
[Mechanical Translation, vol. 8, No. 1, August 1964]

Connectability Calculations, Syntactic Functions, and Russian
Syntax

by David G. Hays, Stagiaire qualifié, Common Research Center, EURATOM, Ispra*

A program for sentence-structure determination is part of a system for
linguistic computations such as machine translation or automatic docu-
mentation. The program can be divided into routines for analysis of word
order and for testing the grammatical connectability of pairs of sentence
members. The present paper describes a connectability-test routine that
uses the technique called code matching. This technique requires elabo-
rate descriptions of individual items, say the words in a dictionary, but it
avoids the use of large tables or complicated programs for testing con-
nectability. Development of the technique also leads to a certain clarifica-
tion of the linguistic concepts of function, exocentrism, and
homography.
In the present paper, a format for the description of Russian forms and
a program for testing the connectability of pairs of Russian items is pre-
sented. It recognizes nine functions: subjective; first, second, and third
complementary; first, second, and third auxiliary; modifying; and predi-
cative. The program is so far limited to these dominative functions; an-
other program, for the coordinative functions (coordination, apposition,
etc.) remains to be written.

1. Introduction

The subject of this paper is a certain kind of routine
for testing the connectability of pairs of occurrences in
text. A connectability-test (CT) routine is one part of a
program for sentence-structure determination; the other
part is a parsing-logic (PL) routine. Operating alter-
nately, in a manner to be described in Sec. 1.1, these
two routines identify syntactic relations among all the
unit occurrences within a sentence. This is the second
stage in syntactic recognition of text and follows dic-
tionary lookup, in which the unit occurrences are iden-
tified. The kind of CT routine to be considered here has
been called "code matching" in the literature; the gen-
eral properties of this class of CT routines are intro-
duced in Sec. 1.2. Special assumptions about the syn-
tactic relations sought (Sec. 1.3) and the nature of the
unit occurrences (Sec. 1.4) have to be introduced. The
concepts of syntactic function, exocentrism and homog-
raphy are discussed in Sec. 2, and a list of functions
for Russian is proposed. The notational scheme and
symbolic operations needed for realization of a code-
matching CT routine in a computer are described in
Sec. 3. Sections 4 and 5 apply the concepts of the pre-
vious sections to Russian; in Sec. 4 a format for encod-
ing Russian syntactic properties is presented, and in
Sec. 5 a CT routine for a part of Russian syntax is given.
In Sec. 6, some programming problems involved in the
storage and manipulation of large, numerous syntactic
descriptions during sentence-structure determination are
examined. Finally, in Sec. 7, the relationships between

* On leave from The RAND Corporation, 1962-63. The work reported
here was accomplished in part at RAND and completed at EURATOM.

morphology and syntax are introduced as the proper
subject of a much larger treatment.

1.1 SENTENCE STRUCTURE DETERMINATION

After dictionary lookup, a text is represented by a string
of syntactic descriptions of unit occurrences. The pur-
pose of sentence-structure determination is to establish
syntactic relations over combinations of these occur-
rences. A PL routine1 is a mechanism for selecting pos-
sible combinations; it uses only “word order”, i.e. posi-
tion in the string, as a characterization of each unit oc-
currence or previously established composite occur-
rence. Its logic is that of continuity in the general sense:
the rule that constituents must be continuous, in phrase-
structure theory, or the rule of projectivity, in depend-
ency theory.2 Besides position, a PL routine can be de-
signed to use other properties of occurrences, but in
that case it is specialized.3 In its general form, the PL
routine leads to the identification of every possible set
of syntactic relations over occurrence spans of all
lengths in the text. When one or more sets of syntactic
relations bind together all occurrences within a span
bounded by appropriate punctuation, the span is recog-
nized as a sentence, unambiguous if it has a unique
structure (set of relations binding all its occurrences),
ambiguous otherwise.

When a PL routine selects a possible combination of
occurrences, it transfers the combination, with descrip-
tions of their syntactic properties, to a CT routine. This
routine, using a concrete grammar of the language in
which the text is written, determines whether the prop-
erties of the occurrences and the general rules of the

32

grammar permit the combination. The CT routine re-
turns a yes-or-no answer; or, if such concepts are used
by the grammarian, a measure of the probability, value,
or utility of the combination.4 In its most general form,
a CT routine is capable of supplying more than one
positive answer for a single combination. Different de-
pendency directions (cf. Sec. 1.3) or different func-
tions (cf. Sec. 2) may have to be distinguished. As a
byproduct of the connectability test, the CT routine
furnishes, for every positive answer, a description of the
syntactic properties of the new composite.

New composites are added to the list of occurrences
available to the PL routine. Sentence-structure deter-
mination therefore consists of a sequence of selections
by the PL routine, each followed by an application of
the CT routine.

Both PL and CT routines can be designed in many
ways, given the same linguistic theories and facts. The
CT routine to be presented here is to be used with a
general PL routine; the combination, given a grammar
and text, will find every grammatically allowable struc-
ture for the text (but whether any of those structures
is valid or intuitively acceptable depends on the content
of the grammar). For use with a PL routine intended to
produce the most “probable” structure of an input
string, the CT routine would have to be modified, but
only slightly, and in fact the designs of the two parts
of a sentence-structure determination program are al-
most independent.

1.2. CODE MATCHING CT ROUTINES

The classic format for a grammar is a construction list.
Each entry has three or more parts, naming the con-
struction and each of its members. The connectability-
test routine required is a table-lookup routine; the de-
scriptions of two or more occurrences are looked up in
the list, and if the combination is found the name of the
construction it forms is found with it. This format is
somewhat inconvenient in practice for two reasons.
First, if the name of a construction is a concatenation
of its syntactic properties, then it often resembles the
name of one of its members (the governor). Space in
the table is therefore wasted by repetition within each
of many entries. Second, the linguist faces a dilemma.
If just one symbol is assigned to each distinct unit, the
number of rules is increased because many classes of
units can participate in unique sets of constructions. If
many symbols are attached to each distinct unit, the
list can be greatly shortened, but the number of refer-
ences to be made during sentence-structure determina-
tion is increased.

Code-matching CT routines as a class are distin-
guished by the fact that they require no list of con-
structions.5 The syntactic description stored with each
occurrence is in a format and notation that permits di-
rect calculation of connectability and of the properties
of the combination if one is permitted. In principle, the

latter calculation can require the storage of considerable
information that is not usable until the combination is
formed. Code matching CT routines are related to the
formal systems known as categorial grammars,6 which
are known to have essentially the same power as con-
text-free phrase-structure grammars,7 hence of depend-
ency grammars.8 In a categorial grammar, each syn-
tactic description is a string of symbols containing one
special mark. The string to the right of that mark is
matched with the entire string characterizing a follow-
ing unit, and the two units are connectable if and only
if the two strings match exactly. In important papers
on the subject, these strings are constructed with two
primitive symbols (s = sentence, n = noun), paren-
theses, and the special mark. As a result of these re-
strictions, on the matching process and on the alphabet
of symbols, the syntactic descriptions needed for natural
language are formidable, and the number of different
strings assigned to each distinct occurrence is large.
Linguistically, it seems more convenient to use both a
more elaborate matching process and an enlarged
alphabet. In the Russian example given below, the size
of each syntactic description is large but limited, not
subject to indefinite growth, and most Russian items
can apparently be characterized syntactically with a
single description.

