
[Mechanical Translation, Vol.6, November 1961]

A High-Speed Large-Capacity Dictionary System

by Sydney M. Lamb and William H. Jacobsen, Jr.,* University of California, Berkeley

A system of dictionary organization is described which makes it possible
for a computer with 32,000 words of core storage to accommodate a vocabu-
lary of hundreds of thousands of words, with a look-up speed of over a
hundred words per second. The central part of the look-up process involves
using the first few letters of each word as addresses, one after another.

Introductory

This paper describes a method of adapting dictionaries
for use by a computer in such a way that comprehen-
siveness of vocabulary coverage can be maximized
while look-up time is minimized. Although the pro-
gramming of the system has not yet been completed,
it is estimated at the time of writing that it will allow
for a dictionary of 20,000 entries or more, with a total
look-up time of about 8 milliseconds (.008 seconds) per
word, when used on an IBM 704 computer with 32,000
words of core storage. With a proper system of segmen-
tation, a dictionary of 20,000 entries can handle several
hundred thousand different words, thus providing ample
coverage for a single fairly broad field of science. Al-
though the system has been designed specifically for
purposes of machine translation of Russian, it is appli-
cable to other areas of linguistic data processing in
which dictionaries are needed.

Preliminary Definitions

An entity for which there is (or should be) a dictionary
entry is a lexical item or lex. A text is made up of a
sequence of lexes, for each of which we hope to find
a dictionary entry, if we are translating or analyzing it.
It is also made up of a sequence of words, but if any
segmentation of words is incorporated in the system,
many of the words will consist of more than one lex.
(In the system used at the University of California, there
are about two lexes per word, on the average.) A word,
on the graphemic level, is a sequence of graphemes
which can occur between spaces; any specific occurrence
of a word is a word token. A lex (in the present discus-
sion) has its existence on the graphemic level, and cor-
responds to a lexeme on the morphemic level. Any spe-
cific occurrence of a lex is a lex token. The relationship
between lex and lexeme is like that between morph
and morpheme: that is, a lexeme may have more than
one graphemic representation, or lex (since one or more
of its constituent morphemes has more than one morph).
Such alternate representations may be called allolexes
of the lexeme. Just as a (graphemic) word may comprise
more than one lex, so a lex may comprise more than
one morph.

* This work was supported by the National Science Foundation.
This manuscript was received over one year ago. The authors recently
submitted a number of revision describing improvements in the
dictionary systems; the editor regrets that these revisions were re-
ceived too late to be included in the present article.

A dictionary entry may be thought of as consisting
of two parts, the heading and the exposition.1 The
heading is an instance (or coded representation) of the
lex itself, and serves to identify the entry. The remainder
of the entry, the exposition, is the information which is
provided concerning that lex. If the dictionary is part
of an automatic translation system, the exposition might
contain the following three parts (not necessarily sep-
arated): (1) the syntactic-semantic code, signifying
distributional and semantic properties about which
information may be needed in dealing with other lex-
emes occurring in the environment of the one in ques-
tion; (2) (highly compressed) instructions for selecting
the appropriate target representation for any given en-
vironment; and (3) the target representations. In an
efficient automatic dictionary system the target repre-
sentations might be kept together on tape, to be
brought into core storage as a body when needed, after
the look-up and translation proper have been completed.
In this case, the expositions would be split up, the
target representations being separated from the rest;
in their place would be put the addresses where the
representations would be located after the “target-
language tape” has been run into core storage. Then we
have what may be called abbreviated expositions.2

Where a lexeme has allolexes, there must be a head-
ing for each allolex, but (except for that part of the
syntactic code which defines their complementary dis-
tribution) they all have the same exposition. The ex-
position, then (aside from the qualification mentioned
parenthetically above), is oriented to the morphemic
level, while the headings are graphemic in character.
In a dictionary, the exposition for such a lexeme could
be repeated under each allolex, or all but one of the
allolexes could have cross-referential expositions, which

1 These terms correspond (more or less) to argument and function
in William S. Cooper, The Storage Problem, Mechanical Translation
5.74-83 (1958). (Although the authors favor the principle of
priority in nomenclature, they felt it necessary to introduce these
new items since Cooper’s argument applies ambiguously to both
heading and vestigand, which can be quite different.) The authors
have profited not only from this article, but also from several
informal discussions with Mr. Cooper.

2 The next stage of refinement would be to split many of the
target forms into parts which recur in other target forms. This
would require using more than one address in the abbreviated
exposition for many forms, but it enables simplification of many
translation instructions, as well as a considerable shortening of the
target language tape.

76

would refer to the full exposition given for that one
allolex.

A word being looked up in the dictionary, or ready
to be looked up, may be called the vestigand (based on
the gerundive of Lat. vestigare, ‘to track, trace out; to
search after, seek out; to inquire into, investigate;’ hence
“that which is to be traced out, searched after, investi-
gated”). A vestigand will coincide with some heading
only in the special case in which it is not segmented;
otherwise it will contain two or more headings. The
look-up process involves segmentation as well as loca-
tion of headings. (An alternative approach has been
used3 in which “suffixes” are separated before the look-
up process begins. Such a practice is rejected here,
since it (1) often leads to false segmentation; (2) re-
quires the use of arbitrary, non-structural segmentation
principles; (3) involves setting up more stem allolexes,
hence more dictionary entries, than would otherwise be
necessary.) Every word token in a text is a vestigand at
the time it is being looked up.

Simple System
Let us begin considering the dictionary problem in terms
of the simplest type of organization, in which the ma-
chine dictionary is set up very much like an ordinary
printed dictionary, except that stems themselves are
used as headings, rather than combinations of the
stems with standard suffixes such as nominative singular
or infinitive. In the simple system, then, there is a list
of entries, each one containing its heading, followed by
the exposition. For this type of dictionary, the look-up
process would involve matching the vestigand or part
of it with one of the headings, after which the expo-
sition next to this heading would be placed where
needed for further reference after the process of look-up
has been completed. (We assume for any type of ma-
chine dictionary system that the look-up process is
handled for all of the words in the text or some portion
thereof before the next stage of translation begins. This
sequence of operations has apparently been universally
recognized as essential for translation by computers,
because of the limitation in the size of rapid-access
memories.)

In this type of organization the dictionary is set
up much like dictionaries that are used by human be-
ings, except for the obvious adaptations needed for
storage in the machine—such as the use of binary cod-
ing, etc.

The reason we have a problem is that in any of the
available computers there is insufficient space to provide
for the whole dictionary within the rapid access memory.
The usual solution has been the “Batch Method,”4

3 See, for example, A. G. Oettinger, W. Foust, V. Giuliano,
K. Magassy, and L. Matejka, Linguistic and Machine Methods for
Compiling and Updating the Harvard Automatic Dictionary, Pre-
prints of Papers for the International Conference on Scientific Infor-
mation, Area 5, 137-159 (1958), especially p. 141.

4 Previously described (with the term batch) by Victor H. Yngve,
The Technical Feasibility of Translating Languages by Machine,
Electrical Engineering 75.994-999 (1956), p. 996. This method
has been used by MT groups at Georgetown University, Ramo-

in which each “batch” of words (i.e. all the word tokens
in a portion of text) is alphabetized before the look-up
proper begins. The dictionary is stored on magnetic
tape and is organized by alphabetic order of the head-
ings like familiar paper dictionaries. In the look-up
process, it is brought into core storage a portion at a
time, and all the words in the alphabetized batch are
looked up in one pass of the tape. As headings are
matched, the adjoining expositions are stored in some
specified location still in alphabetic order of the cor-
responding headings. Having obtained the expositions
for all the lexical items in the batch, the machine must
re-sort them back into text order. Thus there are two
areas of nonproductive data processing: sorting the
vestigands into alphabetic order and sorting the exposi-
tions back into text order. If this excess baggage could
be done away with, a great saving of time would re-
sult.

Segregating the Headings

We have already noted that it might be efficient to di-
vide each exposition into its target representations and
an abbreviated exposition, keeping all the target repre-
sentations together in one body until needed. The
amount of time that can be reclaimed by such separation
depends to a great extent on various features of the
translation system itself. In any case, a much more signi-
ficant saving of time will result if an additional separa-
tion is effected. We may detach the headings from the
(abbreviated or full) expositions and then combine the
headings into one body and the expositions into an-
other.

This principle has already been implemented in a
look-up system designed at The RAND Corporation.5

The body of expositions, which we may call the exposi-
tion list for short, is kept on magnetic tape until after
the essential part of the look-up process has been com-
pleted. The economy involved in terms of space sav-
ing for the look-up itself is obvious. The location of a
given dictionary entry requires that only the heading
part of the entry be known. And for dictionaries of up

5 But not yet programmed. The system was designed by Hugh
Kelly and Theodore Ziehe of the RAND programming staff, but
programming of it has been suspended during a test of the feasibility
of an alternative system which makes use of a RAMAC. Information
concerning the system was obtained from personal communication.
Another system designed by Mr. Ziehe which also uses the principle
of segregating headings is described by him in Glossary Look-up
Made Easy, (to appear in the proceedings of the National Symposium
on Machine Translation). The idea of heading segregation has been
mentioned previously in print by William S. Cooper, op. cit. (foot-
note 1), p. 75.

Wooldridge, and Harvard. See A. F. R. Brown, Manual for a
“Simulated Linguistic Computer”—A System for Direct Coding of
Machine Translation, Georgetown University, Occasional Papers on
Machine Translation No. 1, Washington, D. C., 1959, p. 36;
Experimental Machine Translation of Russian to English, Ramo-
Wooldridge Division of Thompson Ramo Wooldridge Inc., Project
Progress Report M20-SU13, Los Angeles, 1958, p. 26; and P. E.
Jones, Jr., The Continuous Dictionary Run, Mathematical Linguistics
and Automatic Translation, Report No. NFS-2, Sec. I, Harvard
Computation Laboratory, 1959, pp. 11-18.

77

to several thousand entries, it is possible to store all the
headings within a 32,000 word rapid access mem-
ory. At the end of the look-up process, the machine
has for each lex token an address for the exposition
to which it corresponds.

The RAND system uses the familiar approach to
the process of locating headings, in that the headings
are listed in core storage and it is necessary to find the
right one by matching. The headings are grouped into
eighteen different sections, depending on their length
(from one to eighteen letters) and the technique of suc-
cessive binary divisions6 is used within the appropriate
length-group. If no match is found, one or more final
letters (comprising a possible suffix) are chopped off
and the process is repeated.

Now, for a dictionary of adequate size, the expo-
sition list itself is much too large to be in core storage at
one time; it may comprise about 70 to 90 per cent of
the volume of the dictionary as a whole. On the other
hand, a 32,000 word memory can contain the expositions
for all the different lexes occurring in any one text, pro-
vided it is of reasonable length. The RAND group has
found that while a typical issue of a journal contains
around 30,000 word tokens, there are never more than
3,000 different lexical items represented in it, where by
lexical items we mean the type of units used in the
RAND system. (The degree of segmentation for that
system is less than that which has been worked out at
the University of California. Therefore, the correspond-
ing figure would be less than 3,000 for the “Berkeley
system”.) Abbreviated expositions for all those 3,000
dictionary entries can be contained in core storage at
one time, since an estimate of eight machine words as
the average size of an abbreviated exposition is liberal.7

This means that an added feature is necessary which
will make it possible to bring into core storage for the
stage of translation proper only those two or three
thousand expositions which are actually needed. There
are several ways of making this possible, one of which is
included in the RAND system. A somewhat different
process is incorporated in the present scheme. We may
call it the intermediate stage.

