
tions of the voltage of the trigger . . . rather than by
the smoother inverted construction . . . of the oscilla-
tions of trigger voltageIn any event, the transla-
tion should be no more sophisticated than a sentence-
by-sentence translation. The translations of words can
be moved about within a sentence when this is abso-
lutely necessary, but they must never be moved from
one sentence to another. Naturally, the sequence of
sentences must also be preserved.

(2) Normally, the English words used in the post-
edited text should be selected from the correspondents
printed in the word-by-word translation or from a
special list of short particle words. The list of particles
is treated in post-editing rule (4). Printed corre-
spondents may be modified according to rule (5).
Now and then it may not be possible to translate a
Russian word correctly using the printed English
correspondents, or the word might be missing from
the dictionary and shown transliterated instead of
translated. When such is the case, the correct English
correspondent should be written directly under the
existing English correspondents, if any, for the word
concerned.

(3) Any word can be given a null translation; i.e.,
no translation of it need appear in the post-edited copy.

(4) Certain special short words, given on a list
furnished to the post-editor, can be inserted as needed
in the post-edited translation. Among the words on
this list are:

(a) Forms of the verb to be,
(b) Articles such as the, a, and an,
(c) English prepositions sometimes rendered in

Russian by case endings, for example, to, of,
for, by, etc.

(5) The form of a printed English correspondent
can be modified so that it correctly represents the pro-
per number, person, mood, tense, etc. For example,
s, or es can be added to a noun form to make it plural,
ing might be added to a verb in order to generate a
participle, etc.

(6) Commas, colons, and semicolons can be in-
serted or deleted when an absolute necessity for such

a change exists, but the original sentence structure
should be retained insofar as this is possible.

(7) In some cases, it may be possible to translate a
passage only awkwardly if rules (1)-(6) are followed.
If an awkward translation made according to the rules
is nevertheless accurate and understandable, it should
be retained in the post-edited copy. The post-editor
has the option of following such an awkward passage
with a superior handwritten translation made in viola-
tion of rules (1)-(6), provided that the improved
version of the passage is enclosed within special sym-
bols, say dollar signs, for later machine identification.

(8) In some cases, it may be absolutely necessary
to violate one of the rules (1)-(6) in order to trans-
late a word, phrase or sentence adequately. In such
cases the rules can be violated, but the affected por-
tions of the text must be surrounded by special sym-
bols, say asterisks.

Rules (7) and (8) provide means for preserving
information that cannot initially be handled by the
machine system. This information can be automatically
retrieved for processing at a later date. These two rules
also allow scholars and translators who take pride in
their work to complete usable translations without
doing violence to their aesthetic senses. The post-
edited translations should be of sufficiently high qual-
ity so that only a small additional amount of editing is
required to prepare them for publication.

The text sample of Fig. 2 was post-edited accord-
ing to the rules just enumerated. The post-editor has
made a change in word order according to rule (1),
added new English correspondents according to rule
(2), deleted the translations of homographic Russian
words according to rule (3), inserted short words ac-
cording to rule (4), altered existing correspondents
according to rule (5) and deleted a comma according
to rule (6). It was not necessary to resort to the escape
provisions of rules (7) or (8). The transcribed pass-
age reads fairly smoothly:

The comparison of results of measurements, car-
ried out over a large interval of time, leads even
to the supposition that the speed of light changes
with time (footnote 6). It is therefore desirable
to introduce a further increase in the precision of
measurement of the speed of light . . .

For the purpose of simplifying Ts and thus facilitat-
ing speedy convergence to a valid set of algorithms,
it may be desirable to adopt even more restrictive
post-editing rules than those already suggested. These
rules could even go so far as to require the uniform
treatment of certain specific grammatical situations.
Problems of systematizing the post-editing process
have been discussed elsewhere, and specific procedures
designed to insure a maximum degree of consistency
have been suggested.9 Initial experiments in automatic
formula finding might well be based on the use of a
relatively small text corpus that has been systematically
post-edited according to such a rigid set of rules.

B. THE TRANSCRIPTION OF POST-EDITED TEXTS

A strict word-by-word cross-identification between
the transcribed post-edited text and the augmented
text is required for the operation of the formula finder.

17

That is, the machine must be able unambiguously to
identify the individual English words in the post-
edited text with the Wij entries in the augmented text.
The necessary cross-identification can be effected
automatically, but only if some additional information
relating to word order changes is supplied to the
machine. This information can be supplied by the
typist who transcribes the post-edited text back onto
magnetic tape, and can be encoded along with the
text itself. The coding scheme should enable resolution
of all ambiguities due to skipped words and changes
in word order, but yet should be as simple as possible.
The typist might, for example, be directed to observe
the following instructions for transcribing and encod-
ing texts:

Instructions for Transcribing Post-edited Texts onto
Magnetic Tape

(1) Explanation of Format. Machine printing appears
in five fixed positions across each line of text; each of
these positions holds an entry. An entry may contain
several English correspondents arranged in a column,
a punctuation mark, or a comment. An English cor-
respondent written by a post-editor directly under
the machine printing for an entry is considered to be
part of that entry. Short English words written in by
a post-editor, such as the, an, a, etc., are considered to
be insertions; they are not part of any entry.