The principle used here is the isolation of syntactic
functions and agreement variables. On the order of a
dozen functions are proposed for Russian; every syn-
tactic relation between a pair of occurrences in a Rus-
sian text is to be regarded as an instance of exactly one
function. An occurrence is characterized by the func-
tions it can enter and by values of the agreement vari-
ables. Each function entails agreement with respect to
certain variables. The CT routine therefore seeks a func-
tion common to a pair of items and then tests their
agreement with respect to the variables material to that
function. (In this paper, material will be used in this
sense; a variable is material to a function if the function
entails agreement with respect to it.)

1.3. DEPENDENCY AND PROJECTIVITY

The theory of categorial grammars imposes an asym-
metry on every construction. Let / be the special mark,
and let s/n be the description of a transitive verb. Then
when a noun (description n) follows a transitive verb,
the matching operation (symbolized by a dot) gives
s/n.n = s. Part of the symbol of the verb remains,
whereas the symbol of the noun has entirely disap-
peared. In general, a code-matching system can be de-
vised to retain parts of both symbols, but a rule of pars
major can be invoked to maintain the asymmetry.
Moreover, the special mark can be regarded as dividing
each grammatical symbol into a part to be matched
with a dependent and a part to be matched with a gov-
ernor. Thus the articulation of dependency theory with
code matching is natural. In particular, any function

RUSSIAN SYNTAX 33

must be regarded as asymmetrical, served by one oc-
currence, governed by another, even if phrase structure
theory is adopted.

The theory of dependency will be assumed here, and
with it the continuity rule of projectivity. The PL rou-
tine is therefore supposed to furnish combinations of
occurrences consisting of adjacent unit occurrences or
adjacent composites whose heads (principal members,
from which all other unit occurrences depend directly
or indirectly) are to be joined directly by dependency.
If the heads of two composites (or two unit occur-
rences, or a unit occurrence and a composite) are iden-
tified as X and Y, the CT routine tests whether X can
depend on Y and gives a yes-or-no answer; it also tests
whether Y can depend on X, and gives a separate an-
swer to that question.

1.4. UNIT OCCURRENCES

It is assumed here that the units identified during dic-
tionary lookup are forms, simultaneously the largest
units constructable by morphological rules and the
smallest units to which syntactic descriptions can be
assigned. This separation of morphology and syntax is
justified, linguistically, on three grounds; the argument
applies to Russian and presumably to certain other
languages, but certainly not to all natural languages.
First, the categories and construction rules of Russian
morphology and syntax are separable with virtually no
overlap (i.e., morphological rules are exocentric). Note
here that the categories needed in morphological rules
and the categories established by morphological prop-
erties are not necessarily identical; many syntactic
properties of Russian forms are established by their
morphological constitution. Second, an absolutely strict
size-level distinction can be made between morphology
and syntax, so that dictionary lookup of forms can be
completed before sentence structure determination, us-
ing only syntactic rules, begins. Third, the continuity
rules for morphological and syntactic constructions are
somewhat different and much simpler if separated. Spe-
cifically, the continuity rule for morphological construc-
tions is that the immediate constituents of each con-
struction are continuous (with some notable excep-
tions), whereas the rule for syntax is projectivity. Pro-
jectivity does not seem to hold in Russian if the syn-
tactic unit is taken to be the morph or morpheme. Inci-
dentally, forms are bounded by spaces or marks of
punctuation in printed Russian text and only a limited
number of forms or morphological construction types
contain either spaces or marks of punctuation. Those
containing spaces are strictly limited, and those con-
taining spaces are strictly limited, and those containing
punctuation—mainly the hyphen—are of limited types
although not limited in number. The same is true of
many other printed languages. Another separation satis-
fying these three criteria (separability of rules, separa-
bility by size level, and simplification of continuity

rules), or even the first two, does not appear to exist in
Russian but might well appear in English, for example.

2. Functions

The code matching plan to be described here can be
used with any set of functions, or varieties of gram-
matical relationships. Let us assume that the functions
of a language have been determined; then each unit,
elementary or composite, is characterized by two lists
of functions: those it can govern and those it can serve
as dependent. A description of the structure of a sen-
tence will specify, for each elementary unit, what func-
tion it serves in the sentence and what occurrence gov-
erns it. For example, in “John ate breakfast” the unit
occurrences are “John,” “ate,” and “breakfast.” Here
“John” serves subjective function, governed by “ate;”
“breakfast” serves objective or complementary function,
also governed by “ate;” and “ate” itself serves predica-
tive function, with no governor.

The functions of a language can be classified as op-
tional or singular. An optional function is one that can
be served by any number of dependents of a given oc-
currence; for example, the function of adjectival modi-
fiers of nouns in English may be optional. A singular
function is one that can be served by at most one de-
pendent of a given occurrence, such as the subjective
function in various languages. (If two conjoined nouns,
or two nouns in apposition, serve as subject of a Rus-
sian or English verb, the function is nevertheless served
only once, by the conjoint or apposite group.) A singu-
lar function is said to be obligatory if it must be served
by a dependent of every occurrence of a given unit.

Ignorance of empirical fact could lead an investigator
to classify two singular functions together as one op-
tional function. This error is corrigible, however, since
an occurrence capable of governing both of the singular
functions can govern only one dependent with each of
them, a fact that can be revealed by study of texts and
interrogation of informants. The differentiation of ad-
jective order classes in English, for example, may lead
to identification of several singular adjectival functions
in place of the optional function now hypothesized. Any
two singular functions can be reduced to one if no oc-
currence in the language is capable of governing both,
but cannot be if some occurrences govern one depend-
ent with each function. On the other hand, all of the
optional functions of a language can be taken as a
single function, since—by definition—governing one
dependent with an optional function does not prevent
an occurrence from governing others.9

Statements about functions governed and functions
served determine the major form classes of a language.
These necessarily supersede all other part-of-speech
classes, which would be irrelevant for syntactic opera-
tions. A syntactic unit, elementary or composite, is pri-
marily characterized by three lists of functions: those it
can govern, those it must govern, and those it can serve

34 HAYS

as dependent. This set of three lists is called the func-
tion triple of the item. A major form class consists of all
forms bearing identical function triples. Within a form
class, the agreement variables that are material for any
of the functions mentioned differentiate the class mem-
bers.

Agreement variables are material for a function if
two units connected with that function agree with re-
spect to that variable. The notion of agreement to be
understood here is very broad; it covers the agreement
of Russian adjectives with the nouns they modify, and
also the agreement between a verb that requires an
accusative object and the accusative noun depending
on it. The agreement requirements of a function are
homogeneous if the same agreement variables are mate-
rial for every combination of units connected with the
function. If the modifying function in Russian is a
single, optional function, its requirements are hetero-
geneous, but it can be analyzed into two subfunctions
with homogeneous requirements: adjectival and ad-
verbial. The complementary functions in Russian are
heterogeneous; many Russian forms can govern as com-
plement either a noun or a noun clause, with different
agreement requirements in the two situations (the noun
must be in a certain case, the noun clause must be in-
troduced by a certain conjunction). On the other hand,
if a unit can serve complementary function, the mate-
rial variables are always the same for it; hence minor
form classes can be identified.

Under certain circumstances it is necessary to as-
sign two or more function triples to a single unit which
therefore belongs to two or more major form classes and
can be called homographic. Let F1, F2,. . ., Fn denote the
functions of a language. There are four cases.