As each of the headings is located, what will be found
is neither the exposition itself nor the address where the
exposition will be stored. It is, instead, what we may
call the intermediate address. After the headings for
the text have been identified, in place of the original
text there will be arranged in text sequence a series of
these intermediate addresses, one for each lex token.
Then about twenty thousand words of core storage
are to be filled from tape (in one file) with what we
may call the intermediate list. Each machine word of

6 Described, for example, by J. P. Cleave, A Type of Program for
Mechanical Translation, Mechanical Translation 4.54-58 (1957).

7 For the purposes of this paper, a machine word consists of 36
bits. An abbreviated exposition of more than average complexity
might have a syntactic-semantic code of three machine words, three
machine words of compressed instructions, and two machine words
of target-form addresses.

the intermediate list represents a particular dictionary
entry, and each intermediate address is the address of
the corresponding word in the intermediate list. The
use of the intermediate list is explained below (see The
Intermediate Stage).

When the intermediate stage has been completed,
only the expositions which are actually needed are left
in core storage, and they are all immediately address-
able during the stage of translation proper.

Addressing the Dictionary Entry

If core storage were large enough that we could use the
shape of the heading itself as an address, only the inter-
mediate address would have to be stored, and the head-
ing, rather than occupying storage space, would be the
address of the location where the intermediate address
would be stored. Obviously, there is no core storage
large enough for this method. Moreover, if there were,
its use for this purpose would be a colossal extrava-
gance. Let us consider, however, some of the more
realistic aspects of this general idea. Suppose we were
to take just the first two letters of the vestigand and
use them as an address. If the standard 6-bit code is
used, the table needed would require 4,096 (212) ma-
chine words. Even to use this device with no further
refinements gives a rather efficient system for as much
as it covers. That is, if we get the desired location nar-
rowed down according to the first two letters, we have
already come very close to it, and we have spent prac-
tically no time at all.

We have saved some space as well. Suppose the dic-
tionary has 18,000 entries. Then the space required
to store the first two letters of each heading would be
the equivalent of 6,000 machine words. But our table
occupies only 4,096 words, so we have a space saving of
almost 2,000 words.

Below there are introduced a series of refinements
which make it possible to efficiently use a portion of
each vestigand as an address. Space limitations require
that the process be somewhat indirect; nevertheless, the
system provides extremely rapid entry into a dictionary.

First of all we shall see that it is necessary to conduct
the addressing letter by letter. This principle is, in fact,
the key to the system.8 It enables us to take advantage
of the fact that letters tend to occur in certain combina-
tions, and that many “theoretically possible” combina-

8 An application of this principle similar to the one given here is
described by Rene De La Briandais, File Searching Using Variable
Length Keys, Proceedings of the Western Joint Computer Conference,
1959, 295-298. His system differs from ours primarily in that each
successive table is scanned entry-by-entry to determine whether the
next letter is entered, instead of being directly addressed with the
next letter as an index. The use of this alternative type of letter
table as an intermediate step between the directly addressable letter
tables and the truncate lists would be a device for conserving space
so as to allow more headings to be accommodated, at a cost of
greater look-up time and more red tape. For this purpose, the
tables should probably be arranged so that the entries in a given table
occupy successive machine words, rather than being in the over-
lapping arrangement described in this reference, which is more
applicable to situations in which the tables are to be repeatedly
formed anew.

78

tions of letters do not occur in natural written languages.
It also permits a simple and direct approach to segmen-
tation. In conducting the look-up operation, we may
use the first letter of the vestigand as an address in the
“first-letter table,” a table of sixty-four words (if the
standard 6-bit code is used). At this address is given
the final address of the table to consult for the next let-
ter.9 At the location corresponding to each possible first
character, there is an address which gives the location
of the table for the second. The second letter of the
vestigand may now be placed in an index register, and
the proper address for the third-letter table may be
obtained by addressing. The essential part of the look-
up routine is as follows, in the language of the Share
Assembly Program:

LDQ VSTGD Load vestigand into MQ.
PXD Clear accumulator.
LGL 6 Put first letter into accumulator,
PAX ,1 then into index register 1.
CLA FIRST, 1 Get address from first-letter table.
STA *+4
PXD Clear accumulator.
LGL 6 Put second letter into accumulator,
PAX ,1 then into index register 1.
CLA **,1 Get address from second-letter table.
STA *+4
PXD
etc.

For the first letter we need sixty-four positions in the
table, and for the second we would need sixty-four
tables of sixty-four words each—if the language of the
text used sixty-four characters any of which could oc-
cur initially. But in fact we do not need this many. For
the second letter we need only as many tables as there
occur first letters. If we are using an IBM 704 compu-
ter, only forty-eight characters are readily available
(the letters of the alphabet, ten digits, and various
other symbols); if we limit ourselves to these, then for
the second character we will need forty-eight tables
of sixty-four entries each, occupying 3,072 machine
words. (We must allow space for an entire block of
sixty-four entries per table in order to provide insurance
against the possibility of an error.)

Instead of visualizing a set of forty-eight second-
letter tables and a first-letter table, one may prefer to
think of an array containing forty-eight rows and sixty-
four columns, in which the row we get represents the
first letter of the word and the position we get on it
represents the second letter.

When we get to the third letter, the economy of
letter-by-letter addressing becomes more striking, as
we need only a few hundred tables, very much less than
the 4,096 (64 × 64) which would be necessary for
direct addressing taking the first three letters together.
The number of tables needed for the third character
(if this technique is used for the third character of all

9 We refer here and in what follows specifically to the IBM 704,
in which index registers are subtractive.

vestigands) is equal to the number of occurring com-
binations of first two characters which can be followed
by a third character; i.e., there must be a third-letter
table for each such combination. If all possible com-
binations of the forty-eight available characters occurred
as first and second letter, the number of tables needed
would be 2,304 (48 × 48), but of course most of these
combinations do not occur. Further details are given
below under the heading Space Needs for Letter Tables.
It is of course necessary to conserve further space.
The need becomes particularly clear when we realize
that there are over 3,000 occurring combinations of first
three letters. There are two possible approaches to re-
ducing space needs, both of which must be used: (1)
the adoption of refinements to cut down the size of the
tables; (2) the elimination of the use of these tables
in certain situations.

Code Conversion

A possibility for reducing the size of the tables is
suggested by the fact that there are for most languages
thirty-two letters or less in the alphabet, whereas there
are sixty-four entries needed in a table if the usual 6-bit
code is used. (The number of entries in a table of this
type is, of course, 2n, where n is the number of bits in
the code.) Thirty-two characters can be handled by a
5-bit code, and the number of entries needed in a table
would be only thirty-two. Thus we can cut the space
requirements by half.

Naturally, some provision must be made for non-
alphabetic characters. There are various ways of man-
aging this. In a language with twenty-six letters like
English, there are six extra spaces within the thirty-two
for the most common non-alphabetic symbols such as
blank, comma, period, semi-colon, etc. The Russian
alphabet seems less tractable at first glance, since it has
thirty-two letters. Two of these letters are, however, in
complementary distribution so that only one symbol is
needed for both of them, and an efficient coding system
would use only one symbol for both, no matter what
type of dictionary organization is used. These letters are
the soft sign, which occurs only after consonants, and
the short “i”, which occurs only after vowels. In the
transliteration system used at the University of Cali-
fornia, both of these letters are represented by j. The
transliterated alphabet, then, has only thirty-one letters.
The thirty-second position in the table may be used
for “nothing” (i.e., end of a heading); its contents will
be the intermediate address for a heading ending at that
point, rather than the address of another table.

Space in tables need not be provided for the non-
alphabetic characters, since they require special treat-
ment. For example, in the case of arabic numbers, we
will not want to look up the whole number since we
will not want to have all the arabic numbers in the
dictionary. Instead, whenever an arabic number comes
up, it will be handled character by character, and no
translation will be necessary since each character will
be the same in the target language as in the input text.

79

Thus the computer will not proceed in the same way
for the special symbols as for the letters, and it will not
need letter tables for them.

The machine can convert from the standard BCD to
a code in which the thirty-one letters have a zero in the
first bit and all the other characters (punctuation marks,
numerals, etc.) have a one in the first bit. We still have
a 6-bit code, but it can be used to give an effective
5-bit code. Suppose we place the first bit in the sign bit
position of the machine word; the other five bits can
be placed in the low-order positions of the same ma-
chine word. This makes it easy to check whether the
next character is alphabetic or not, and after the check-
ing, we have in effect a 5-bit code, making possible a
table of only thirty-two entries.

The conversion from the BCD code to the one under
consideration can be done efficiently at the same time
as the look-up process. It is not worth while to convert
for the first letter as only thirty-two machine words
would be saved, and this is an insignificant amount.
With this refinement, the look-up process would be as
follows:

LOOK-UP ROUTINE WITH CODE CONVERSION
LDQ VSTGD Load vestigand into MQ.
PXD Clear accumulator.
LGL 6 Put first letter into accumulator,
PAX ,1 then into index register 1.
CLA FIRST,1 Get address from first-letter table.
STA *+7
PXD Clear accumulator.
LGL 6 Put second letter into accumulator,
PAX ,1 then into index register 1.
CLA CONV,1 Code conversion.
TMI NOLTR Test for non-alphabetic symbol.
PAX ,1 Place 5-bit code in index register 1.
CLA **,1 Get address from second-letter table.
STA *+7
PXD
etc.

Two Table Entries per Machine Word

Let us at first consider this refinement independently
of the previous one. It is another means of cutting down
the length of the tables from sixty-four to thirty-two
words. Since the table entries consist only of addresses,
we may economize by placing two of them in each ma-
chine word. One can be put in the address position, the
other in the decrement. Half-words cannot be addressed
if we are using the 704, so some speedy contrivance
must be used whereby one of the bits in the letter code
will indicate which half of the word is needed in each
case. In shifting a next letter from the MQ register into
the accumulator, we can shift only five places instead
of six. Then the sixth bit will be in the MQ sign position,
and the instruction TQP (transfer on MQ plus) can
be used to indicate whether the address or decrement is
needed. Again it is unnecessary to use this device before
the second letter.

LOOK-UP ROUTINE WITH TWO ENTRIES PER WORD
LDQ VSTGD Load vestigand into MQ.
PXD Clear accumulator.
LGL 6 Put first letter into accumulator,
PAX ,1 then into index register 1.
CLA FIRST,1 End of table for second letter10
PAX ,2 placed into index register 2.
PXD Clear accumulator.
LGL 5 First five bits of second letter
PAX ,1 placed into index register 1.
CLA ,3 Double indexing.
TQP * + 3 If MQ minus,
PDX ,2 use the decrement;
TRA *+2 if MQ plus,
PAX ,2 use the address.
LGL 1 Remove sixth bit of second letter

from MQ.
PXD Clear accumulator.
LGL 5 First five bits of third letter
PAX ,1 into index register 1.
CLA ,3 Double indexing.
TQP * + 3 If MQ minus,
PDX ,2 use the decrement;
TRA *+2 etc.
etc.