(2) Instructions. Type the English words and
punctuation marks at the heads of the arrows in a
normal running format. The arrow will normally pro-
ceed from left to right across the page, selecting an
English correspondent out of each entry. When the
arrow skips forward over one or more entries or circles
backwards, it is necessary to insert a position number
in the text according to the following rule:

When the arrow skips forward or circles back-
wards, insert in the corresponding position in the
transcribed text a number prefixed by a plus or
minus sign indicating the relative position of the
next entry selected. The number must be sur-
rounded by parentheses for machine identifica-
tion. For example, if the arrow skips over two
entries, the “(+3)” is to be inserted. The posi-
tion number “(-2)” means two entries back, etc.
Include any short insertion words in the trans-
cribed copy, but do not count them in computing
the position number.

If the convention for recording position numbers is
followed in transcribing the sample post-edited text of
Fig. 2, the following copy is obtained:

“THE COMPARISON OF RESULTS OF MEASUREMENTS,
CARRIED OUT OVER (+2) A LARGE INTERVAL
(+2) OF TIME, LEADS (+2) EVEN TO THE SUP-
POSITION (+2) THAT THE SPEED OF LIGHT (+3)
CHANGES WITH (+2) TIME (FOOTNOTE 6). (+2)
IT IS THEREFORE DESIRABLE (-2) TO INTRODUCE
(+3) A FURTHER INCREASE IN THE PRECISION OF
MEASUREMENT OF THE SPEED OF LIGHT . . .”

 Since a word-by-word translation is simply a ma-
chine-edited version of an augmented text, the entries
in the former are in one-to-one correspondence with
those in the latter. The position numbers therefore

define a precise correspondence between the words se-
lected by post-editors and the associated entries in the
augmented text.

C. AUTOMATIC CROSS-IDENTIFICATION

The typist will make occasional mistakes while tran-
scribing the large corpus of post-edited text onto
magnetic tape. If position numbers are assigned incor-
rectly or if words are mistakenly left out or transposed,
there will be “phase” errors in the encoded corre-
spondence between the tape containing the post-
edited text and that containing the augmented text. A
machine program called cross-identifier is therefore
included in the flow pattern of Fig. 3 to check the
word-by-word association given by the position num-
bers. It verifies that the English correspondents used
by the post-editors are, in the majority of cases, also
contained in the associated Wij entries.

Automatic cross-identification is complicated by the
fact that the forms of English words may be modified
according to post-editing rule (5). Before English
words in the post-edited text can be compared with
words in the augmented text, they must all somehow
be reduced to standard forms that can be matched
automatically. This can be accomplished by auto-
matically removing standard inflectional endings, like
s, es, ing, etc., from English word forms, thereby re-
ducing the inflected word forms to more or less stand-
ard stem forms.

Machinable rules for the automatic splitting of word
affixes, a process sometimes called “inverse inflection,”
have been developed for Russian, a language that has
a much more complicated system of suffixes than Eng-
lish.10,11 The development of similar rules for the auto-
matic inverse inflection of English words should pose
no fundamental linguistic problems. Research in this
direction is presently underway at the Harvard Com-
putation Laboratory. The projected cross-identifier
program will incorporate the necessary rules for sep-
arating English stems and affixes. Each English word
in both the post-edited text and the augmented text
will be automatically split into a stem and an affix.
The cross-identifier will then compare only stems;
each stem in the post-edited text will be matched
against the stems originating from the corresponding
Wij entry. The reduction of words to stems will thus
enable an automatic check on the typist’s position
number coding, even when English forms are modified
according to post-editing rule (5).

The list in “insertion” words, a to, of, etc., is to be
carried in machine memory during the cross-identifi-
cation process. The cross-identifier program will recog-
nize these words as exceptions, and will not attempt
to locate them in the Wij entries. The machine can
therefore always check the word-entry association en-
coded by the typist except when a new English mean-
ing is assigned to an existing entry.

When the cross-identifier finds an isolated word in
the post-edited text that is not in the corresponding
Wij entry, it assumes that the word is a new one as-

18

signed according to post-editing rule (2), and that the
association encoded by the typist is correct. When sev-
eral running words are found that cannot be matched
with the corresponding Wij entries, the cross-identifier
assumes that a phase error or unusual idiomatic con-
struction is present. The affected sentence is deleted
from the experimental corpus and recorded on a sepa-
rate tape, and the machine proceeds to the next sen-
tence. Since post-editing is always done on a sentence-
by-sentence basis according to rule (1), errors in
identification will always be localized. The cross-
identifier will also delete portions of the translation
made in violation of post-editing rules (l)-(6) and
enclosed in dollar signs or asterisks, and record them
on another separate tape. The separate tapes can
eventually be printed and the problematic sentences
subjected to further study.