(i) If unit X can serve some Fi only in occurrences
in which it also governs some Fj, and if Fj is not obliga-
tory for X, then X is homographic. For example, finite
forms of the Russian byt' = be can serve predicative
function, but only if they govern complements. Other-
wise they serve only auxiliary functions, and do not
govern complements. One function triple allows X to
serve Fi and makes Fj obligatory; another does not al-
low X to serve Fi and either omits government of Fj or
makes it singular.

(ii) If X can govern Fi only if it simultaneously gov-
erns Fj, then X is homographic. Its two function triples
are similar to those described under (i), mutatis mutan-
dis. Any Russian infinitive can be regarded as homo-
graphic for this reason; it can govern a subject only if it
governs an auxiliary. (But this can be taken as an ex-
ample of exocentrism; see below.)

(iii) If X cannot govern Fi and Fj simultaneously,
even though in general they can be governed together,
then X is homographic. (If the two kinds of dependents
could not be governed together by any unit in the
language, they would be identified as the same func-
tion.)

(iv) If the value for X of some agreement variable

material to function Fi, which X can serve or govern,
varies according to the nature of the dependent that
serves function F, for X, then X is homographic; like-
wise, of course, if the mere presence of a dependent
with function Fj is influential. For example, the pres-
ence of a negative modifier as dependent of an ordinary
transitive verb influences the properties of the direct
object permitted in Russian. With the negative modi-
fier, a verb that normally governs the accusative can
instead govern the genitive.

As a rule, the functions of a governor are not modi-
fied by the attachment of a dependent; when modifica-
tion takes place, we can speak of exocentrism. Exocen-
trism and homography are to some degree interchange-
able. Economy helps to determine which facets of lin-
guistic structure will be handled by one device, which
by the other. Consider case (i), as described in con-
nection with homography. Since, in a projective lan-
guage, it is always possible to attach all dependents to
a unit before attaching the unit to its governor, the
conditioning dependent can always be attached before
the conditioned. Case (ii) is different, since projectiv-
ity does not guarantee that the conditioning dependent
is attached first; that depends on the grammar of each
language individually. If the class of units that can
serve the conditioning function is small, and the class
of homographic units would be large—as with infini-
tives (a large conditioned class) and auxiliaries (a
small conditioning class)—it is more economical to
mark the conditioning units and revise the function
triple of the governor when the dependent is attached,
provided that the order of attachment can always put
the alteration ahead of the pertinent test.

Functions can be classified as coordinative and
dominative. The agreement requirements of coordina-
tive functions are symmetric in the sense that the same
agreement variables are tested for both members of the
pair of associated units. In general, two units can be
coordinated if there is some function that the two can
serve jointly, but the details are complicated and can-
not yet be discussed clearly. Dominative functions are
all the others. In Russian, there appear to be at least
two coordinative functions, conjunction and apposition,
with more than one kind of conjunction possible. The
rest of this section treats the dominative functions of
Russian.10

The dominative functions currently hypothesized for
Russian are subjective, complementary (three func-
tions), auxiliary (three functions), modifying and predi-
cative. The following illustrations are archetypal:
Subjective function: nominative noun depending on
finite verb.
First complementary function: accusative noun depend-
ing on finite verb, or genitive noun depending on noun.
Second complementary function: dative noun depend-
ing on verb.
Third complementary function: prepositional phrase
depending on verb.

RUSSIAN SYNTAX 35

First auxiliary function: Finite verb (small category)
depending on infinitive verb, or finite form of byt' de-
pending on short-form adjective.
Second auxiliary function: Negative particle ne depend-
ing on verb.
Third auxiliary function: Comparative marker depend-
ing on adjective.
Modifying function: Adjective depending on noun, or
adverb depending on verb.
Predicative function: Finite verb depending on relative
adverb.
The subjective, complementary, auxiliary, and predica-
tive functions are singular. For the present, the modi-
fying function is optional, and it remains to be seen
whether an economical classification of modifiers would
lead to a set of singular or obligatory functions to re-
place this one.

3. Design of a Code Matching CT System
To simplify the exposition of the agreement variables,
the general plan of the CT system in which they are to
serve is presented first. According to this plan, a gram-
mar-code symbol is assigned to each form in the dic-
tionary and attached to each form occurrence in text
during dictionary lookup. Each symbol consists of a
string of binary digits (1's and 0's) of fixed length. The
nth digit has a certain linguistic significance, and the
format of the grammar code symbols is a statement, for
each position, of its significance. Each position repre-
sents one value of a variable with respect to some oper-
ation in the CT routine. For example, if grammatical
case is a variable, a noun can be characterized with re-
spect to case in more than one way: its own case, as
determined by its ending; the case it governs (usually
genitive); and so on. A set of positions representing all
the values of one variable will be called a frame, A
frame, filled with digits characterizing a form with re-
spect to a definite operation, occupies a certain set of
positions in the grammar-code symbol, and that set of
positions will be called a segment. One frame is needed
for the set of syntactic functions named above. It has
nine positions, for which abbreviations will be used:
subjective (s), first complementary (c1), second com-
plementary (c2), third complementary (c3), first, sec-
ond, and third auxiliary (x1, x2, and x3, respectively),
modifying (m), and predicative (p). This frame ap-
plies to three segments of the grammar-code symbol:
functions governed (Fg), functions served as dependent
(Fd), and functions governed obligatorily (Fo). To re-
fer to a segment of the grammar-code symbol of an oc-
currence, we will use the name of the segment and the
location of the occurrence. Thus Fg(A) is the functions-
governed segment of the symbol attached to the oc-
currence at location A in a text. When it is necessary to
refer to a single binary position in the grammar-code
format, we will use abbreviations for variable values as
superscripts: Fs

g, for example, refers to the subjective-

function position of the functions-governed segment,
and Fx3

o to the third-auxiliary position of the obligatory-
functions segment.

The first step in the comparison of two grammar-code
symbols is to determine whether there is any function
that one can serve for the other. Call the two occur-
rences D and G, and assume that the test is restricted
to determining whether occurrence D can serve any
function for occurrence G. If Fi

g (G) = 1, then occur-
rence G can govern a dependent with function i (here
i stands for any function). Likewise, if Fi

d(D) = 1,
occurrence D can serve function i. If there is some
function i for which Fi

d(D) = Fi
g(G) = 1, then oc-

currence D can serve function i for occurrence G, pro-
vided that the agreement requirements of function i
are satisfied. The Boolean product, Fg(G) & Fd(D) =
F, is constructed by setting Fi =1 if Fg(G) = Fd(D) =
1, and writing Fi = 0 otherwise. This product can be
obtained easily and very quickly by most modern com-
puters, for long strings of 1's and 0's.

Boolean products, also called logical products, will
be used throughout this CT routine. In several instances
below, it is sufficient to characterize the product as
equal to zero or not. If the product F defined above
equals zero, occurrences G and D cannot be connected
with G as governor; otherwise, their connection is sub-
ject to further tests. For functions, and also in several
instances below, it is necessary to determine the loca-
tions of all 1's in the product. Thus, for functions, each
function has its own agreement requirements, and the
further tests to be performed follow those requirements.
The exact form of the junctions test is:
Test Fg(G) & Fd(D) = F.
If F = 0, stop.
Otherwise, if Fi = 1, test agreement with respect to
function i.

The tests for the separate functions will be described
below. This statement of the test can be encoded for
operation on a computer, given the length of F and the
fact that F can contain any combination of 1's and 0's.