The next step is to combine the two refinements, with
the result that only sixteen cells are needed for each
table. Then the tables have thirty-two entries, two of
them in each word, and accommodate only the letters.
Special treatment, as indicated above, is given to the
non-alphabetic characters; that is, if the transfer on
minus is taken, then in most cases it will mean that the
end of the word has been reached. On the other hand,
the first time this device is used, say at the second letter
the minus sign might also reflect a word composed of
special symbols, such as an arabic numeral.

In combining the two refinements we have a problem
that can be stated as follows: How can we convert the
code and still leave one bit in the MQ sign position?
One possibility is to take note of the sign of the MQ
before converting, using a sense light or other device.
To make this feasible, it is necessary that of the BCD
representations of the thirty-one letters, sixteen have a
one in the low order bit and the other fifteen a zero,
or vice versa. Another possibility is to convert from the
bits other than the low order bit, leaving the latter in
the MQ to be tested after the conversion. This would
impose the additional restriction that the pairs of BCD

10 This and the following look-up routines differ from the preceding
ones in that the address for the next table is placed in an index
register and used for double indexing with the code for the next
letter, instead of being stored further along in the sequence of
instructions. This alternative procedure is more convenient for pur-
poses of segmentation. The double indexing in this routine makes it
necessary that the addresses of the ends of the tables for the second
and subsequent letters be integral multiples of 32 (i.e., the five
low-order bits must all be zero), since in double indexing on the
704 the “logical or” of the contents of the index registers constitutes
the amount by which an address is modified.

80

symbols that differ only in the low order bit both
represent either alphabetic characters or non-alphabetic
characters. Since the coding of Russian in BCD requires
the choice of certain more or less arbitrary symbols to
represent some of the Russian letters anyway, these
requirements can be met by a wise choice of these
characters. A routine for look-up based on this latter
device would treat the second letter as follows:

PXD Clear accumulator.
LGL 5 First five bits of second letter
PAX ,1 placed into index register 1.
CLA CONV,1 Code conversion.
TMI NOLTR Test for non-alphabetic symbol.
PAX ,1 4-bit code placed in index register 1.
CLA ,3 (Table address is in index register

2.)
TQP *+3 If MQ minus,
PDX ,2 use the decrement;
TRA *+2 if MQ plus,
PAX ,2 use the address.
LGL 1 Remove sixth bit of second letter

from MQ.
PXD Clear accumulator for third letter.
etc.

An alternative possibility is to test the low order bit
of the accumulator instead of the MQ sign bit, after
which the accumulator may be shifted one position to
the right. This will give a look-up routine that is just
one cycle per letter slower,11 on the average, due to the
extra transfer that must be taken half the time after the
LBT (low order bit test). This alternative has the ad-
vantage of making no demands on the choice of BCD
characters; the low order bit is tested after code con-
version.

LOOK-UP ROUTINE WITH SIXTEEN WORDS
PER TABLE, USING LBT

(Beginning with second letter)

LGL 6 Put second letter into accumulator,
PAX ,1 then into index register 1.
CLA CONV,1 Code conversion.
TMI NOLTR Test for non-alphabetic symbol.
LBT If low order bit 1, use the decrement;
TRA * +6 if low order bit O, use the address.
ARS 1 Now a 4-bit code,
PAX ,1 which is placed into index register

1.
CLA ,3 End of table for third letter12
PDX ,2 placed into index register 2.
TRA *+5
ARS 1 Now a 4-bit code,
PAX ,1 which is placed into index register

1.
CLA ,3 End of table for third letter12
PAX ,2 placed into index register 2.
PXD Clear accumulator for third letter.
LGL 6 Put third letter into accumulator.
etc.

11 A cycle on the 704 is 12 microseconds (i.e., 12 millionths of
a second).

Neither of the above alternatives exploits to the
fullest extent the possibilities offered by the machine.
Instead of testing the low-order bit, after which we
must transfer half the time and shift the accumulator
every time, we may design the conversion table so that
the bit to be tested will be in the high order bit of the
address field, leaving the other four bits in the low
order positions of the address field, in the same position
they would occupy after the accumulator right shift
of the preceding routine (see fig. 1). Then the operation
TXL (transfer on index low or equal) can be used to
distinguish the two table entries of the machine word.
The use of this device is possible even though the bit
position being tested is also used (in the other index
register) in addressing the next table because (1) in
multiple indexing on the 704, the logical or of the con-
tents of the index registers determines the extent of
address modification; and (2) the letter tables will
occupy less than half of core storage (see Allocation of
Memory Space below). Consequently, the high order
bit of the index register defining the address of the next
letter table can always be 1, and the presence or absence
of 1 in the other index register will have no effect upon
the address determination for the following CLA opera-
tion. (See fig. 2.)

LOOK-UP ROUTINE WITH SIXTEEN WORDS
PER TABLE, USING TXL

LDQ VSTGD Load vestigand into MQ.
PXD Clear accumulator.
LGL 6 Put first letter into accumulator,
PAX ,1 then into index register 1.
CLA FIRST,1 End of table for second letter
PAX ,2 placed into index register 2.
PXD Clear accumulator.
LGL 6 Put second letter into accumula-

 tor.
PAX ,1 then into index register 1.
CLA CONV,1 Code conversion.
TMI NOLTR Test for non-alphabetic symbol.
PAX ,1 Get correct pair
CLA ,3 of table entries.
TXL *+ 3,1,819213 If test bit is 1,
PDX ,2 use the decrement;
TRA *+2 if text bit is O,
PAX ,2 use the address.
PXD Clear accumulator for third

 letter.
LGL 6 Put third letter into accumu-

 lator,
PAX ,1 then into index register 1.
CLA CONV,1
etc.

It should be noted that the location of the end of the
vestigand does not have to be known by the machine,

12 The double indexing in this routine makes it necessary that
the addresses of the ends of the tables for the second and subsequent
letters be multiples of 16 (cf. footnote 10).

13 This decrement consists of a 1 in the second position of the
decrement field, all the rest zeros. The decrement could be any
number from 32 to 16383.

81

FIGURE 1. CODES FOR THE LETTER "T" (AFTER CODE CONVERSION).

S: + indicates alphabetic character
— non-alphabetic

A: 1 or 0 determines choice of address or decrement.

FIGURE 2. USE OF INDEX REGISTERS IN LETTER-BY-LETTER
ADDRESSING.

A: Always 1 D: Determines proper
 pair of table entries.

B: All zeros
C: Determines choice of

one of the pair.

because as soon as the following space or punctuation
mark comes up for consideration, the transfer on minus
is taken after code conversion. After passage to the
truncate lists (see below) it will remain unnecessary to
know where the word ends, and no checking to dis-
tinguish space from alphabetic characters is needed.
(Thus it is possible to have combinations of words, such
as НЕСМОТРЯ НА for Russian, entered in the dictionary as
units, where desired, provided that the (first) space in
such combinations will not be encountered while the
process is still in the stage of letter-by-letter address-
ing.)

Space Needs for Letter Tables

As indicated above, our space needs for the letter tables
can be calculated with reference only to the alphabetic
characters, of which there are thirty-one (contrasting
ones) in Russian. For the first letter we need one table,
and we need one second-letter table for each possible
first letter. Three of the Russian letters (Й/Ь Ъ Ы) do

lot occur initially, so twenty-eight second-letter tables
are needed. Thus, at sixteen machine words per second-
letter table, roughly 500 words of memory space will be
occupied by the tables for the first and second letters,
Note that the equivalent of over 6,000 machine words
would be needed to store the first two letters of 20,000
leadings.

If the letter tables are used for the third letter of all
vestigands, the number of tables needed is equal to the
Lumber of possible combinations of first two letters,
minus those combinations for which no third letter is
possible. An estimate of this number may be obtained
by tabulating the possibilities for all of the words in
some appropriate dictionary. Table I shows all the possi-
bilities for the first two letters occurring in Callaham's
Chemical and Technical Dictionary.14 Every square oc-
cupied by a number represents an occurring combination
of first two letters. The number in each such square
indicates how many possible third characters may fol-
low, including period (in the case of abbreviations) and
blank (or other punctuation, counted as one). An aster-
isk in a square betokens a prefix, implying that there
may be additional possible third letters. The numbers in
the column labeled T indicate how many second letters
can follow each first letter. (In making the tabulation,
capitalization of letters was ignored.) The table
discloses 507 occurring combinations of first two letters
out of a “theoretically possible” 961), twenty of
which do not occur with any following third letter.
This result would indicate a need for 487 third-letter
tables. With regard to this figure it should be noted that
the Callaham dictionary is somewhat larger than the
one envisaged in this paper, since the former, by a rough

14 Ludmilla Ignatiev Callaham, Russian-English Technical and
Chemical Dictionary (New York and London, 1947). Tables I and IV
through X were prepared by Janet V. Kemp and Alfred B. Hudson.

82

83

estimate, contains some 33,000 entries. To be sure, many
of these entries would not be represented as distinct
entries in the planned system because of segmentation,
but the effect of the segmentation is partially offset by
the fact that many of the Callaham entries cover mul-
tiple lexemes. At any rate one may say that the Calla-
ham dictionary probably accommodates a few thousand
more lexemes than the twenty thousand to which the
present discussion applies.

A tabulation based on a much smaller vocabulary15 is
shown in Table II. In this case the vocabulary consists
of “words (not including proper names, formulas,
mathematical symbols, and reference symbols) which
appeared in a Russian physics text of 73,364 running
words.”16 There appear to be about one-tenth as many
lexemes represented in this listing as in the Callaham
dictionary. Again, occupied squares indicate occurring
combinations of first two letters; no count was made of
the number of third-letter possibilities. There are 266
two-letter combinations, slightly more than half as many
as in the larger vocabulary. As it represents the most
frequently occurring lexemes (for physics), and thus to
a large extent the most important two-letter combina-
tions, Table II tends to provide a somewhat clearer pic-
ture of the patterns involved.

Table I also provides an estimate, albeit somewhat
high, of the number of combinations of first three letters
which can be expected. The number of such combina-
tions occurring in Callaham (equal to the total of all
the numbers in the squares less one for each + or −)
is 3,440. A number of these, of course, cannot be fol-
lowed by any fourth letter, since they constitute lexes
and are not included in larger lexes. Allowing for this
factor and for the larger size of the Callaham dictionary,
we are still left with perhaps well over 2,000 as the
number of fourth-letter tables which would be needed
if the tables were to be used for the fourth letter of all
vestigands. At sixteen words per table, this would
amount to over 32,000 words, obviously too much space
to allow. Aside from the fact that the limits of the ca-
pacity of core storage would be exceeded, it would be a
highly inefficient utilization of space since the great pre-
ponderance of the table entries would be empty (re-
flecting lack of occurrence of the letter sequences in-
volved).