The result of cross-identification is a table of cor-
respondences between the individual words in the
post-edited text and the Wij entries in the augmented
text. This tabular correspondence might be automat-
ically encoded by inserting appropriate markers into
the Wij entries themselves. The table provides a word-
by-word definition of the transformation Ts. This is a
more finely structured definition of Ts than the list of
corresponding Sj and Ej , but is still not one that can
be practically used for translating other texts. The
second portion of the formula finder system, block-
diagrammed in Fig. 4, is concerned with deriving the
Ar, the basic algorithms in the assumed decomposition
of Ts.

4. The Synthesis of Basic Algorithms

Parallel texts need be prepared only once by the proc-
ess of Fig. 3; thereafter they can be used for the de-
rivation of any number of basic algorithms. The syn-
thesis of each algorithm requires a separate iteration
of the process diagrammed in Fig. 4. Prior to a given
algorithm-synthesizing run, a linguist must furnish the
computer the following clues concerning the desired
algorithm:

(1) A definition of Br, the action portion of the de-
sired algorithm. In the sample algorithm, the
action was INS (of, i); other typical actions
might relate to the selection of a particular
English correspondent, the inflection of a cor-
respondent into the plural, etc.2

(2) A determiner formula Dr for the desired algor-
ithm. This is the portion of the algorithm
known beforehand; it limits the machine to in-
vestigating textual situations known to be per-
tinent. The determiner N (i) • G(i) given in
the sample algorithm would limit the formula
finder to investigating the insertion of of before
genitive nouns, and a derived algorithm would
not be complicated by other of occurrences.

(3) A set of predicate “variables” φ1, φ2, ... φn
having the Wij as their arguments. They are,
in the opinion of the monitoring linguist, the
building blocks of a potential working formula
Wr. The list may include many more variables
than will actually be needed in the formula;

the machine will use only those variables that
are actually required.

A. THE AUTOMATIC SPECIFICATION OF VARIABLES
AND EVALUATION OF FORMULAS

Variables in the determiner formula and in the set
φ1, φ2, ... φn must be admissible, i.e., provisions must
exist for automatically specifying their truth values in
all textual instances. Only variables which relate to
the morphology of Russian or English words or to
lexical data present in the Wij entries of an augmented
text can be specified automatically.

Certain predicate variables can be specified by
means of the comparison of a known string of charac-
ters, given by the variable, with other strings of char-
acters in the Wij entries. Such predicate functions
will be called string variables. In the Harvard diction-
ary, for example, entries contain coded “part of speech”
markers, N, A, etc. (standing for noun, adjective, etc.)
in a fixed field, character position 313. In order to
specify N(i+2), then, it is sufficient to investigate
character position 313 in the second entry following
that under principal consideration. If the character in
this position is N, the specification is 1 (true), other-
wise the specification is 0 (false). The “part of speech”
variables, then, are string variables, as are indeed all
the variables in the sample list (3). Since string vari-
ables deal directly with the available lexical and
morphological units, it is possible to formulate any
admissible basic algorithm in terms of them.

A relatively simple computer routine can be de-
signed for the automatic specification of string type
variables. Indeed, the presently operating context
selecting program incorporates a specifier routine capa-
ble of handling monadic string variables like those in
the sample list (3). A more powerful string-variable
specifier routine, capable of handling relational vari-
ables and variables with special quantifiers, is a re-
quired component of both the trial translator and
formula finder systems.2,12 Admissible string variables
are those that can be defined by coded expressions
which this routine is capable of interpreting. For ex-
ample, the coded expressions for a monadic variable
might contain:

(1) A key. This is a string of one or more known alpha-
numeric characters. The characters might represent
part or all of a Russian or English word, or a gram-
matical code marker.

(2) A major coordinate. This specifies the entries in
which search is to be made. The major coordinate
is a relative coordinate, and is 0 for the augmented
text entry under principal consideration, -1 for the
preceding entry, +1 for the following entry, etc. The
major coordinate may denote either a fixed entry or
a set of entries that must be searched. Search might
be made, for example, in all entries following the
entry under primary consideration but preceding the
next period. Provisions should be made for both
backward and forward search, with limits deter-
mined by a secondary key.

(3) A minor coordinate. This specifies the location or
locations within an entry that must be checked by

19

the specifier. It can be a number which denotes a
specific field within an entry. In the Harvard Auto-
matic Dictionary, for example, English correspond-
ents, Russian stems, and coded grammatical data,
with minor exceptions, occupy fixed fields. The
minor coordinate might instead denote character
positions that are search limits within an entry.
The string in the sample propositional function
N(i+2) is N; the major coordinate is +2, the minor
coordinate is 313.