Another operation, the Boolean or logical sum, will
be needed. The sum of X and Y, X v Y = Z, is defined
by: Z1 = 1 if X1 = 1 or Y1 = 1, and Z1 = 0 otherwise.
Thus Z1 = 0 if X1 = Y1 = 0. The sum of two seg-
ments therefore marks the properties possessed by
either of two items.

4. Grammar-Code Symbol Format

The format used here for Russian grammar-code sym-
bols has 38 segments using 11 frames. One frame, for
syntactic functions, has been described. The others are
substantive type (T), nominal properties (N), clause
type (K), prepositional phrase type (H), first auxiliary
type (X1), modifier type (M), preceding adverbial type
(D1), following adverbial type (D2), location (L),
global type (G), and global nominal properties (J).

36 HAYS

4.1. SUBSTANTIVE TYPE

Four syntactic functions are served by substantives
(the subjective and complementary functions). The
units that can serve these functions are diverse, and
any governor of a substantive function imposes cer-
tain limits on the variety of units that it accepts. Class-
ifying these units according to further agreement re-
quirements, they are nominals (n), infinitives (i),
clauses (k), prepositional phrases (h), and adjectivals
(a).

Nominals are nouns (morphologically defined) and
items that can replace nouns in all contexts: substantiv-
ized adjectives, pronouns, relative pronouns, cardinal
numbers, etc. These units must satisfy agreement re-
quirements with respect to case, number, gender, per-
son, and animation—the nominal properties described
in Sec. 4.3.

Infinitives, syntactically, are the same items as mor-
phologically.

Clauses are sentences marked by conjunctions, rela-
tive pronouns, or relative adverbs and capable of
serving substantive functions. Of course, not every
Russian clause is substantival.

Prepositional phrases consist of prepositions with
their complements and occurrences that derive from
the complements, but only those that serve comple-
mentary functions are marked in the substantive-type
frame.

Adjectivals are long-form instrumental adjectives,
a few genitive nouns, and certain other items that
replace long-form instrumental adjectives in copula
sentences.

The grammar-code symbol of a form includes five
segments to which this frame applies. One describes
the unit coded (Td), one indicates the type of subject
governed by the unit coded (Tgs), and three describe
the types of complements governed by the unit coded,
one each for first, second, and third complements (Tgc1,
Tgc2, Tgc3).

When the connectability of two items is tested, if
the functions test shows that occurrence D can serve a
substantive function (say first complementary) and
that occurrence G can govern it, the substantive types
of G and D are compared: Tgcl(G) & Td(D). It follows
that if Fc1

g = 0 for some item, then the content of Tgc1
for that item is linguistically immaterial, and can have
no influence on any connectability test involving the
item.

Similar statements can be made about all other
segments of the grammar-code symbol; each is mate-
rial for an item only if definite preconditions are satis-
fied.

The segments indicating type of substantive gov-
erned can contain any possible pattern of 1's and 0's,
since, for example, a verb may exist that governs, as
second complement, any subset of the set of substan-
tive types. On the other hand, Td never contains more

than a single 1; no Russian item is ambiguously either
a prepositional phrase or a subordinate clause. Hence
the product of Td with one of the Tg's never contains
more than a single 1. In this the substantive-type test
differs from the functions test, and the difference is
large from the programming viewpoint.

4.2. CLAUSE TYPE

Several types of Russian substantive clauses must be
differentiated because they can serve particular func-
tions for different classes of governors. That is to say,
the class of verbs that can govern chto-clauses is not
identical with the class that can govern chtoby-clauses
in, for example, the first complementary function. The
categories necessary for this purpose have not been
established, but it appears that chto, chtoby, li, and
other introductory words mark syntactically distinct
categories of clauses, and will apply to five segments:
Kd, Kgs, Kgc1, Kgc2, and Kgc3, indicating, respectively,
type as dependent, type of subject governed, and type
of first, second, and third complement governed. Much
of what was said about substantive type, mutatis
mutandis, can also be said about clause type.

4.3. NOMINAL PROPERTIES

The variables ordinarily discussed in Russian grammars
as characterizing Russian nominals are person, number,
gender, case, and animation. The subject of a Russian
verb ordinarily must agree with respect to all of these
except animation (and Harper11 shows that verbs tak-
ing animate and inanimate subjects can be differenti-
ated.) The complement of a verb, noun, or preposition
must be in a certain case, or possibly in one of a few
selected cases. A noun and any adjective modifying it
must agree in number, gender, case, and animation.

The patterns of ambiguity generated by Russian
morphology make these variables interdependent. Thus
case and number are tied together by such forms as
linii, which is genitive singular, nominative plural, or
accusative plural. This form cannot be characterized
simply as nominative, genitive, or accusative, as singu-
lar or plural, since that would imply that it can be
genitive plural. Either two separate descriptions—two
grammar-code symbols—must be assigned to the item
or case and number must be combined and treated as
a syntactic variable with twelve values, three true for
the example. The latter course is preferable, because it
accelerates sentence-structure determination with only
a small increase in storage requirements (or even, per-
haps, with a saving). All five nominal properties are
interdependent in this sense.

Taking the simplest view, the complex nominal prop-
erties variable would have 216 values. For number
has two values, gender three, case six, person three,
and animation two: 2 x 3 x 6 x 3 x 2 = 216. Note,
however, that gender is neutralized in the plural, that

RUSSIAN SYNTAX 37

person (material only for the subjective function) is
neutralized except in the nominative case, and that
animation (disregarding Harper's finding for the mo-
ment) is material only in the accusative case. Combin-
ing number and gender into a variable with four values
—masculine (m), feminine (f), neuter (n), and plural
(p)—and combining case, person, and animation into
a variable with nine values—nominative first person
(n1), nominative second (n2), nominative third (n3),
genitive (g), dative (d), accusative animate (aa), ac-
cusative inanimate (an), instrumental (i), and prepo-
sitional (p), the complex variable has 36 values: mas-
culine nominative first person (mn1) masculine nomin-
ative second person (mn2), and so on, through plural
prepositional (pp). The fact that nominal properties
can be represented with a 36-valued variable is obvi-
ously related to the fact that certain computers use a
36-position storage cell. If larger cells were available,
the nominative third person could well be differen-
tiated into animate and inanimate, adding four values
to the complex variable.

The nominal properties frame N, with 36 positions,
applies to five segments of the grammar-code symbol:
Nd, Ngs, Ngc1, Ngc2, and Ngc3, for description of the item
itself, of the subject governed by the item, and of the
first, second, and third complements governed by the
item. These segments are used in tests for subjective
and complementary functions if the dependent is a
nominal-type substantive. In the test of modifying
function, if the modifier is adjectival type, Nd(G) &
Nd(D) is examined; this is the outstanding exception
to the rule that different segments of the grammar-code
symbols of governor and dependent are involved in
each connectability test.

4.4. PREPOSITIONAL PHRASE TYPE

When a complementary dependent is found to be a
prepositional phrase (as a result of the substantive
type test), it is necessary to determine whether it is
the kind of phrase acceptable to the potential governor.
The syntactic categories of prepositional phrases that
can serve complementary functions (in other words, be
strongly governed) can presently be described only by
naming the preposition and the case of its complement.
The list that follows is given12 by Iordanskaya; chem
has been added:

v (a), v (p), dlya (g), do (g), za (a), za (i),
iz (g), k (d), mezhdu (i), na (a), na (p), nad
(i), o (a), o (p), ot (g), pered (i), po (d), pod
(a), pod (i), pri (p), protiv (g), s (g), s (i), u
(g), chem (n), cherez (a).