There are devices available which could cut down
the size of the tables to eight words each or even to less
than that, at the expense of an appreciable amount of
look-up time. However, any kind of letter-by-letter ad-
dressing or searching is necessarily inefficient after a
certain point, just as searching through a list of head-
ings for a match is inefficient up to that point. In other
words, the letter-by-letter addressing should be con-
tinued until the possibilities for the desired heading
have been narrowed down to a very few, at which point

15 A. Koutsoudas and A. Halpin, Russian Physics Vocabulary, with
Frequency Count: Left-to-Right Alphabetization, Research in Machine
Translation: II, Vol. 1, Willow Run Laboratories, 1958.

16 Op. cit., p. 1.

it becomes more efficient to consider up to several fol-
lowing letters at the same time.

Table III, which is based on Table I, shows the high
proportion of combinations of first two letters for which
there are only a very limited number of possibilities for
the third letter. For about a quarter of the two-letter
combinations, there is at most one possibility for the
third letter. For well over a third of them there are
only two possibilities or less, and for over half of them
there are less than five possibilities.

TABLE III. NUMBER OF COMBINATIONS OF FIRST TWO
LETTERS FOR WHICH THERE ARE VERY FEW POSSIBILITIES
FOR THE THIRD LETTER. (FOR RUSSIAN, FIRST LETTER
a THROUGH O. DATA FROM TABLE I.)

 Total Number of Different Possible 2nd Letters
 Number for which the Number of Possible Third
First of Different Letters is only:
Letter Possible

2nd Letters 1 or 0 2 or 3 or 4 or 5 or
 less less less less

а 26 4 7 9 10 10
б 13 1 4 4 4 4
В 29 4 7 9 12 13
г 20 8 10 10 11 12
д 20 5 7 10 10 12
е 18 8 12 13 15 16
ж 17 9 10 12 12 13
э 14 1 6 6 9 10
и 23 6 7 10 10 12
й/ь 0 0 0 0 0 0
К 20 5 8 9 10 10
л 18 8 9 10 10 10
м 21 5 7 11 12 12
н 12 4 5 7 7 7
о 25 3 5 7 8 10

 276 71 104 127 140 151

% of 276: 26% 38% 46% 51% 55%

As is to be expected, the corresponding proportions
are even higher for limited fourth letter possibilities
after combinations of first three letters, as can be seen
from Tables IV through X, which show the numbers of
possibilities for second, third, and fourth letters after
certain initial letters.

It will conserve time as well as space if the system is
designed so that in the look-up process, beginning with
the third letter, a test is made to determine whether to
continue to another letter table or to proceed to the next
stage of the process, in which one of the few headings
remaining as possibilities can be selected. This test can
be made possible by the use of the sign bit of each word
of the letter tables, a minus indicating that the time has
come to go on to the next stage. This minus sign would
have to apply to both table entries of the machine word
concerned, so it would not be placed in the word if for

84

85

86

87

88

89

90

91

92

one of the pair it were desirable to go on to another
letter table. The incidence of conflicts ought to be quite
low, as may be determined from a study of Tables IV
through X, In most cases where one of the pair is ready
for the next stage, the other entry will be empty. Ad-
dresses would be placed in the address and decrement
fields as before, but now they would be addresses for
lists of “truncated headings” (see below).

The incorporation of this feature into the look-up
routine requires only a slight additional modification.

LOOK-UP ROUTINE WITH PROVISION FOR
PASSING TO NEXT STAGE AFTER POSSIBILITIES

HAVE BEEN NARROWED DOWN
LDQ VSTGD Load vestigand into MQ.
PXD Clear accumulator.
LGL 6 Put first letter into accumulator.
PAX , 1 then into index register 1.
CLA FIRST, 1 End of table for second letter
PAX , 2 placed into index register 2.
PXD Clear accumulator.
LGL 6 Put second letter into accumulator,
PAX , 1 then into index register 1.
CLA CONV, 1 Code conversion.
TMI NOLTR Test for non-alphabetic symbol.
PAX , 1 Get correct pair
CLA , 3 of table entries.
TXL *+4,1,8192 If test bit is 0, transfer ahead.
PDX ,2 Address for table or list into index.
TMI TLIST Transfer to next stage if minus.
TRA * + 3 Otherwise continue to third letter.
PAX ,2 Address tor table or list into index.
TMI TLIST Transfer to next stage if minus.
PXD Clear accumulator for third letter.
etc.

The Truncate Lists

After the stage of letter-by-letter addressing has been
completed (i.e., when the transfer on minus to TLIST
is taken), we have what may be called the truncated
vestigand, all or part of which will have to be matched
with some truncated heading, or truncate. It is estimated
that a typical system will have some three or four thou-
sand truncate lists containing on the average five or
six truncates each. In each of these lists the truncates
will be portions of headings all of which begin with the
same first three or four letters or so. The truncates of
each list can be listed in order of length, from longest
to shortest, and in reverse alphabetical (i.e., numerical)
order wherever two or more have the same length. The
look-up routine at this stage involves simply going
through the truncate list from the beginning to get a
match, either with the entire truncated vestigand or the
first few letters thereof. In the latter case the remainder
is to be looked up in the suffix tables.

It is necessary to mark a boundary between adja-
cent truncate lists, and this can be done by placing a
minus in the sign bit of the first machine word of each.
Five bits are needed for the segmentation-checking

code, whose use is explained below (see Segmentation).
For the sake of programming efficiency, these five bits
are best placed in bit positions 31-35 (i.e., at the right
end of the machine word). This leaves positions 1-30
for the truncate itself, thus providing for five BCD
characters. For those truncates which are longer than
five characters, the following cell (or two) may be used
and, because of programming details which need not be
discussed here, confusion (on the part of the look-up
routine) between such supplementary cells and ordinary
(or initial) truncate cells is best avoided by the place-
ment of six ones in bit positions 1 through 6 of each
supplementary machine word. Thus there is room for
only four characters in each supplementary word.
Nevertheless, if an effective segmentation system is
used, the number of headings for which a second sup-
plementary word is needed is very small. (For the dic-
tionary being compiled at the University of California,
a preliminary survey indicates that two supplementary
words will be required by less than one per cent of the
truncates.) For truncates of fewer than five characters,
the right-hand portion of the available space should be
filled, leaving vacant space at the left.

If, upon comparison, a truncated vestigand is found
to be numerically smaller than a given truncate (except
the first one in the list, which has a minus sign), com-
parison can immediately be made with the following
truncate. If, on the other hand, it is numerically larger,
it is immediately obvious, as it were, that it cannot be
matched with any truncate in the list and must there-
fore be shortened by at least one letter before further
comparison can hope to be fruitful. The need for short-
ening truncated vestigands under such circumstances
can be reduced if it is known beforehand how long the
longest truncate in a list is. Such information can be
provided as a part of the entry in the letter table which
sends the routine to the truncate lists. There are two
bits available (1-2 for the left-half entry, 19-20 for the
right one) for this purpose, providing for four length
categories: (1) less than three letters, (2) three letters,
(3) four letters, (4) five or more letters. The truncate-
length categories are denoted by L in Fig. 4 (below),
which illustrates a typical letter table.

It is not necessary to provide space for the storage of
intermediate addresses of headings located during this
stage, since their intermediate addresses can be identical
with those of the cells where their truncates (or final
portions thereof) are stored.

Segmentation
Much of the power of the system described here resides
in the simple means it provides for segmenting words
into ideal units for purposes of translation. This ability
to segment effectively not only promotes efficiency in
the translation routines; it also enables the automatic
translator to deal with most neologisms and, by the
same token, allows it to accommodate a vocabulary of
hundreds of thousands of graphemic words, even though
there are only twenty thousand dictionary entries.

93

Operational segmentation of words by the machine
program can be effective, in the sense that it can follow
the same principles of segmentation that would be used
in a structural description,17 if the program is so con-
structed that it takes the longest heading contained in
the vestigand (beginning at the left) as the first lex,
the longest heading contained in the remainder (if any)
as the next, etc.; provided that the resulting tentative
segmentation yields lexes whose co-occurrence in the
order found is allowable. The proviso makes it necessary
that segmentation codes for all headings be present at
the time of look-up. The codes can be used to test the
compatibility of provisional segments, and such testing
must include a check to determine whether the final
(or only) provisional segment can occur without a fol-
lowing lex. The first lex of a polylexemic vestigand will
be either a base or a prefix. If it is the former, then the
suffix tables will be used in containing the look-up pro-
cess; if it is a prefix, the main part of the look-up sys-
tem will be used. However, if the initial segment is a
base and no provisional segmentation checks out using
the suffix tables for the remainder, the word could be a
compound and the remainder can be looked up in the
main part of the system. For Russian, this roundabout
treatment of compounds can be avoided for the most
part by including known and/or frequently-occurring
compounds in the dictionary as unit lexes. The round-
about procedure would then be used only for infrequent
and/or neologistic compounds. On the other hand, for
languages in which compounding is a highly productive
process, like German, such treatment is undesirable since
it would make the dictionary too bulky. Overall effi-
ciency might be maximized for German by including
suffixes in the main part of the dictionary, so that all
remainders could be looked up in the same manner.

For those headings which end in the truncate lists
(rather than the letter tables) the requirement that the
longest contained heading be chosen is built into the
system as an automatic feature, since the truncates are
listed in reverse order of length (i.e., from longest to
shortest). If segmentation checking fails to yield a
satisfactory result, consideration can pass immediately
to the following truncate in the list.

On the other hand, many headings are short enough
to come to an end while the look-up process is still in
the letter tables. Of these, some are included within
longer headings while others are not. The latter arc
automatically provided for in the program by a feature
to be described below. In the case of the former, the
look-up routine will need to know, as it were, whether
one of the longer headings is also contained in the vesti-
gand, so it will have to continue the look-up process,

17 Except with regard to the degree of segmentation. While the
ultimate constituents on the morphemic level for a structural descrip-
tion are the morphemes, segmentation for a translation system should
stop short of this point. It is not efficient to segment, with regard to
a given construction, if the target representations of the constitutes
cannot economically be treated as combinations of the representa-
tions of the constituents. In addition, segmentation of individual
forms should generally be avoided whenever the cut would necessitate
the setting up of allolexes that would otherwise be unnecessary.

usually by going to a truncate list. If it does not find a
longer contained heading, however, it will want to re-
turn to the shorter one. Provision for such return can
be furnished by keeping track of the segmentation code
and intermediate address of each such heading as the
look-up routine proceeds. For each vestigand then
(except those not composed of letters), we will want
to make a short segmentation checking list. Two pairs
of alternatives confront us with regard to what should
be stored in this list. On the one hand, we must decide
whether to store there the contents of the words that
contain the segmentation checking codes for the various
lexes or merely the addresses of these words. (Each of
these words is the last of the sixteen words of its letter
table. See Fig. 4.) On the other hand, when passing to
successive letter tables, we have to choose between
storing the final word of each table whether or not it
contains a segmentation checking code, and testing each
such word as we come to it, storing only those that
actually contain this information (i.e., those which rep-
resent ends of headings). It will often be the case that
a cut after one of the longer headings contained in a
vestigand will give the correct segmentation and thus
render unnecessary the testing of the remaining possible
shorter headings. The best policy, therefore, would
seem to be to postpone as many as possible of the opera-
tions connected with testing a given segmentation until
such time as the need for that test arises, in the ex-
pectation that these operations will often not have to be
performed at all. Following this policy will lead us to
store the addresses of the table-final words without
testing their contents, as this is the procedure that will
take the fewest operations.18 With reference to the
routine given above we need add only an SXD (store
index in decrement) operation to store the contents of
index register 2 when the (2’s complements of the)
addresses for the third-, fourth-, and fifth-letter tables
are there, since the address of the cell containing the
segmentation code and intermediate address for a head-
ing ending at the nth letter is the same as that of the
(n + l)th-letter table for the sequence in question. We
will not bother storing the second-letter table address
since it is very easy to obtain this again (by repeating
the first three operations of the look-up routine) in those
infrequent instances when it is necessary to do so.