When a monadic string variable is being specified,
the program searches the data positions in the Wij
entries defined by the major and minor coordinates.
The strings thus obtained are compared with the key
string. When a search is successful, the specification of
the variable is 1, otherwise it is 0. Specifier-code ex-
pressions can also be used to define relational vari-
ables. For example, a dyadic variable can be defined
by two keys, the corresponding major and minor co-
ordinates, and an indication of the relation involved.
Linguists should be encouraged to name variables
mnemonically, for example, by writing A(i), ADJ(i),
ADJECTIVE(i), etc. Such mnemonic names need be
converted into specifier-code instructions only once, by
a programmer, and the correspondence retained in an
automatically-readable cross-reference table. The con-
version of variables from mnemonic to specifier-code
form can thereafter be done automatically.

A string variable specifier program is a component
of the specifier-evaluator-tester program shown in the
diagram of Fig. 4. Special specifier subroutines might
also be included in this program for economically
specifying predicate functions more complicated than
string variables. The specifier-evaluator-tester pro-
gram must also contain provisions for the automatic
truth-value evaluation of determiner formulas. In a
given context, the evaluation of a logical formula is

determined by the specifications of the variables con-
tained in that formula. There are several well known
methods for evaluating logical formulas, any one of
which can readily be programmed.12,13,14 Our experi-
ence at Harvard indicates that a particularly simple
evaluation process can be used if a formula is stated
in disjunctive normal form, as a sum (∨) of products
(•) in which only single variables are negated. An
evaluator program now operating at Harvard requires
only about a hundred lines of Univac coding.12

Besides provisions for the automatic specification
of variables and evaluation of formulas, the specifier-
evaluator-tester must also incorporate a simple sub-
routine capable of verifying whether the action Br has
been taken at any given position in the post-edited
text. This routine should be capable, for example, of
determining whether of is inserted at any given posi-
tion. It is in essence another specifier routine, one that
operates on the post-edited text. It will be called the
action tester.

B. THE OPERATION OF THE SPECIFIER-EVALU-
ATOR-TESTER

The inputs to each run of the specifier-evaluator-
tester are the cross-identified parallel texts and a par-
ticular set {Dr; Br; φ1, φ2, ... φn. A skeletal flow
chart of the program is given in Fig. 5. The pro-
gram simultaneously advances the two tapes contain-
ing the parallel texts; the cross-identification codes
are used to keep the tapes in phase. As each new
Wij entry is encountered, the program specifies the
truth values of the variables in Dr for the given
values of i and j. The program then evaluates the
truth value of Dr in terms of the truth values of the
component propositions. When Dr is not true, no fur-
ther action is taken in the given context; the parallel
texts are advanced (within a given sentence i+1 re-
places i), and Dr is evaluated for the next Wi}. When
Dr is true the program executes certain specifying,
testing and incrementing operations before proceeding
to the next item. These operations will be described,
but first a brief paragraph will be devoted to a review
of a topic of elementary logic, truth value configura-
tions.7,14,15

There are 2n possible configurations of truth values
of the variables φ1, φ2, ... φn ; these correspond to the
rows in the schematic listing of Table 1. A 1 in any
position is here taken to mean that the corresponding
φv is true in the given configuration, a 0 that it is false.
Thus, in the first configuration all the φv are false; in
he last all the φv are true. The configurations are
uniquely identified by the binary patterns of the 1's
and 0's; each row in the configuration table corre-
sponds to a binary number k between 0 and 2n—1. The
number k can therefore be used as a name for the cor-
responding configuration of variables.

Two sets of index registers, {Xk} and {Yk}, are set
up and retained within machine memory during the
specifier-evaluator-tester run. The values of k corre-
spond to the configurations of the φ , that are actually

20

FIGURE 5
BASIC FLOWCHART FOR SPECIFIER-EVALUATOR-TESTER

TABLE 1

CONFIGURATIONS OF LOGICAL VARIABLES

k φ1, φ2, φ3, ..., φn-2, φn-1, φn Interpretation

0 0 0 0 0 0 0 All φv are false.
1 0 0 0 0 0 1 Only φn is true.
2 0 0 0 0 1 0 Only φn-1 is true.
3 0 0 0 0 1 1
4 0 0 0 1 0 0
5 0 0 0 1 0 1
.
.
.

2n-5 1 1 1 0 1 1
2n-4 1 1 1 1 0 0
2n-3 1 1 1 1 0 1 All φv are true except φn-1,
2n-2 1 1 1 1 1 0 All φv are true except φn.
2n-l 1 1 1 1 1 1 All φv are true.

encountered in the text corpus for contexts that make
Dr true. When Dr is true, the variable specifier rou-
tines are used to determine the truth values of each
of the φ1, φ2, ... φn. The pattern of 1's (trues) and 0's
(falses) thus obtained defines a logical configuration
k' that characterizes the state of the φv variables at the
given textual position. When a given configuration k'
is thus encountered for the first time in the corpus, the
machine sets aside two index registers, one for Xk’ and
one for Yk’, the numbers in both registers being ini-
tially set to zero. Then, and whenever the same k'
configuration is encountered in subsequent contexts for
which Dr = 1, the specifier-evaluator-tester incre-
ments the number in the Xk' register by 1.