The prepositional phrase type frame has, for the pres-
ent, 26 positions. It applies to four segments: Hd, Hgc1,
Hgc2, and Hgc3. Prepositional phrases never serve sub-
jective function in Russian.

4.5. FIRST AUXILIARY TYPE

The first auxiliary function is served by modal and
tensal dependents of infinitives, short-form adjectives
and particles, and syntactically equivalent forms. Two
types of auxiliaries must be distinguished: those that
depend on infinitives are called finitive (f), those that
depend on short-form adjectives are tensal (t). Fini-
tive auxiliaries form verb phrases; with the auxiliary,
the infinitive can govern a subject. Tensal auxiliaries
mark tense and sometimes restrict the person of the
subject governed. The nonpast-tense forms of byt’ are
marked for both types. The first auxiliary type frame
X1 has just two positions and applies to two segments:
X1g for type of first auxiliary governed, Xld to describe
the item itself as dependent.

4.6. MODIFIER TYPE

Two kinds of agreement requirements must be differ-
entiated for modifying dependents. If the requirements
concern nominal properties, the dependent is adjectival
(a); otherwise it is adverbial (d). The modifier type
frame has two positions and applies to two segments:
type of modifier governed, Mg, and type of modifier as
dependent Md.

4.7. ADVERBIAL TYPE

The classification of adverbs is perennially difficult, and
little can be said for the moment about the agreement
of adverbial modifiers with their governors in Russian.
It is proposed to establish two frames, one for modifiers
that precede their governors and one for those that
follow (D1 and D2 respectively), and to assign positions
as syntactic categories are discovered. Each frame will
apply to two segments of the grammar code symbol,
D1g and D2g, to describe the adverbs governable by the
item, and to two others, D1d and D2d, to describe the
syntactic categories of the item itself as adverbial
modifier.

4.8. LOCATION

A frame with two positions is used to specify the rela-
tive location in text of governor and dependent. The
first position is for dependent before governor, the sec-
ond for governor before dependent. The frame is
denoted L, its positions L1 and L2. In grammar code
symbols, this frame indicates restrictions on order. If a
governor can have either a preceding or a following
dependent, 1's appear in both positions, but if the
governor must follow, there is a 1 in the first position
only. The frame applies to six segments in the gram-
mar code symbol: Lgs, Lgc1, Lgc2, Lgc3, Lda, and Ldx. The
first refers to the subject governed by the coded item,
the second, third, and fourth to the complements it
governs, the fifth to its own location as adjectival de-

38 HAYS

pendent, and the last to its own location as auxiliary.
The frame also applies to a segment not in the dic-
tionary but constructed when two occurrences are to
be tested for connectability. This segment, always con-
taining a single 1, indicates whether the occurrence
being considered as potential governor lies before or
after the other. It is denoted Lt.

4.9. GLOBAL PROPERTIES

Global properties are those that belong to any phrase,
up to a certain syntactic type, that contains an item
bearing the property. For the present, two such prop-
erties are known. The word li anywhere in a sentence
makes the whole sentence interrogative; a sentence
containing li can serve as a subordinate clause with
substantive function. The word kotoryj anywhere in a
sentence marks it as an adjectival subordinate clause.
The two positions of G, the global properties frame,
are denoted G1 (li-clause) and Ga (adjectival clause).
Only one segment is needed for global properties,
showing the global properties of the entire construc-
tion headed by the occurrence coded. In the dictionary,
G is blank for every form except li and the forms of
kotoryj.

4.10. GLOBAL NOMINAL PROPERTIES

A Russian adjectival clause must agree with the noun
it modifies with respect to only two variables: gender
and number. Some forms of kotoryj are ambiguous with
respect to these variables, and since these variables are
interdependent with case, the ambiguity can sometimes
be resolved when kotoryj is attached to a governor in
the subordinate clause. The global nominal properties
of a subordinate clause, or of any construction within
a subordinate clause that contains kotoryj are the gen-
der and number of the antecedent expected. The frame
has four positions (masculine, feminine, neuter, and
plural) and applies to one segment, J, which is always
blank in the dictionary and filled out when the gov-
ernor of kotoryj is found.

5. The Connectability Test Routine

From a strictly formal point of view, it is possible to
construct an algorithm for testing connectability in any
language with context-free phrase-structure grammar.
The simplest version of the algorithm supposes that
each grammar code symbol is divided into two parts,
one showing what “functions” the item can govern, the
other what “functions” it can serve as dependent. To
test a pair of items, the algorithm merely matches the
government code symbol of one with the dependency
code symbol of the other. Even with isolation of syn-
tactic functions and agreement variables, as proposed
here, a universal algorithm is possible. It would require,
for each language, a reference table entered with the

name of a function and containing an indication of
the segments of the two grammar code symbols to be
matched. One line of the table, for Russian, would be

 Fx1 : Xlg (G) & Xld (D)

where the left-hand symbol, denoting a function, labels
the entry, and the right-hand part, the entry proper,
shows what parts of the grammar code symbols are to
be tested. The tests for several Russian functions are
more complex, however. Given the modifying function,
the first step is to test type; then, if adjectival, to test
nominal properties and, if adverbial, to test adverbial
type. Such processes can be described in table entries,
but they are more readily presented in the form of a
program. Since the universal program is absolutely triv-
ial, the only complexity is in the concrete detail of a
particular grammar, and it seems convenient to sur-
render universality for the sake of having a more pow-
erful tool for the description of individual grammars.

The general form of the routine is universal. First,
there is a test for possible functions. For each possible
function, there is a subroutine. If the agreement re-
quirements for the function are homogeneous, the
material segments are tested by taking a logical prod-
uct which is zero or nonzero. If zero, the items cannot
be connected with that function; if nonzero, they can
be. If the agreement requirements for the function are
heterogeneous, a test to determine type of agreement
requirement intervenes and can give one of several
answers: no connection possible, or else a certain type
of agreement to be tested, implying certain segments
as before. In principle, a sequence of type, subtype,
subsubtype, etc., tests could be required before speci-
fication of agreement variables, but the sequences
found in Russian are short. Besides tests of segments
of grammar code symbols, tests of relative location are
included in the present routine, and tests of punctua-
tion could be added.

Before the CT routine is applied to a pair of occur-
rences, the parsing logic routine has selected them in
accordance with its design and their place in the sen-
tence, has designated one of them as potential gov-
ernor, and has produced Lt(GD), a location segment
showing whether the governor or dependent lies ahead
of the other in test. The steps in the routine are named
for convenience and numbered for reference.

1. Function selector

Test Fg(G) &Fd(D) = F.
If F = 0, stop.
If Fs = 1, test subjective function (2).
If Fc1 = 1, test i-th complementary function (3').
If Fx1 = 1, test first auxiliary function (4).
If Fx2 = 1, test second auxiliary function (5).
If Fx3 = 1, test third auxiliary function (6).
If Fm = 1, test modifier function (7).
If Fp = 1, test predicative function (8).

RUSSIAN SYNTAX 39

The test produces the logical product of Fg(G) and
Fd(D) and examines it. If all positions are zero, the
routine is stopped and the PL routine seeks another
pair; this is the meaning of “stop” throughout the CT
routine. Otherwise, all of the nonzero positions are
noted and for each some operation is performed. These
operations cannot be performed in parallel, but it is
best to imagine them as simultaneous. Each uses the
grammar-code symbols supplied for occurrences D and
G by the parsing-logic routine and each does or does
not produce an output independently of all the others.
When one of these routines produces an output, it
alters certain portions of the grammar-code symbol of
G, but these alterations do not affect either the original
symbol on which the other routines are working or the
symbols that they will produce as output. It would be
possible, in principle, for the CT routine to yield nine
separate outputs, and it will not be rare for it to pro-
duce two.