The case of headings which come to an end while the
process is in the letter tables and which are not included
within longer headings is easier to deal with. If the
vestigand comes to an end at the same point, it coincides
with the heading and the look-up process is completed.
On the other hand, if the vestigand is longer, a cut has
to be made, and the design of the look-up system is
such that this situation can be dealt with automatically,
as it were, i.e. without the need of inserting extra check-
ing operations into the routine which would slow down

l8 Thus in interpreting Fig. 4 (below), one should bear in mind
that the machine will go through the same operations in cases 1
and 3, which differ only in the storing or not storing of a segmen-
tation code; whether or not a code is stored will depend only on
whether or not a code has been entered in the word that is stored.

94

95

the look-up process for all vestigands. For whenever
such a situation is encountered, the entry in the letter
table which corresponds to the next letter will be empty,
reflecting lack of occurrence of the encountered
sequence among the headings in the dictionary. An
empty table entry, of course, will not be blank but will
contain the (2’s complement of the) address for the
“no-such-heading” table. Then the machine, not yet
aware that this situation is present, will proceed as usual.
In the no-such-heading table, all sign bits will be minus,
so that the transition as if to a truncate list will be
launched into, at which time a test to reveal the nature
of the situation can be made. Thus we need to test for
this condition only once per vestigand (at the time the
transition is made), rather than once per letter. On the
other hand, if the partner of an empty table entry (i.e.
the other member of the pair) represents a situation
which is ready for the transition to a truncate list, then
the transfer will be taken right away and it will not be
necessary to go to the no-such-heading table.

Figure 3 shows the ways in which different combina-
tions of conditions found in the machine lead to different
subsequent actions as the nth letter is being looked up.
At the head of the four left-hand columns are entered
four alternative possibilities having to do with the letter
sequence that ends with the nth letter and its relation-
ship to the letter sequences that are entered in the dic-
tionary. Within each column are found descriptions of
the actual conditions in the text or letter tables that
correspond to one or the other of the alternatives given
at its head, each alternative and its corresponding con-
dition being labeled by the same number or letter. In
the column at the right are found the actions that are
to be taken when the combination of conditions given
in each horizontal row is encountered. A blank space in
the table indicates that the particular question is irrele-
vant for determining the course of action, under the
combination of conditions defined to its left.

The descriptions of these actions which are entered
in the chart must be amplified as follows. Testing the
remainder involves determining whether or not it con-
sists of a suffix or combination of suffixes entered in the
dictionary. If a positive result is obtained, segmentation
checking will reveal whether or not the segmentation
codes of the stem and suffix(es) are compatible. When
a test of the remainder and segmentation check, either
for the longest sequence found to be entered in the
dictionary or for shorter ones, is indicated as the action
to be taken, and a correct segmentation is obtained, the
machine will then store the intermediate addresses of
the lexes involved. After every remainder test or seg-
mentation check which yields negative results, there
will be a looping back, not shown on the chart, to de-
termine whether there are shorter sequences contained
in the vestigand which are entered in the dictionary,
and, if so, to test the resulting remainders. If there is
no shorter sequence in such a case, the machine will
provide a transliteration of the word, together with a
mark indicating that it was not found in the dictionary.

After the machine has either stored the intermediate
addresses of the lexes or transliterated the vestigand, it
will begin the look-up of the next word token.

Let us examine more closely the way in which the
determination of the alternative situations is based on
conditions found in the text and letter tables. In the
first place, whether or not the nth letter is the last alpha-
betic character in the vestigand is shown by whether the
(n + l)th character in the text is alphabetic or non-
alphabetic. If it is a non-alphabetic character, it will
be further tested to ascertain whether it is a punctuation
mark, indicating the end of the text word, or some other
character that should be transliterated, but in either
case it will signal the end of the progression to succes-
sive look-up tables.

The relationship of the sequence being looked up to
sequences entered in the dictionary is shown by entries
or the lack of entries in the proper places in the look-up
tables. If the sequence ending with the nth letter is
part of a sequence which is entered in the dictionary,
the (2's complement of the) address of the (last word of
the) (n + l)th-letter table will be found at the place
in the nth-letter table which corresponds to the nth
letter; whereas if it is not part of an entered sequence,
the no-such-heading address or zero will be found at
that place. If there is a heading entered in the diction-
ary which is coterminous with the sequence ending with
the nth letter, the intermediate address and segmenta-
tion-checking code for the lex formed by this sequence
will be found in the last word of the (n + l)th-letter
table. The absence from the dictionary of a sequence
ending at this point will be shown by the absence of
this address and code. Next, whether or not there is a
longer sequence in the dictionary continuing with the
(n + l)th letter is shown by whether or not there is
entered at the proper place in this (n + l)th-letter
table the address of a table or list for that sequence.

And lastly, the occurrence of any shorter entered se-
quences in the sequence through which we have passed
is shown by their class codes which will have been
stored in the segmentation checking list.

These relationships may be made more vivid by
the consideration of some actual examples. Let us look
first at Fig. 4, which shows the third-letter table for
sequences beginning with да based on the letter com-
binations given in Table VIII. The sixteen numbered
rows represent sixteen consecutive words of core stor-
age. In the address portion of the sixteenth word is
found the intermediate address for the lex да, and in
the last two bits of the prefix and the three bits of the
tag of this word is the five-bit segmentation code for
this lex. For every occurring three-letter sequence be-
ginning with да, the address of the corresponding
fourth-letter table or list is entered in the address or de-
crement portion of a table word. The sign bit contains a
minus in those words that do not have entered in them
any address of a fourth-letter table. For this example it
was decided that the change-over from tables to lists
would be made when the number of different fourth

96

97

letters following the sequence in question was six or
less,19 which is found to be the case for all the sequences
in the table except дар and дат. Therefore all the table
words contain a minus except for the two words that
contain the addresses for these two sequences. In the
address portions of these two words is entered the ad-
dress of the no-such-heading table. Such a no-such-
heading address, or a blank address or decrement por-
tion in a table word that has a minus in its sign bit,
then, correlates with the non-occurrence of a given
three-letter sequence. In the last two bits of either the
prefix or tag which immediately precedes each list
address is entered a number indicating the length cate-
gory of the longest truncate in that list. Each of these is
indicated by an L in the figure.

Note that the address in the decrement portion of a
final word in a table must be one of a table rather than
a truncate list, because the space taken up in this word
by the segmentation-checking code precludes enter-
ing a truncate length category for a list. Therefore
a minus in the sign bit of such a word can only indicate
the absence of an address in its decrement portion.
Wastage of space due to addressing certain sequences to
letter tables for this reason when other criteria would
indicate that their look-up should be continued in trun-
cate lists can be minimized by assigning to this place
in the letter tables a Russian letter which turns up
infrequently in the first few letters of Russian words,
such as the “hard sign.”

Suppose, now, that we are looking up the sequence
дар. The proper place in the second-letter table for
д will have yielded the address of our sample table. The
intermediate address and segmentation-checking code
in the sixteenth word of this table show that the diction-
ary contains a complete lex having the form да. The
address of the fourth-letter table for дар which is en-
tered in the decrement portion of the eighth word of
this table indicates that the sequence дар is found
in the dictionary. So the machine will store the segmen-
tation code for да and pass to the table for the next
letter. This will be an instance of type 1 of Fig. 3.

On the other hand, if the sequence дас is being
looked up, the machine will encounter the no-such-
heading address in the address portion of the seventh
word of our sample table. After passing to the no-such-
heading table, the minus in the sign bit of a word of
this table will signal the machine to make a test and dis-
cover that no such sequence is entered in the diction-
ary. The machine will therefore proceed to check
whether the remainder of the word (beginning with
с) is a possible suffix or combination of suffixes, and if
so, whether the lex да may occur with this remainder.
If the segmentation is not found to be correct, the word
will be transliterated, since there is no shorter lex in
this sequence which is entered in the dictionary. This
is a situation of the second type.

19 In actual practice, however, the point at which this change-
over is made will depend on the number of different lexes beginning
with a given sequence, rather than on the number of different letters
immediately following that sequence.

If, again, the sequence that is being looked up is да#
(that is да followed by a space), the space in the text
will show that there are no more letters in the word,
so the machine will use the segmentation-checking
code in the sixteenth word of our sample table to check
whether the lex да may occur without a suffix. This
will be found to be possible, so the machine will store
the intermediate address for fla and pass to the next
word. This will fall under type 6 on our chart.

One more example, this time of a letter sequence
that will not be looked up by means of our sample
table, should suffice to clarify these sequences of oper-
ations. If the sequence encountered in a text is вем,
there will be found a third-letter table for ве in the
dictionary. This table, however, will not contain an
intermediate address or segmentation-checking code in
its last word, since there is no lex having the form ве,
nor will it contain an address to a fourth-letter table or
list for вем, since such a sequence will not be entered.
After ascertaining the absence of these entries in the
ве-table, the machine will find the code for the lex в.
A check will be made of whether this lex may occur
with the remainder. This will not be possible, so the
word will be transliterated. This is an instance of our
type 4.

It may be helpful to have examples of three-letter
sequences that will fall into the various categories of
our chart as the second letter is being looked up. For
each category two such sequences are given, one begin-
ning with в, and one with д. Since в is a one-letter lex,
while д is not, the sequences beginning with the former
letter will contain a shorter sequence whose segmenta-
tion may be checked if this becomes necessary, while
those beginning with the latter letter will not. The differ-
ences between the categories should be clear if it is re-
membered that во and да are two-letter lexes, while the
other two-letter sequences (ве, вф, дф, дн) are not.
(See also tables VI and VIII). The examples, then, are:
1, вот, дар; 2, воф, дас; 3, век, дне; 4, вем, днс; 5,
вфа, дфа; 6, во#, да#; 7, ве#, дн#; 8, вф#, дф#.