After an Xk’ register is incremented, the action-
testing routine is called into play. It ascertains whether
or not the post-editor has taken the given action Br
in the post-edited text. The position to be tested in
the post-edited text is that corresponding to the con-
text for which Dr = 1; it is located by use of the
cross-identification table. If no action was taken, the
program simply goes on to the next Wij entry, evalu-
ating Dr again, etc. If the action Br was indeed taken,
the program increments the Yk’ register by 1 before
going on to the next item. The specifier-evaluator-
tester program goes through the entire corpus in this
manner, evaluating Dr, specifying φ1, ... φn and se-
lectively incrementing the Xk and Yk registers.

C. THE OPERATION OF THE FORMULA SYNTHESIZER

The input to the final machine program shown in Fig.
4, called formula synthesizer, is the set of tally counts
in the Xk and Yk registers. Its output is a valid maximal
or nonmaximal basic algorithm, or a clear indication
that important variables are missing from the list
φ1, φ2, ... φn .

The first operation performed by the formula syn-
thesizer is the computation of a third set of numbers
{Zk}. For Xk = 0, Zk are undefined; for Xk ≠ 0, Zk
are defined as Zk = Yk/Xk. From the counting process,
is follows that defined values of Zk satisfy 0 ≤ Zk ≤ 1.
The Zk define the desired working formula Wr. It is

convenient to discuss the synthesis of formulas in terms
of four different types of patterns that can be described
by the Zk:

PATTERN TYPE 1: All Zk are defined and either 0 or 1.

When a pattern of this type is present, the formula
synthesizer has found a maximal algorithm, one that
cannot be improved insofar as the given text corpus
is concerned. The vector of binary elements [Z1, Z2,
Z3, . . ., Z2n-1] is itself a representation of the desired
working formula.* Since the Zk are all either 0 or 1,
each configuration corresponds to either doing or not
doing the action, with no equivocation. The formula
can be expressed in disjunctive canonical form by tak-
ing a sum of the logical products corresponding to the
configurations for which Zk = 1. Each product is ob-
tained by conjoining all the n variables, negating just
those to which a 0 is assigned in the configuration con-
sidered. For example, a simple hypothetical situation
is illustrated in Table 2. The working formula corre-
sponding to the Zk is Wr = ~ φ1 • φ2 • ~ φ3 ∨ ~ φ1 •
φ2 • φ3 ∨ φ1 • ~ φ2 • φ3. Formulas thus obtained are in a
so-called “canonical” disjunctive normal form. They can
often be reduced to simpler normal forms by well-
known rules of logic.7,14,15

Certain of the variables initially included in the list
φ1, φ2, ... φn may not be needed in order to construct
a valid working formula. Such variables will appear
in the canonical form of a working formula only vacu-
ously; they can be readily eliminated in the course of
reducing the formula to a more minimal normal
form.17,18,19,20 For example, the formula ~ φ1 • φ2 •
φ3 ∨ ~ φ1 • φ2 • ~ φ3 contains the variable φ3 only
vacuously and is reducible to ~ φ1 • φ2 . The logical
rules for formula reduction are rigorous and machin-
able. A computer program that reduces formulas given
in disjunctive canonical forms to more economical
normal forms is being prepared at Harvard; it will
contain provisions for eliminating vacuous variables.21

There should be no difficulty connected with pro-
gramming the necessary formula-reducing rules into
the proposed formula-synthesizer.

* The methods for representing and reducing logical formulas
mentioned in this section are well known in the fields of mathematical
logic and algebraic switching theory. The basic logical principles are
treated, for example, in Refs. 7, 14, 15, 16, and 17. Machinable
methods for reducing logical formulas to minimal normal forms, for
resolving “don’t care” conditions, etc., are treated in Refs. 17, 18,
19 and 20.

TABLE 2

HYPOTHETICAL PATTERN OF XK AND YK
LEADING TO A PATTERN OF TYPE 1

k φ1 φ2 φ3 Xk Yk Zk

0 0 0 0 17 0 0
1 0 0 1 4 0 0
2 0 1 0 32 32 1
3 0 1 1 118 118 1
4 1 0 0 2 0 0
5 1 0 1 61 61 1
6 1 1 0 1 0 0
7 1 1 1 75 0 0

21

To the extent that the experimental corpus is only
approximately representative of what can occur in
Russian technical writing, so also will the algorithms
synthesized from this data be only approximately
valid. Before a machine-derived algorithm can be
finally accepted, then, it must be subject to human
scrutiny and tested further by a man-machine process
like that discussed in Part 5 of this paper.

PATTERN TYPE 2: Defined Zk are either 0 or 1,
but some Zk are undefined.