2. Subjective function
Test Lgs(G) & Lt(GD) = L.
If L = 0, stop.
If L ≠ 0, test subjective substantive type (2.1).

This test controls relative location of G and D. In a
nominal sentence, where the predicate is headed by a
noun in the nominative case, either the first nominative
noun in the sentence or the second could be regarded
as the subject. If Lgs = 10 for every noun that can gov-
ern a subject, the first will always be taken as subject,
eliminating an ambiguity that seems universal and
pointless.

2.1. Subjective substantive type

Test Tgs(G) & Td(D) = T.
If T = 0, stop.
If Tn = 1, test subjective nominal properties (2.2).
If Tk = 1, test subjective substantive clause type

(2.3).
If T1 = 1, prepare output for subjective function

(2.5).

The subject of a Russian sentence is a nominal, a clause,
or an infinitive. Since Td contains at most a single 1,
this test leads either to a stop or to exactly one branch.
If the possible subject being tested is nominal or an
infinitive, further tests must be performed, but no fur-
ther agreement requirements are known for infinitive
subjects.

2.2. Subjective nominal properties

Test Ngs(G) & Nd(D) = N.
If N = 0, stop.
If N ≠ 0, replace Ngs(G) with N and prepare output

for subjective function (2.5).

There may be several 1's in N, but they have no func-
tional significance. The remaining ambiguity in the nomi-
nal properties of the subject are irresoluble syntactically,
since the subject already has all of its own dependents.
The nominal properties of the subject, were their am-
biguities resolved one way or another, would not in-
fluence the connectability of any other occurrence with
the governor of the subject. Hence it is not necessary to
produce multiple outputs, one for each possible resolu-
tion of the ambiguities remaining. (In this the agree-
ment variables contrast with syntactic functions.)

2.3. Subjective substantive-clause type

Test Kgs(G) & Kd(D) = K.
If K = 0, stop.
If K ≠ 0, test clause-subject location (2.4).

This test determines whether the substantive clause
proposed as subject is of a type that can be accepted
by the proposed governor. Remaining ambiguity is im-
material, hence there is no branching on type of clause.
If it should prove to be the case, however, that dif-
ferent types of clauses have different location rules,
then a branching would be necessary.

2.4. Clause-subject location

Test Lds(D) & Lt(GD) = L.
If L = 0, stop.
If L ≠ 0, replace Kgs(G) with K, from (2.3), and pre-

pare output for subjective function (2.5).

In 2 above, a test for location requirements of the gov-
ernor was made. Here the location requirements of the
dependent are examined.

2.5. Output for subjective function

Set Fs
g (G) = 0.

Fd(G) = 000 000 001.
Tgs(G) = T
Dlg(G) = Dlg(G) v Dlg(Pred).
D2g(G) = D2g(G) v D2g(Pred).

Do global properties routine (9).

The governor, since it has a subject, cannot have an-
other; the function is singular. The governor, since it
has a subject, cannot serve any function but the predi-
cative. Altering Tgs(G) here completes the marking of
G to show exactly what type of subject it governs; if
the subject is nominal, Ngs(G) was altered in 2.2, and
if it is clausal, Kgs(G) was altered in 2.4. Since G must
serve predicative function, it can govern any adverbial
modifier that modifies all predicate heads (such as the
sentence modifiers that sometimes introduce Russian
sentences). The predicate modifiers are described by

40 HAYS

Dlg(Pred) and D2g(Pred), which are stored as part of
the CT routine and incorporated in the adverbial-type
government segments of G by logical summation. The
complete output, to be finished by the parsing-logic
routine, will include the occurrence numbers of G and
D, note that G is governor, and that D serves subjective
function.

3'. Complementary function test (i-th complement)

Test Lgci(G) & Lt(GD) = L.
If L = 0, stop.
If L ≠ 0, do complementary substantive type test (3'.1).

This test permits governors to be classified according
to location of i-th complement. Thus, nouns generally
require their complements to follow.

3'.1. Complementary substantive type
Test Tgci(G) & Td(D) = T.

If T = 0, stop.
If Tn = 1, test complementary nominal properties

(3'.2).
If Tk = 1, test complementary substantive clause type

(3'.3).
If T1 = 1, prepare output for complementary func-

tion (3'.6).
If Th = 1, test complementary prepositional-phrase

type (3'.5).
If Ta = 1, prepare output for complementary func-

tion (3'.6).

In Russian, complementary functions can be served by
nominals, clauses, infinitives, prepositional phrases, and
adjectivals. Since Td contains at most a single 1, this
test leads to a stop or to exactly one branch. If the pos-
sible complement being tested is nominal, and infini-
tive, or a prepositional phrase, further tests must be
performed, but no further agreement tests are known
for infinitive complements and the requirements for
adjectivals are set aside for the time being.

3'.2. Complementary nominal properties

Test NgCi(G) & Nd(D) = N.
If N = 0, stop.
If N 7^ 0, replace NgCi (G) with N and test prepositional

governor (3'.2.1).

If the complement is nominal, agreement in case (and
possibly other nominal properties) must be determined.
Using the full nominal-properties frame for these seg-
ments tends to waste space, but Nd is involved both
with government of the item as complement and with
modification by an adjectival; hence it is convenient to
keep it as a single segment.

3'.2.1. Prepositional governor

Test Th
d(G) = 1.

If yes, replace Hd(G) with Hd(G) & Hd(D) and pre-
pare output for complementary function (3'.6).
If no, prepare output for complementary function (3'.6).

This operation, simply a part of output preparation, es-
tablishes the type of prepositional phrase headed by G,
(supposing, of course, that G is a preposition). The
type of phrase is defined by the identity of the preposi-
tion and the case of its complement (see Sec. 4.4). Hd(D)
indicates the case of D, Hd(G) indicates the identity of
G. The product, therefore, identifies the phrase. Note
that Hd is stored with nominals even though it is never
used in testing their agreement with any other kind
of item.

3'.3. Complementary substantive-clause type

Test Kgcl(G) & Kd(D) = K.
If K = 0, stop.
If K ≠ 0, test clause-complement location (3'.4).

This test determines whether the substantive clause
proposed as i-th complement is of a type that can be ac-
cepted by the proposed governor.

3'.4. Clause-complement location

Test Ldc(D) & Lt(GD) = L.
If L = 0, stop.
If L ≠ 0, replace Kgci(G) with K and prepare output

for complementary function (3'.6).

In 3' above, a test for location requirements imposed
by the governor was made. Here the location require-
ments of the dependent are examined.

3'.5. Complementary prepositional-phrase type

Test Hgci(G) & Hd(D) = H.
If H = 0, stop.
If H ≠ 0, replace Hgci(G) with H and prepare output

for complementary function (3'.6).

The prepositional phrase proposed as i-th complement
is checked, controlling identity of the preposition and
case of the object, against the requirements that the
proposed governor imposes on its i-th complement.

3'.6. Output for complementary function

Set Fci
g (G) = 0.

Tgci(G) = T.
Do global properties routine (9).