Segmentation Checking

The fact that a provisional segmentation yields a stem
present in the dictionary and a suffix also present does
not necessarily mean that the vestigand has been cor-
rectly segmented. It is necessary to check whether the
provisional suffix can occur with the potential stem from
which it has been separated, since the provisional seg-
mentation could be a false one for either of two reasons:
(1) the vestigand or one of its constituent lexes is absent
from the dictionary and it happens to lend itself to a
spurious segmentation; (2) the real base is shorter than
the one provisionally selected.

As an example of the first situation, suppose that
the form ранет ‘rennet (a type of apple)’ has not found
its way into our dictionary, but turns up as a vestigand.
Without segmentation checking, it would be identified as
consisting of the verb stem ран ‘to injure’ (also a noun
stem meaning ‘wound’) plus the third person singular

98

suffix -ет. Segmentation checking can identify such a
segmentation as spurious, since ран belongs to that class
of verb stems for which the third sg. suffix has the allo-
morph -ит rather than -ет. With segmentation checking,
then, the machine may be made aware, as it were, of
the fact that ранет is absent from the dictionary and
it can print out a transliteration, together with a mark
indicating the absence from the dictionary of the form.
The reason for the need to check the segmentation dur-
ing the look-up process when this type of situation oc-
curs is that it is desirable for the machine to dispense
with the Russian graphemic forms after they have been
looked up; but any transliteration of forms absent from
the dictionary must be done before they are discarded.

The second type of situation, in which the real base
is shorter than the one provisionally selected, may be
illustrated by the form позволят. The longest contained
heading would be позволя ‘to permit/allow (imperfec-
tive)’, leaving as the provisional suffix -т, an allomorph
of the past passive participial suffix. Segmentation check-
ing will reveal that these two lexes cannot occur with
each other. Thus the next longest contained heading,
позвол, ‘to permit/allow (perfective)’ will be tried,
and since the suffix, -ят ‘third person plural non-past’,
will be shown to be compatible with the stem, this seg-
mentation will be selected as the correct one.

The checking can be accomplished by means of a
table in core storage which can be thought of as a
matrix in which the rows represent suffix classes (most of
which will contain a single member), the columns base
classes distinguished on the basis of occurrence with the
suffixes. Each of the elements of the matrix will consist
of a single bit with the value zero or one depending
upon whether or not the combination represented
is allowable.

According to the design of the system described
above, 5 bits are allowed in each machine word of the
truncate lists and in each final word of the letter tables
for the segmentation code. One of the 32 possible com-
binations (decimal 31) is needed for long truncates as
an indication that the truncate continues in the follow-
ing word (see above, under The Truncate Lists). Thus
we are allowed 31 different segmentation codes, prob-
ably enough for all practical purposes, even though
this amount is clearly insufficient to reflect all the de-
tails of an exhaustive classification.20 Using this number
of segmentation codes, each row of the matrix can be
stored in a single cell. The presence of one or zero in
the appropriate position for a given instance can be

20 Minor classes which, if included, would bring the number to
more than 31, can be dealt with in one or more of three ways. For
a given deviant base we can either (1) refrain from segmenting and
enter the composite form as a heading; or (2) assign the deviant
base to a class of slightly wider distribution, after ascertaining that
no false segmentation is likely to result. But if for some use of
the system these two devices prove to be inadequate and it be-
comes desirable to use more than 31 segmentation codes, (3) addi-
tional codes can be assigned to deviant bases and they can be
placed in supplementary machine words in the truncate lists. Code
31 would then mean either that the truncate continues in the
following cell or that the base is of a deviant type whose code is
given in the following cell.

determined by a transfer on zero following an ANA
(“logical and” to accumulator) operation, using one of
the 31 masks corresponding to the 31 segmentation
codes. (Each of the masks must have a one in one of
31 bit positions, all the rest zeros.)

Quasi-Prefixes

The system as described so far can handle dictionary
look-up with great efficiency for a dictionary of about
20,000 entries, and can probably handle up to 21 or 22
thousand entries without much difficulty. If it should
ever be desirable to have more entries than this in the
dictionary, an appreciable amount of memory space to
provide for additional ones, with only a small increase
in look-up time can be made available by a device which
involves “quasi-segmentation” of “quasi-prefixes.” By
the term quasi-prefix is meant a sequence of graphemes
occurring initially in words which in at least some of
its occurrences represents a frequently occurring prefix
in the source language as analyzed in isolation but not
necessarily as analyzed for an MT system.21 Examples
for Russian as source language, where the target lan-
guage is non-Slavic, would be по-, паз-, при-. If ana-
lyzing Russian itself (apart from other languages), a
linguist would set up prefixes having these graphemic
representations, but they would not be regarded as pre-
fixes in a Russian-to-English MT system since in most
of their occurrences the English representations of the
composite forms in which they occur could not economi-
cally be treated as composites of English representations
of the constituents. Moreover, a quasi-prefix is con-
sidered to be present in all words beginning in the ap-
propriate letter sequence, even for those in which the
prefix (of the source language as analyzed in isolation)
is not present, e.g. Russian полно ‘full’ (for по-). Thus
a quasi-prefix is not a separate lex and has no separate
dictionary entry (except in special cases in which sep-
arate treatment is really desirable) but part of a lex,
whereas a real (MT) prefix is a separate lex, and is to
be segmented only where it actually occurs (but not
where a homographic letter sequence occurs).

The way quasi-segmentation works is quite simple:
whenever the machine encounters a quasi-prefix as it
is addressing the letter-tables, it goes back to the first-
letter table for the next letter. Thus the letter following
the quasi-prefix is treated as if it were an initial letter,
so that the same letter-tables actually serve multiple
situations. A considerable amount of duplication of
letter-tables is thus avoided. Naturally, the machine
must keep in mind as it were which quasi-prefix was
encountered, if any, as it will need this information later
on in order to choose the correct intermediate address.

From the foregoing it will be clear that it is desirable
to set up quasi-prefixes for those cases in which the
range of possibilities for following letter sequences ap-
proximates that of beginning letter sequences, and only
for those cases. This principle dictates, among other

21 Cf. the “pseudo-prefixes” of Ida Rhodes, described by her in
A New Approach to the Syntactic Analysis of Russian, elsewhere in
this issue.

99

things, that only those prefixes (of the source language
as analyzed in isolation) which have the widest oc-
currence in the lexicon be set up as quasi-prefixes.

The effect of quasi-segmentation is that words con-
taining quasi-prefixes are looked up not with regard to
their beginnings, which are not very distinctive, but
with regard to what follows the relatively non-distinctive
portion. The process of narrowing down is thus rendered
much more effective.

Provision for quasi-segmentation in the letter-by-
letter addressing system can be made by means of in-
formation placed in the appropriate entries of the letter
tables involved, in lieu of an address for a next letter
table or a truncate list. In the case of no-, for ex-
ample, the о-entry in the second-letter table for п
would have the address for the “quasi-prefix table”
plus a particular number, less than 16, assigned to по-.
The quasi-prefix table would function like the no-such-
heading table (see above), providing a means for
identifying the nature of the situation without the need
of checking operations at every step. Like all letter table
addresses, the quasi-prefix address would be a multiple
of 16.22 Thus the significant part of the quasi-prefix
address would occupy bit positions other than the four
low-order ones, while the number identifying the indi-
vidual quasi-prefix involved would occupy these four
low-order positions. (It is assumed that there would be
no more than 16 quasi-prefixes.)

When it has been determined by the machine (in
the manner described above) that either the no-such-
heading table or the quasi-prefix table has been entered,
the index register will still have the information defin-
ing the nature of the situation. A TXH (transfer on in-
dex high) or TXL (transfer on index low or equal)
can serve to distinguish between the no-such-heading
and the quasi-prefix situations and, if it is the latter,
subtraction of the quasi-prefix address from the contents
of the index register will leave the number indicating
which quasi-prefix is involved.

Allocation of Memory Space

An estimate of the way in which memory space might
be allocated within core storage for the look-up pro-
cess is summarized in Table XI. The amount of space
assigned to each of the parts of the system is estimated
to the nearest hundred machine words. The number of
letter tables in each category is estimated to the nearest
ten. (The figure 30 is given for first- and second-letter
tables combined; there are 28 second-letter tables
needed for Russian, but the first-letter table has 64
words instead of 16, so 32 would be the precise figure to
us as a multiple of 16 in calculating space needs for
the tables.)

The estimate has been made for a dictionary of
20,000 entries, with the headings having lengths as

22 Cf. footnote 12. (It would he possible to let the quasi-prefix
address coincide with the no-such-heading address. In this case,
15 quasi-prefixes could be provided for and the 16th possibility
would indicate the true no-such-heading situation.)

TABLE XI: ALLOCATION OF SPACE IN RAPID-ACCESS
MEMORY FOR THE LOOK-UP PROCESS, ESTIMATED FOR
RUSSIAN DICTIONARY OF 20,000 ENTRIES.

 Number of
 machine words
Letter Tables (for bases and prefixes)

Number
of tables

1st and 2nd Letters 30
3rd Letter 180
4th Letter 220
5th Letter 20

Total 450 times 16 7,200

Truncate Lists
First machine word for each

truncate: 18,600
First supplementary machine word: 3,600
Additional supplementary word: 200

22,400

 29,600
Suffix Tables (for about 160 suffixes) 400
Provision for Non-Alphabetic Characters 100
Segmentation-Checking Table 100
Program 1,400
Input/Output Buffer 1,200

Total (32,768) 32,800

calculated for the dictionary being compiled at the
University of California. It is assumed for the estimate
that quasi-segmentation is not used in the system. A
dictionary of more than 20,000 entries could be ac-
commodated by cutting down on the number of third-,
fourth-, and fifth-letter tables (thus increasing the av-
erage length of the truncate lists) and/or by resorting
to quasi-segmentation. Either of these measures would
slow down the look-up process to a slight extent. By
the same token, with a dictionary of fewer than 20,000
entries, more letter tables, especially for the third
letter, could be added, thus reducing the average size
of the truncate lists and increasing by a slight amount
the speed of the look-up process. The extent to which
speed could be increased by adding more letter tables
is quite limited, however, since a minor difference in
the average length of truncate lists (for example a re-
duction from five to three or four truncates) makes very
little difference in the amount of time required to select
desired truncates. Therefore, for a much smaller dic-
tionary a more profitable avenue to explore with a view
to increasing overall speed would lead to including
equipment for the intermediate stage in core storage at
the same time as the look-up proper.

100

101

The Intermediate Stage
After the look-up and segmentation checking stages,
we will have recorded on tape a list of addresses, one for
each lex token of the original text, arranged in the same
order as that in which the lexes occur in the text. Since
the segmentation system used at the University of Cali-
fornia gives about twice as many lex tokens as word
tokens in a text, an initial text of 30,000 words would
now be represented by a list of about 60,000 addresses.

It may be helpful in following the explanations in
this section to refer to Fig. 5, which is a block diagram
of the translation process, showing the points at which
information is transferred between tapes and core
storage. Our discussion so far has been concerned with
the operations in the second block, and the operations
pertaining to the intermediate stage are those in the
next four blocks. The remaining operations have to do
with translation proper rather than dictionary utilization,
and are not considered in detail in this paper.