A maximal algorithm can be synthesized when a
pattern of this type is present, but it is not necessarily
unique. The undefined Zk are in one sense like the so-
called “don’t care” conditions of switching theory.17,18,19

Since configurations corresponding to these Zk do not
occur in the experimental corpus, it might seem that
0's and 1's could be assigned to them in any desirable
manner. In fact, machinable procedures exist for as-
signing values to Zk for “don’t care” configurations in
such a way as to simplify the resulting formula.17,19,20

Assigning such values automatically in this somewhat
offhand fashion would not, however, be a sound ex-
perimental procedure. Different formulas would result
from assigning different sets of values to the undefined
Zk. While all such formulas would work equally well
for the experimental corpus, they would behave dif-
ferently in the event that one of the “don’t care” con-
ditions actually occurred in another text. If the value
1 were assigned to a Zk, that should actually have the
value 0, then the algorithm would erroneously lead
to the action Br whenever configuration k' is en-
countered in another text. To be safe, then, it is best
to adopt a blanket rule for assigning values automati-
cally; the machine is to assign the value 0 to each of
the “don’t care” Zk. A synthesized algorithm will then
not lead to the action Br if one of the “don’t care”
configurations is encountered in a later text.

Consideration is being given to the use of a ternary
valued logic to enable better treatment of the “don’t
care” conditions. Assigning the value 0 to the unde-
fined Zk is a “fail-safe” procedure, since the resulting
algorithm leads to the execution of the action Br only
in textual situations actually examined in the experi-
mental corpus. Nevertheless, the effect of a 0 assigned
to an undefined Zk is the same as that of a 0 computed
from a nonvanishing Xk. Certain information is there-
fore not reflected in the algorithm: in the former case
the configuration was not encountered, in the latter
case it was encountered and found to have the value 0.
It may be possible to keep better track of this informa-
tion by using a three-valued logic, where one of the
values means “unresolved.”

PATTERN TYPE 3: Some of the Zk are proper
fractions, 0 < Zk < 1, but at least one Zk is 1.

A valid algorithm can be obtained when a pattern
of this type is present, but the algorithm will be non-
maximal. The fractional values of Zk correspond to

configurations that only sometimes lead to the given
action in the experimental corpus. Other variables be-
sides those included in φ1, ... φn must be taken into
account when these configurations are present. The
nonmaximal algorithm is obtained by simply rounding
off each of the fractional Zk to zero, thus giving a pat-
tern of type 1 or 2 that can be reduced by the methods
already discussed.

Most of the algorithms that will be derived in the
course of initial experiments with the formula finder
will probably be nonmaximal. It is important to stress
the fact that nonmaximal algorithms like maximal
algorithms are “fail-safe” insofar as the experimental
corpus is concerned. A derived algorithm leads to an
action Br only for configurations that always lead to
the action in the experimental corpus.

PATTERN TYPE 4: Some Zk are fractional
and no Zk is 1.

When a pattern of this type is present, no con-
figuration of the given variables unambiguously leads
to the given action and it is not possible to synthesize
a valid basic algorithm from φ1, φ2, ... φn .

D. OUTPUTS OF THE FORMULA FINDER

The outputs of the formula finder are:
(1) The derived algorithm, in a readable format.
(2) The derived algorithm, in a machine-encoded

format suitable as input to a trial translator
system.

(3) An edited list of the configurations encount-
ered, the corresponding Xk and Yk counts, and
the initial and final values of Zk.

The first two outputs are only furnished when a
pattern of type 1, 2, or 3 is present; the third output is
always produced. The function of the third output is
to facilitate the human monitoring and control of the
formula synthesizing process. The counts give an in-
dication of the relative occurrence frequencies of the
various configurations. They should enable linguists
to evaluate an algorithm in terms of the types and fre-
quencies of the situations encountered. When a pat-
tern of type 2 is present, a linguist may find reasons
to assign the value 1 instead of 0 to some of the unde-
fined Zk. The edited list of configurations should en-
able him to do so. When a pattern of type 3 is present,
the edited list will clearly show the configurations with
fractional Zk. Inspection of the list might give insight
into new variables that should be added to the list in
order to obtain a maximal algorithm. When a pattern
of type 4 is present, pertinent variables are clearly
missing from the set φ1, φ2, ... φn. Inspection of the
edited list of Xk and Yk might enable the identification
of such variables.

A hypothetical list of configurations and Xk and Yk
values leading to the sample algorithm (4) is given
in Table 3, where φ1 = N(i-l), φ2 = “K”(i—2),
φ3 = PP(i-l), φ4 = PA(i-l), and φ5 = NF(i-l).
The values of Xk and Yk shown in the table are con-
cocted to illustrate the formula reduction process; they

22

TABLE 3

HYPOTHETICAL TABLE OF Xk AND Yk LEADING TO THE
WORKING FORMULA Wr = φ1 • ~ φ2 V φ3 V φ4 • φ5 OF THE

SAMPLE ALGORITHM (SEE TEXT)