The governor, since it has an i-th complement, cannot
have another; the function is singular. Altering Tgci(G)

RUSSIAN SYNTAX 41

here completes the marking of G to show exactly what
type of i-th complement it governs; if the i-th comple-
ment is nominal, Ngci(G) was altered in 3.2, if clausal,
Kgci(G) was altered in 3.3, and if prepositional, Hgci(G)
was altered in 3.5. The complete output, to be finished
by the parsing-logic routine, will include the occurrence
numbers of G and D, note that G is governor, and that
D serves i-th complementary function.

4. First auxiliary function

Test Ldx(D) & Lt(GD) = L.
If L = 0, stop.
If L ≠ 0, test first auxiliary type (4.1).

The auxiliary is allowed to control the location of its
potential governor.

4.1. First auxiliary type

Test Xlg(G) & Xld(D) = X.
If X = 0, stop.
If Xf = 1, prepare output for finitive auxiliary function

(4.2).
If Xt = 1, test tensal auxiliary function (4.3).

The operations required for finitive auxiliaries of in-
finitives and for tensal auxiliaries of short-form adjec-
tivals are somewhat different, since the infinitive can-
not have obtained a subjective dependent before atr
tachment of the auxiliary, but the adjectival can.

4.2. Output for finitive auxiliary function

Set Fd(G) = 000 000 001.
Fs

g(G) = 1.
Fx1

g(G) = 0.
Tgs(G) = Tgs(G) & Tgs(D).
Ngs(G) = Ngs(D).
D1g(G) = D1g(G) v Dlg(Pred).
D2g(G) = D2g(G) v D2g(Pred).

Release restriction on order of acquisition of dependents
by G.
Do global properties routine (9).

Since G governs a finitive auxiliary, it can serve no
function but the predicative. It can govern a subject;
the type of that subject is jointly controlled by the
properties of G and of D, and the nominal properties
of that subject are controlled by the properties of D.
The governor cannot govern another first auxiliary.
Any item that can serve finitive auxiliary function must
therefore have information in Tgs and Ngs, even though
it cannot, itself, govern a subject. Since G must serve
predicative function, it can govern any adverbial modi-
fier that modifies all predicate heads (see remarks
under 2.5—Output for subjective function). The re-
striction on order of acquisition of dependents prevents

the parsing-logic routine from constructing the same
structure by two different sequences of tests.13 It is re-
leased here because the infinitive can govern a new
kind of dependent; the infinitive with auxiliary is so
different in quality from the infinitive without that it
must be regarded as a new object.

4.3. Tensal auxiliary function

Test Fs
g(G) = 0.

If yes, test nominal properties of subject present (4.4).
If no, test subjective substantive type (4.5).

A positive response to this test means that G already
governs a subject, with which the proposed auxiliary
must agree. A negative response means that the subject
of the short-form adjectival has not yet been attached,
hence that its properties can be controlled in part by
the auxiliary.

4.4. Nominal properties of subject present

Test Ngs(G) & Ngs(D) = N.
If N = 0, stop.
If N ≠ 0, set Fx1

g(G) = 0 and do global properties
routine (9).

The subject already attached to G has the properties
shown by Ngs(G), by virtue of the alterations per-
formed in 2.2. These properties do or do not agree
with those allowed to its governor by the tensal auxili-
ary D. If they do, the output preparation required
will be performed by the parsing logic routine: G will
be noted as the governor of D, and D will be marked
as serving first auxiliary function.

4.5. Subjective substantive type

Test Tgs(G) & Tgs(D) = T.
If T = 0, stop.
If T ≠ 0, test subjective nominal properties (4.6).

The substantive types of the subjects allowed by the
possible auxiliary and required by the short-form adjec-
tival, must overlap. There is no need to branch on type
here, since it is assumed that every possible governor
of a tensal auxiliary allows a substantive subject for
which nominal properties would have to be tested.

4.6. Subjective nominal properties

Test Ngs(G) & Ngs(D) = N.
If N = 0, stop.
If N ≠ 0, prepare output for tensal auxiliary function
(4.7).

Overlap in nominal properties between short-form ad-
jective and tensal auxiliary is required.

42 HAYS

4.7. Output for tensal auxiliary function

Set Tgs(G) = T.
Ngs(G) = N
Fx1

g(G) = 0.
Fd(G) = 000 000 001.
D1g(G) = Dlg(G) vDlg(Pred).
D2g(G) = D2g(G) v D2g(Pred).

Do global properties routine (9).

The type and nominal properties of any subject sub-
sequently accepted by G must be acceptable to it and
to D. With an auxiliary, the governor can only serve
predicative function, and its capacity to govern modi-
fiers is therefore increased. It is not necessary to release
the restriction on order of acquisition of dependents by
G, since if G had previously been tested for connecta-
bility with an appropriate subject the connection would
have been made.

5. Second auxiliary function

Test Ldx(D) & Lt(GD) = L.
If L = 0, stop.
If L ≠ 0, test complementation of governor (5.1).

Second auxiliary function is served for verbs by the
negative particle ne. It must precede its governor.
If the governor can govern a first complement, the
character allowed that complement is altered by the
presence of ne.

5.1. Complementation of governor

Test Fc1
g (G) = 0.

If yes, prepare output for second auxiliary function
(5.6).
If no, test substantive complementation (5.2).

A positive answer means that no further first comple-
ment can be attached to the governor, hence that the
attachment of ne cannot influence it.

5.2. Substantive complementation

Test Ta
gc1 (G) = 0.

If yes, test clausal complementation (5.4).
If no, test accusative complementation (5.3).

A positive answer means that no nominal complement
can be attached, hence that the presence of ne cannot
influence it.

5.3. Accusative complementation

Test Ngc1(G) & N(Acc) = N.
If N = 0, test clausal complementation (5.4).
If N ≠ 0, replace Ngc1(G) with Ngc1(G) v N(Gen),

release order of acquisition of dependents restriction
on G, and prepare output for second auxiliary function
(5.6).

If the governor of ne can take an accusative nominal
first complement, it may, in the presence of ne, take a
genitive instead. N(Acc) and N(Gen), stored with the
CT routine, are nominal properties segments contain-
ing 1's for the accusative and genitive cases, repec-
tively.

5.4. Clausal complementation

Test Tk
gc1(G) = 0.

If yes, prepare output for second auxiliary function
(5.6).
If no, test chto-clause complementation (5.5).

If the governor cannot take a clausal first complement,
the presence of ne cannot influence its character.

5.5. Chto-clause complementation

Test Kc
gc1 (G) = 0.

If yes, prepare output for second auxiliary function
(5.6).
If no, set Ky

gc1 (G) = 1, release order of acquisition of
dependents restriction on G, and prepare output for
second auxiliary function (5.6).

Here the superscript y refers to the position of the K
frame marking government of a chtoby clause, c to the
position for government of a chto clause. If the gov-
ernor of ne can govern a chto clause as first comple-
ment, it can alternatively, in the presence of ne, gov-
ern a chtoby clause.

5.6. Output for second auxiliary function

Set Fx3
g (G) = 0.

Do global properties routine (9).

The parsing-logic routine will mark G as governor, D
as dependent with second auxiliary function.

6. Output for third auxiliary function

Set Fc2
g (G) = 1.

Tgc2(G) = 10010.
Ngc2(G) = N(Gen).
Hchem

gc2(G) = 1
Fx3

g(G) = 0
Do global properties routine (9).

Third auxiliaries depend on adjectivals and mark them
as of comparative degree. It is assumed here that com-
parative adjectivals thus marked can govern genitive
nominals or chem-phrases. It is also assumed that ad-

RUSSIAN SYNTAX 43

jectivals cannot govern second complements under any
other circumstances except morphological marking of
comparative degree, and then the possibilities of second
complementation are identical with those indicated
here. The parsing-logic routine will mark G as gov-
ernor, D as dependent with third auxiliary function.