Our problem now is to bring into core storage, from
the tape containing the actual expositions, the entries
corresponding to the lexes which occur in the text being
processed, and to replace each text-ordered address by
the address to the location that the corresponding expo-
sition will occupy in core storage. This is done by
means of an intermediate list. The addresses which we
have on tape are addresses to this list, and each one may
therefore be called an intermediate address. Note that
the initial stages of look-up give us neither the exposi-
tions themselves nor any part thereof (except for the in-
formation used in segmentation checking), nor do they
yield the addresses where the expositions are stored at
that point.

The format of the intermediate list, which is stored
on tape in one file, is as follows. It consists of a series of
about 20,000 machine words, one for each lex that is
to be recognized in the look-up process; each inter-
mediate address is therefore the address of the corres-
ponding word in the intermediate list, and this word
may be called the intermediate word for its heading.
The arrangement of an intermediate word is shown in
Fig. 6.

In the form in which it is stored on tape, each inter-
mediate word contains four pieces of information, which
may be grouped into three categories.

(1) The sign bit is used for flagging, by storing a

minus there, the first time each lex occurs in the text
being translated.

(2) The remaining pieces of information refer to
the actual exposition represented by the intermediate
word. The expositions are stored in sequence on another
tape and together constitute the exposition list. The
next two pieces of information serve to address the in-
dividual entry in the exposition list.

(a) The tag (bits 18-20) contains the list portion
number. Since the exposition list is too long to be held
in core storage at one time, it must be divided into por-
tions which will be read in separately for the purpose
of selecting out the entries needed for a particular text.
The list portion number indicates the portion of the
exposition list in which the related exposition is located.
The three bits allocated for this number allow, of
course, for the exposition list to be divided into eight
portions.

(b) The decrement (bits 3-17) contains the perm-
anent exposition address, which is the address to the
place that the related exposition will occupy after the
portion of the exposition list containing that exposition
has been read into core storage. For ease in program-
ming, this address will be the 2’s complement of the
address in core storage of the first word of the exposi-
tion.

(3) The remaining piece of information refers to
the length of the corresponding exposition. The address
portion (bits 21-35) contains the exposition length
number, which is equal to the number of machine
words in the exposition. Each exposition may be of any
length; no space is wasted by requiring standard lengths
of expositions.

During the intermediate stage the exposition length
number will be replaced by the temporary exposition
address for occurring lexes. This is the address at which
the exposition is to be placed in core storage for the
stage of translation proper. Like the permanent exposi-
tion address, it will be the 2’s complement of the ad-
dress of the first word of the exposition.

The intermediate list is used in the following manner.
It is first read into core storage so that it is located in a
block of consecutive words. Then the tape of text-
ordered intermediate addresses is read in, a portion at
a time, and operations are performed to give the follow-
ing results: a. The intermediate word corresponding to

102

each different lex in the text is flagged with a minus in
its sign bit. b. The temporary exposition address is
calculated for each different lex in the text. c. This ad-
dress is stored in the address portion of each corres-
ponding intermediate word, replacing the exposition
length number. d. Each text-ordered intermediate ad-
dress is replaced by the temporary exposition address
for the lex, and these are put on tape for use during the
next stage of translation.

Let us look more closely at the actual sequence of
operations involved. Each text-ordered intermediate
address is used in succession to place the designated
intermediate word in the accumulator. Then the sign
bit is tested. If it is found to have been minus, this
means that the corresponding lex has previously oc-
curred in the text, and that its temporary exposition ad-
dress has already been calculated and is now in the ad-
dress portion of the accumulator. So this address is
merely stored in place of the intermediate address, after
which the machine passes to the next intermediate ad-
dress in text order. On the other hand, if the tested sign
is found to have been plus, this indicates that the lex is
occurring for the first time in the text, and slightly more
complicated series of steps is necessary. The last cal-
culated temporary exposition address is taken from
storage and added to the exposition length number in
the address portion to give the temporary exposition
address for this lex, after which this new form of the
intermediate word with its sign made minus is stored
back in the intermediate list. The new temporary expo-
sition address is also stored in place of the intermediate
address and in a temporary storage location in place of
the previous temporary exposition address. After this
the next intermediate word is placed in the accumulator
and the same procedure is followed for it. We give at
the top of the next column a routine designed to ac-
complish these operations.

The routine as shown gives the substance of the
manipulations performed, but simple modifications
which need not be given in detail here will let it be in-
corporated into the program in a maximally efficacious
way. In the first place, it will be seen that the loop is
short enough to be able to fit within a copy loop. On
the other hand, the need for saving time dictates that
two intermediate addresses be placed in one machine
word on tape, so as to halve the amount of time needed
to write and read them. Since the loop shown cannot
fit twice in a single copy loop, a slightly more compli-
cated routine must be constructed, so that the first half
or more of a record of intermediate addresses may be
processed during the read-in of the entire record, the
remainder during the read-out of the resulting tem-
porary exposition addresses. Thus all the internal opera-
tions shown in the above routine can be performed
while the tapes are running at full speed.

Complications arise from the fact that transliterated
and non-alphabetic material will be present in the text
in addition to the intermediate addresses. Words that
do not contain two intermediate addresses can be
flagged with a minus in their sign bit, with a code in the

ROUTINE TO FLAG INTERMEDIATE LIST AND
CALCULATE AND STORE TEMPORARY

EXPOSITION ADDRESSES
 LXA TXLTH ,2 Initialize text length test.
NEXT CLA TEXT ,2 Get intermediate address
 PAX ,1 from text, and place into

index register 1.23

 CLS ,1 Get intermediate word and
change sign.

 TPL FLAGD Test for flagging.
 ADD ADDR Add previous exposition ad-
 dress to length.
 STO ,1 Store addressed, flagged in-

termediate word.
 STA ADDR Store exposition address.
FLAGD STA TEXT ,2 Store exposition address in

text.
 TIX NEXT ,2,1 Go to next text word.
Locations used by routine:
TXLTH DEC (Number of words in text portion.)
ADDR MZE Temporary storage for temporary ex-
 position address.24

other two positions of the prefix to indicate whether
there is an intermediate address in the address portion,
or in the decrement portion, or in neither. The words
that contain no intermediate address can be processed
completely during one copy loop, so that one does not
know in advance at what point after the read-in phase
the processing will be completed. This can be handled
by going through three phases: a read-in with process-
ing until the end-of-record gap is reached; a read-out
with processing until the number of words processed
equals the number of words that were read in; and a
read-out without processing until the number of words
read out equals the number of words that were read in.
It is also necessary to have a cut-off device that will
stop the process if the space available for expositions in
core storage becomes completely allocated before the
end of the text. This is done by comparing each newly
calculated temporary exposition address with the high-
est temporary exposition address that can be accommo-
dated. It seems advisable not to stop the process im-
mediately when the space is completely filled, but to
let it continue until a temporary exposition address that
is too high has been calculated, in hopes that the re-
cord currently being processed can be finished before a
new lex turns up, since the lex tokens towards the end
of a text will preponderantly represent lexes that have
already occurred in that text. In addition, a test can be

23 The use of the index register (for following CLS and STO
instructions) requires either that the intermediate list run backwards
or that the 2’s complement of the location of each intermediate word
be used as the intermediate address. This is a purely technical
consideration which is ignored in the body of the paper for ease
of presentation.

24 This word must have a minus in its sign bit since its contents
are to be added to intermediate words flagged with a minus sign.
If the intermediate list is to run backwards from the high-numbered
end of core storage, the remaining contents of this word in its
initialized form should be zero. Otherwise they should be the 2’s
complement of the address of the location in core storage immediately
following the intermediate list.

103

made before starting each new record to ascertain
whether the current temporary exposition address is
so high that it would probably run over during that
record, to avoid the time waste involved in partially
processing a record that cannot be completed.

After all the intermediate addresses have been
replaced by temporary exposition addresses, it is neces-
sary to make a compressed intermediate list. To do
this we use a simple routine to run through the inter-
mediate list, pick out the flagged intermediate words,
and recopy them into a shorter list. This compressed in-
termediate list will have a length of as many machine
words as there are different lexes in the text, some 2,000
to 3,000. The purpose of making it is to clear space in
core storage for the expositions which are to be brought
in. It is probably desirable to sort the words in the com-
pressed intermediate list at the same time, to facilitate
bringing in the expositions. A sort according to list
portion numbers would be enough, although sorting
them by list portion numbers and permanent exposition
addresses taken together would place the intermediate
words in the same order as their corresponding entries
in the exposition list.

After this we are ready to bring the necessary ex-
positions into core storage from the exposition list. The
routine given below will do this. It moves word-by-word
through the compressed intermediate list, taking the
temporary exposition address and the permanent ex-
position address from each word and placing them in
index registers. The end of each exposition in the ex-
position list is marked by a word containing only zeroes.
Thus the program takes the successive words of each
exposition from the locations indicated by the permanent
exposition address, places them in the accumulator, and
tests for this word of zeroes before storing them in the
locations indicated by the temporary exposition address.
This process terminates when the word of zeroes is
encountered. The word of zeroes is not itself trans-
ferred, and it is not counted as a word of the exposition
for the purpose of determining the exposition length
number.

Thus only the expositions of those dictionary entries
which are actually needed are kept in core storage, and
they will all remain there, immediately addressable,
during the stage of translation proper. The routine
shown here assumes that the compressed intermediate
list has been sorted according to the portions of the
exposition list and that index register 4 contains a num-
ber showing the number of words in the compressed in-
termediate list that correspond to the current portion.

Some time can be saved by determining a minimum
exposition length and transferring that many words of
each exposition before beginning the testing for the
word of zeroes.

In the intermediate list there must be one entry for
each heading (or lex) that is provided for in the dic-
tionary, but the exposition list contains only one entry
for each exposition (or lexeme). Thus for those exposi-
tions that correspond to more than one heading (i.e.,

ROUTINE TO BRING EXPOSITIONS INTO
CORE STORAGE

NEXT CLA COMPR,4 Place intermediate word in-
 to accumulator.

PAX ,2 Temporary exposition ad-
 dress into index register 2.

PDX ,1 Permanent exposition ad-
 dress into index register 1.
CAL CAL ,1 Place word of exposition in-
 to accumulator.

TZE *+4 Test for word of zeroes.
SLAV ,2 Store at temporary exposi-

 tion address.
TXI *+ 1,1,—1 Go to next word
TXI CAL,2,—1 of exposition.
TIX NEXT,4,1 Go to next intermediate
 word.

those lexemes that have allolexes), more than one entry
in the intermediate list will contain an address to the
same entry in the exposition list. The intermediate list,
then, is seen to be, among other things, a device for
passing from the graphemic level to the morphemic (or
lexemic) one. The present system, or any system which
stores expositions separately from their headings so that
the headings representing the allolexes of a lexeme may
all refer to the same exposition, entered only once, will
be seen to differ from an ordinary dictionary by having
neither cross-referential nor duplicate expositions. It
therefore does not choose the heading corresponding to
any one of the allolexes as a primary one that would be
more directly related to the exposition for the lexeme
in question. This type of system is more in accord with
modern linguistic theory, which gives equal status to all
allomorphs of a morpheme.