 Initial Change Final
k φ1 φ2 φ3 φ4 φ5 Xk Yk Zk Zk Zk

0 0 0 0 0 0 75 6 .08 Rnd 0
1 0 0 0 0 1 13 0 0 0
2 0 0 0 1 0 104 11 .11 Rnd 0
3 0 0 0 1 1 38 38 1 1
4 0 0 1 0 0 13 13 1 1
5 0 0 1 0 1 17 17 1 1
6 0 0 1 1 0 5 5 1 1
7 0 0 1 1 1 11 11 1 1
8 0 1 0 0 0 81 0 0 0
9 0 1 0 0 1 37 4 .11 Rnd 0

10 0 1 0 1 0 63 19 .30 Rnd 0
11 0 1 0 1 1 34 34 1 1
12 0 1 1 0 0 3 3 1 1
13 0 1 1 0 1 28 28 1 1
14 0 1 1 1 0 35 35 1 1
15 0 1 1 1 1 60 60 1 1
16 1 0 0 0 0 186 186 1 1
17 1 0 0 0 1 107 107 1 1
18 1 0 0 1 0 91 91 1 1
19 1 0 0 1 1 62 62 1 1
20 1 0 1 0 0 43 43 1 1
21 1 0 1 0 1 111 111 1 1
22 1 0 1 1 0 136 136 1 1
23 1 0 1 1 1 72 72 1 1
24 1 1 0 0 0 194 107 .55 Rnd 0
25 1 1 0 0 1 109 72 .66 Rnd 0
26 1 1 0 1 0 0 0 - Set 0
27 1 1 0 1 1 26 26 1 1
28 1 1 1 0 0 13 13 1 1
29 1 1 1 0 1 81 81 1 1
30 1 1 1 1 0 30 30 1 1
31 1 1 1 1 1 19 19 1 1

probably bear little resemblance to those that would
actually be found in texts. The initial set of Zk forms
a pattern of type 3. The final column shows the results
of rounding fractional values of Zk to 0, and assigning
the value 0 to the undefined Z26. The canonical normal
form of the resulting Wr formula is too long to be
listed here; it involves a sum of twenty-three terms,
each being a product of the five variables. When re-
duced to a minimal normal form it becomes φ1 • ~

φ2 ∨ φ3 ∨ φ4 • φ5, the working formula of the desired
nonmaximal algorithm,

5. The Feedback System for Research in Automatic
Language Translation

The formula finder is one of the three components of
a proposed man-machine feedback system for research
in automatic language translation. The other two com-
ponents are the trial translator2 and the monitoring
human linguists. The over-all feedback system is
block-diagrammed in Fig. 6. Three main feedback
loops are shown in the diagram; they are labeled L1,
L2, and L3. The derivation of an algorithm starts with
loop L1. The humans initially suggest clues to the for-
mula finder: Dr, Br, and φ1, φ2, ... φn. The outputs of
the formula finder are examined by the linguists. If
no basic algorithm is found or if the machine-derived
algorithm is unacceptable, the set of variables may be
modified and the formula finding run repeated. This
iterative process, corresponding to loop L1, can be re-
peated until an algorithm is tentatively accepted for
further testing.

Once an automatically synthesized algorithm is ten-
tatively accepted, the iterative process of loop L2 is
called into play. The machine-coded version of the
derived algorithm is used by the trial translator to
produce experimental improved translations of Russian
texts. The linguists examine these translations, and
perhaps suggest further improvements or changes in
the algorithm. The improved algorithm is then fed
back into the trial translator, new experimental trans-
lations are produced and examined, etc.

A second type of feedback may also be employed
within loop L2. Linguists may know of involved gram-
matical situations not represented in the experimental
corpus, but pertinent to algorithms being studied. They
may therefore wish to devise special sentences con-
taining problematic constructions, or to draw such
sentences from reference grammars. The task of auto-
matic formula finding would be greatly complicated if
such sentences were simply added to the experimental
corpus. Nevertheless, for the purpose of subjecting
algorithms known to be basically sound to extreme
conditions, the linguists may wish to use the proble-

23

matic sentences in the final testing stages of loop L2
Hopefully, the iterative process of loop L2 will thus
provide for “vernier” adjustments leading finally to a
valid and useful algorithm.

Feedback loop L3, might play a role in going from
one basic algorithm to another. The trial translator can
produce translations reflecting the product transfor-
mation Tt = A1A2, . . . , Aq of any number of known
and tested algorithms. It can be safely assumed that
for a long time Tt will fall far short of the complete
syntactic and semantic transformation Ts performed
by the human post-editor. In the course of time, more
and more algorithms Aq+1,Aq+2, etc., will be added to Tt.
At any given time, the printed translation resulting
from Tt will contain only residual ambiguities that
should stand out in bold relief. By inspecting the par-
tially improved translations resulting from a given Tt
= A1A2, . . . ,Aq, then, linguists might be able to divine
clues about a basic algorithm Aq+1 that should naturally
be derived next. It may be possible to express these
clues in the form of Dr, Br, and φ1, φ2, ... φn statements.

If so, the clues may be fed into the formula finder,
and another algorithm found through the processes of
loops L1 and L2.