There are, however, two noteworthy cases in which
not all the allolexes of a lexeme can have the same ex-
position. The first arises when two or more lexemes have
in common a homographic allolex, but at least one of
the lexemes has in addition an allolex not shared by the
other lexeme(s). The homographic allolexes must have
one exposition, different from that pertaining to the
other allolex or allolexes. This shared exposition will
contain rules for unraveling the homography—rules that
would be otiose in the unshared expositions. An example
of this situation is furnished by the Russian morphemes
бред, ‘delirium’ and бред/бреж ‘to be delirious’. Instead
of one exposition for each morpheme, there will have to
be one exposition for бред ‘delirium/to be delirious’ and
another for бреж ‘to be delirious’.

The second case turns up when the identification of
one or another allolex of a lexeme will serve to resolve
the homography between two lexes which can occur
contiguous to this lexeme. The different allolexes of this
lexeme must then have separate expositions. A Russian
example is the stem хозяин/хозяев ‘master, owner’.
Either allolex may occur with a suffixal lex -а, but the
former allolex of this stem will show that the suffix

104

represents the genitive singular morpheme, while the
latter will show that it stands for nominative plural.

Note that if it should be possible and desirable,
whether because of a smaller dictionary or by use
of a machine with a larger rapid-access memory, to
store the intermediate addresses of all headings during
the stage of look-up proper, one could make the transi-
tion to the lexemic level at an earlier point by address-
ing the headings for all allolexes of a lexeme to the
same word in the intermediate list. This would save
space at later stages of the process in two ways: (1)
The intermediate list would be shorter in that it would
contain, like the exposition list, one entry per lexeme,
instead of one entry per allolex as things now stand;
(2) less space would be taken up by the expositions
brought into core storage for use during the actual
translation procedure and by the condensed intermediate
list used for addressing them. In the system as presently
constituted an exposition will be repeated for every
different allolex of the same lexeme that occurs in the
text being translated, whereas this modification would
entail that an exposition will be brought in only once
for each occurring lexeme. There would be correspond-
ing time savings due primarily to the avoidance of hav-
ing to deal with extra allolexes of occurring lexemes:
calculating addresses for storing the expositions and
going through the necessary steps to locate them and
bring them into core storage.

With the segmentation system used for Russian at
the University of California, it is estimated that there
will be around 17,000 different lexemes represented in
a dictionary with 20,000 headings. Therefore, the ex-
position list will contain around 17,000 expositions. The
set-up of the intermediate stage that has just been de-
scribed will accommodate this many expositions only if
their average length is not more than about 5.6 machine
words. In order to accommodate this many expositions
with a longer average length it would be necessary to
divide the exposition list into more than eight portions
and to find space in an intermediate word for a list
portion number of four or five bits. This can easily be
done by shifting the permanent exposition address one
or two bits to the left, thus making available one or
two additional bits in the low order portion of the de-
crement field. This would make necessary only one
additional operation, a right shift before placing the
permanent exposition address in an index register.

If the expositions in the exposition list are arranged
in the same order as their corresponding words in the
intermediate list, so that there is one exposition for
every heading, a modification in the manner of bringing
in the needed expositions is possible. Instead of reading
in the whole exposition list in portions and then moving
the needed expositions to the temporary exposition loca-
tions, the machine can read in only the needed exposi-
tions, copying them directly to the temporary exposition
locations. There is ample time during the copy loop
for modifying the addresses at which the words of the
needed expositions are to be stored. During the opera-

tion of forming the compressed intermediate list, in
preparation for this read-in, the machine would total
up the lengths of the expositions pertaining to the un-
needed intermediate words between successive flagged
intermediate words and store these totals in the unused
portions of the flagged words. If this modification is
used, it is not necessary to store a list portion number
or a permanent exposition address in an intermediate
word, so that the information pertaining to two inter-
mediate words can be stored in one word of tape. On
the other hand, one loses the flexibility and convenience
of being able to order the exposition list independently
of the intermediate list. Moreover, the time gained by
using this modification is largely offset by the time
needed for reading in the duplicate expositions made
necessary by it, so that it would be advantageous only
if there are additional reasons for having one exposition
per heading.

A considerably different alternative approach would
be one in which the expositions themselves would be
arranged in text sequence and stored on tape, each
exposition being repeated as many times as its corre-
sponding lexeme occurs in the text. This approach could
be carried out without the use of the intermediate stage,
if the look-up proper were designed to yield permanent
exposition addresses or some substitute therefor instead
of intermediate addresses. There would then be less
complication in parts of the program, but it would
require much more time for its execution, since it would
necessitate running the exposition list through core
storage several times, once for each portion of the text
(in the form of a series of exposition addresses or serial
numbers of expositions or the like) brought into core
storage, and would also entail more movement of the
text tape during the stage of translation proper.

Timing

An estimate of the amount of time required for the
look-up process, including input of the original text
and the intermediate stage, is given in Table XII in
terms of milliseconds per word, estimated to the nearest
quarter of a millisecond. (A quarter of a millisecond is
about the time required for 10 operations of the usual
type.)

Similar calculations made for other IBM computers
result in figures of slightly less than five milliseconds per
word on the 709 and 1.2 milliseconds per word on the
7090. That is, the speed of the system ranges from 125
words per second on the 704 to 833 words per second
on the 7090.

The estimates for the stage of look-up proper and
segmentation have been made in terms of an average
word. Many words will take longer than the average
one, but it is believed that this excess expenditure of
time will be at least compensated for by the many words
which will require less time than average. For most
words, the letter-by-letter addressing will be conducted
for the first three letters; for some this process will con-
tinue for the fourth or even the fifth letter, but for

105

TABLE XII: ESTIMATE OF TOTAL LOOK-UP TIME PER
WORK FOR RUSSIAN TEXT OF 30,000 WORDS, USING 704
COMPUTER.

Milliseconds
Input 2
Look-up Proper and Segmentation

Letter-by-letter addressing ¾
Truncate selection ¾
Suffix location ¼
Complications in segmentation ¼
Segmentation checking ¼
Misc. “red tape” operations ¼

2½
Read-Out of Intermediate Addresses ½
Intermediate Stage

Loading intermediate list ¼
Run-through of text ¾
Compressing intermediate list ¼
Loading selected expositions 1¾

3

Total 8

others it will stop after the second or even after the
first (in the case of one-letter words). The average
vestigand has one suffix, and most suffix tokens have one
letter. Where more than one suffix is involved or where
a suffix is longer than average, the look-up time is
slightly longer than that shown in the table; but on the
other hand there are many vestigands which are unit
lexes, so that segmentation time is zero. For some
vestigands it will be necessary to consult supplementary
truncate words, with a resulting loss of time; but many
others (including the most frequently occurring words)
are so short that it is not necessary to consult the
truncate lists for them at all. The item in the table
called “Complications in segmentation” is one which
most vestigands will not be concerned with at all; it is
put in the table to provide for those situations in which
the first provisional segmentation does not check out
and/or it becomes necessary to consult the segmentation
checking list. In the latter circumstance, especially when
the former is also present, a relatively considerable
amount of time might be expended, perhaps as much as
a millisecond or more. These situations, however, will
occur for only a small proportion of vestigands; the
quarter millisecond given in the table represents the
time taken up by the occurrence of these situations ap-
portioned among all vestigands. It is doubtless too high
a figure.

Since a major portion of the time used in the inter-
mediate stage is taken up by the movement of the tape
containing the exposition list, the length of expositions
makes a great deal of difference in the amount of time
required. If the average length of expositions is seven
or eight machine words, the total time necessary for
the operations that constitute the intermediate stage

will be between 85 and 95 seconds, which amounts to
about three milliseconds per word token. As six seconds
is a liberal estimate for the operations which cannot be
performed while tape is moving, it is seen that the great
preponderance of the time is taken up by tape move-
ments. Four of these are necessary. First the 20,000
words of the intermediate list must be brought into core
storage. Next the tape of text-ordered intermediate
addresses must be read into core storage, and a re-
placement list of text-ordered temporary exposition
addresses must be written out onto tape. The addresses
of these two text-ordered listings can be stored two per
word of tape, so that copying the 60,000 addresses of
each will require moving through 30,000 words of tape.
Finally, the permanent exposition list must be read into
core storage so that the needed expositions can be
selected. If it contains 17,000 expositions with an aver-
age length of eight words, this will mean a tape move-
ment of 136,000 words. The total amount of tape to be
moved will then be 216,000 words, which, at a rate of
2500 words per second, will take 86.4 seconds. Another
half-second must be added on to allow for putting the
tapes in motion for each individual portion that is
copied. It will be seen that almost two-thirds of the
tape time is devoted to the running in of the permanent
exposition list. If we make a more moderate estimate of
five words for the average exposition length, the total
tape movement is reduced to 165,000 words, which
would consume 66 seconds. The time for the whole in-
termediate stage would then be less than 2.5 ms. per
word token or 1.25 ms. per lex token.

Let us contrast the time necessary for carrying out
the alternative approach of storing all needed exposi-
tions on tape in text sequence without using an inter-
mediate stage. This would likewise entail running in
the 30,000 words of (exposition) addresses, but would
mean putting out the expositions on 300,000 words of
tape (at five words per exposition). Since the permanent
exposition list must be run through for each portion of
the address tape brought into core storage, and since
those expositions that are selected out must be kept
in core storage until the completion of each pass of this
tape, a large number of these passes will be necessary.
If we assume that 25,000 words of core storage will be
available to hold the selected expositions, then twelve
will be the lowest possible number of passes. This will
amount to a tape movement of 1,020,000 words, giving
a total of 1,350,000 words. The time consumed by tape
runs, allowing for tape starts, will then be about 543
seconds (9.05 minutes). This comes to 18.1 ms.
per word token—over seven times as long as for the
intermediate stage. These calculations indicate that even
for the purpose of listing expositions on tape in text
order a great saving in time is to be obtained by the
use of the intermediate stage.

Organizing and Updating

The organization and coding of the dictionary for use
by the program described here would be too tedious a
job to be performed by hand, but it is relatively easy to

106

construct a program which will enable the computer to
do it. Such a program may be called the dictionary
adapter. It will take as its input the dictionary in the
form in which it is worked on by linguists, namely with
the headings attached to the expositions and the entries
arranged in alphabetical order of the headings. Although
the adapter has not yet been written, it is estimated
that its running time on the 704 will not amount to
more than ten or fifteen minutes at the most. Therefore,
the easiest way to make modifications will be to wait
until several changes and additions have been accumu-
lated and then reorganize the entire dictionary.

The operations of the adapter fall into three stages.
First it will separate the headings from the expositions
and put the latter on tape to create the exposition list,
at the same time forming the intermediate word for each
exposition and associating this with its heading. In the
second stage it will work with the headings to form
the letter tables and truncate lists, thereby determining
the intermediate address for each intermediate word.
Finally, it will place the intermediate words at the
locations indicated by their intermediate addresses
to make the intermediate list.

Received February 23, 1960
Revised August 19, 1960

107