The machine programs of the proposed formula
finder must still be written, and some of the manual
procedures must be worked out in greater detail;
many interesting questions about automatic formula
finding still remain essentially unsolved. At present,
algorithms are being successfully found by more tra-
ditional methods of scholarly insight, with the machine
playing a more subordinate role than that illustrated
in Fig. 6. Nevertheless, the writer feels that automatic
formula finding is potentially a fruitful area for further
research in automatic language translation. The logical
techniques suggested in this paper can readily be
adopted for formula finding with other pairs of natural
or artificial languages. The writer also believes that
these techniques can be extended and used for re-
search in several allied fields, such as automatic speech
and pattern recognition, and the empirical study of
sequential automata.

Received August, 1959

References
1. Yngve, V. H., “A Programming

Language for Mechanical Trans-
lation,” Mechanical Translation,
Vol. 5, No. 1, pp. 25-41 (1958).

2. Giuliano, V. E., “The Trial
Translator, an Automatic Pro-
gramming System for the Ex-
perimental Machine Translation
of Russian to English,” to appear
in the Proceedings of the 1958
Eastern Joint Computer Confer-
ence.

3. Oettinger, A. G., Foust, W.,
Giuliano, V. E., Magassy, K.,
and Matejka, L., “Linguistic and
Machine Methods for Compil-
ing and Updating the Harvard
Automatic Dictionary,” Preprints
of Papers for the International
Conference on Scientific Infor-
mation, National Academy of
Sciences, National Research Coun-
cil, Washington, D. C., Part V,
pp. 137-160 (1958).

4. Giuliano, V. E., An Experimental
Study of Automatic Language
Translation, Doctoral Thesis, Har-
vard University (1959).

5. Giuliano, V. E., and Oettinger,
A. G., “Research in Automatic
Translation at the Harvard Com-
putation Laboratory,” to appear
in the proceedings of the Inter-
national Conference on Informa-
tion Processing held in Paris in
June, 1959, under UNESCO
sponsorship.

6. Matejka, L., “Grammatical Spec-
ifications in the Russian-English
Automatic Dictionary,” Design

and Operation of Digital Calcu-
lating Machinery, Report No.
AF-50, Harvard Computation
Laboratory, Section V (1958).

7. Quine, W. V., Methods of Logic,
Henry Holt and Co., New York
(1953).

8. Fargo, N., and Rubin, J., “Ten-
tative Statement of Reasons for
Choice in the Translation of
Noun Suffixes,” Seminar Work
Paper: MT-40 (mimeographed),
Georgetown University Institute
of Languages and Linguistics
(1957).

9. Mattingly, I., Manuscript to ap-
pear in Papers Presented at the
Seminar on Mathematical Lin-
guistics, Vol. V, (1959).

10. Oettinger, A. G., A Study for the
Design of an Automatic Dic-
tionary, Doctoral Thesis, Har-
vard University (1954).

11. Giuliano, V. E., “Programming
an Automatic Dictionary,” De-
sign and Operation of Digital
Calculating Machinery, Report
No. AF-49, Harvard Computa-
tion Laboratory, Section I (1957).

12. Berson, J. S., “The Calculus of
Propositions in Automatic Trans-
lation,” Papers Presented at the
Seminar on Mathematical Lin-
guistics, Vol. IV, on deposit at
Widener Library, Harvard Uni-
versity (1958).

13. Burks, A. W., Warren, D. W.,
and Wright, J. B., “An Analysis
of a Logical Machine Using
Parenthesis-free Notation,” Math-

ematical Tables and Other Aids
to Computation, Vol. 8, Nos. 45-
48, pp. 53-57 (1954).

14. Quine, W. V., Mathematical
Logic, Harvard University Press,
Cambridge (1947).

15. Copi, I., Symbolic Logic, Mac-
Millan, New York (1954).

16. Keister, W., Ritchie, A. E., and
Washburn, S., The Design of
Switching Circuits, Van Nostrand
Co., New York (1951).

17. Synthesis of Electronic Comput-
ing and Control Circuits, Annals
of the Computation Laboratory
of Harvard University, Vol. 27,
Harvard University Press, Cam-
bridge (1951).

18. Quine, W. V., “Two Theorems
About Truth Functions,” Boletin
de la Sociedad Matematica Mex-
icana, Vol. 10, pp. 64-70 (1953).

19. Karnaugh, M., “Synthesis of
Combinational Logic Circuits,”
Communication and Electronics,
No. 9, pp. 593-598 (November
1953).

20. Roth, J. P., “Algebraic Topologi-
cal Methods in Synthesis,” Pro-
ceedings of an International Sym-
posium on the Theory of Switch-
ing, Annals of the Computation
Laboratory of Harvard Univer-
sity, Vol. 29, Harvard University
Press, Cambridge (1959).

21. Roche, J. W., Solomon, N. B.,
and Kelley, K. A., manuscript to
appear in Theory of Switching,
Report No. BL-23, Harvard
Computation Laboratory (1959).

24