7. Modifier function

Test Mg(G) &Md(D) = M.
If M = 0, stop.
If Ma = 1, test nominal properties (7.1).
If Md = 1, test adverbial location (7.3).

Modifiers are adjectival or adverbial. Adjectival modi-
fiers agree with their governors in nominal properties;
adverbial modifiers agree in type.

7.1. Nominal properties

Test Nd(G) & Nd(D) = N.
If N = 0, stop.
If N ≠ 0, test adjectival location (7.2).

If there is overlap in case, number, gender, animation,
and person, then the adjective can modify the nominal
governor. Ambiguity of the governor may be reduced
by attachment of the adjective, but any remaining
ambiguity can be retained; it is not necessary to gen-
erate a separate output for each value of the nominal-
properties variable in which there is agreement. Note
that Nd(G) is used here; this function can be called
strongly endocentric, in the sense that properties of
the governor material for its function as dependent are
also material for its relation to the adjective it governs.

7.2. Adjectival location

Test Lt(GD) & Lda(D) = L.
If L = 0, stop.
If L ≠ 0, replace Nd(G) with N and prepare output
for modifier function (7.6).

The reduction in ambiguity is relevant to the subse-
quent connectability of the governor, whether with
another adjectival dependent or with a governor. The
location test requires that adjectives precede or follow
their governors in accordance with their type.

7.3. Adverbial location

Test L1
t (GD) = 1.

If yes, test preceding adverbial type (7.4).
If no, test following adverbial type (7.5).

A positive result indicates that the potential dependent
precedes the potential governor.

7.4. Preceding adverbial type

Test Dlg(G) & Dld(D) = D.
If D = 0, stop.
If D ≠ 0, prepare output for modifying function (7.6).

7.5. Following adverbial type

Test D2g(G) & D2d(D) = D.
If D = 0, stop.
If D ≠ 0, prepare output for modifying function (7.6).

These two tests, entirely parallel, are separated because
the lists of types of adverbial dependents that can, re-
spectively, precede and follow their governors are not
identical.

7.6. Output for modifying function

Do global properties routine (9).

Since the modifying function, whether adjectival or
adverbial, is optional, it is not possible to set Fm

g(G)
=0, nor can D1g(G) or D2g(G) be replaced with D
to indicate the type of modifier present—another type
of modifier may be found later. It is not even possible
to put a zero in the position of D1g(G) or D2g(G)
where a match was found, since in principle another
modifier of the same type might be found; the opposite
principle would imply, what one might suspect, that
the modifier types are in fact singular functions. For
the present, it must be assumed that the parsing-logic
routine will mark G as governor, D as dependent with
a certain type of modifying function, since its type may
be necessary to subsequent (postsyntactic) operations.

8. Predicative function

Test L2
t (GD) = 0.

If yes, stop.
If no, prepare output for predicative function (8.1).

Predicative function is served by the principal occur-
rence of a sentence. The governor is a subordinate con-
junction. Since one occurrence in a full sentence is
independent, that occurrence will also be said to serve
predicative function without a governor, but this test
applies only when, as in subordinate clauses, a governor
is actually present. Such a governor must always, as
the test requires, precede the predicative dependent.

8.1. Output for predicative function

Set Fp
g (G) = 0.

The predicative function is singular. Reference to the
global properties routine is omitted because marking
with a subordinate conjunction and marking with

44 HAYS

kotoryj or li are mutually exclusive alternatives. The
parsing-logic routine will mark G as governor, D as de-
pendent with predicative function.

9. Global properties

Test G(D) = G.
If G = 0, stop.
If Ga = 1, do global nominal-properties routine (9.1).
If G1 = 1, prepare output (9.3).

A zero result means that the dependent, whether intrin-
sically or as a result of previous attachment of some
deeper dependent, has no global properties. If Ga = 1,
either the dependent in the newly-formed connection
is a form of kotoryj, or it governs, directly or indirectly,
some form of kotoryj. Likewise, G1 = 1 indicates the
presence of li.

9.1. Global nominal properties

Test J(D) = 0.
If yes, do determination of global nominal properties
(9.2).
If no, prepare output (9.3).
For every entry in the dictionary, including kotoryj,
J is blank. This segment is filled out only by the appli-
cation of 9.2. Hence if Ga(D) = 1, and J(D) = 0, then
D is an occurrence of kotoryj.

9.2. Determination of global nominal properties

Test Nd(D) & N(Masc) = N.
If N = 0, do (9.2.1).
If N ≠ 0, set Jm(G) = 1 and do (9.2.1).

9.2.1. Feminine

Test Nd(D) & N(Fem) = N.
If N = 0, do (9.2.2).
If N ≠ 0, set Jf(G) = l and do (9.2.2).

9.2.2. Neuter

Test Nd(D) & N(Neut) = N.
If N = 0, do (9.2.3).
If N ≠ 0, set Jn(G) = 1 and do (9.2.3).

9.2.3. Plural

Test Nd(D) & N(Plu) = N.
If N = 0, prepare output (9.3).
If N ≠ 0, set Jp(G) = 1 and prepare output (9.3),

These four tests are used to reduce the 36-position seg-
ment Nd(D) to the 4-position segment J(G). N(Masc),

N(Fem), N(Neut), and N(Plu) are four nominal-
properties segments stored with the CT routine and
containing 1's in their masculine-singular, feminine-
singular, neuter-singular, and plural positions, respec-
tively.

9.3 Output for global properties

Set G(G) = G(D).

With this step, carrying forward the global properties
of the dependent as the global properties of the new
governor, the global-properties routine and the CT rou-
tine are complete and the parsing-logic routine can be-
gin its search for a new pair of possibly connectable oc-
currences.

Punctuation, not discussed here, is used to facilitate
or prevent connections. It is also used to mark occur-
rences or connected sequences of occurrences that can
serve as appositives or as adjectival dependents of pre-
ceding governors. And, in addition, punctuation is used
to close off sentences and clauses. When a connected
sequence, surrounded by appropriate punctuation, is
found to be headed by an occurrence that can serve
predicative function, the sequence is regarded as an in-
dependent sentence. With different boundaries and a
head occurrence that can serve predicative function
and is marked with global properties, a connected
sequence is regarded as a subordinate clause and given
a new grammatical description permitting it to serve as
adjectival-modifying dependent or as clausal-substan-
tive dependent.

6. Remarks on Programming

The programming of a CT routine such as the one de-
scribed in Sec. 5 is fairly straightforward on any com-
puter with large enough storage cells, Boolean opera-
tions, indexing, and indirect addressing. The flow-chart
in Fig. 1 shows the structural simplicity of the whole
routine, and inspection of the instructions used in Sec.
5 proves that only a few basic patterns of testing and
alteration of grammar-code symbols are needed. The
programmer must remember, however, that as many as
10,000 connectability tests may be required in the
processing of one long sentence, and attempt, in every
way possible, to reduce the average time consumed per
test.

One somewhat delicate matter, given the importance
of speed, is the handling of the functions test, which
has 29 possible outcomes (any combination of the nine
functions may have to be tested). On some machines
(such as the I.B.M. 7090) there is an instruction that
simultaneously modifies the contents of an index regis-
ter and independently transfers control. (The 7090 in-
struction is TXI14). For example, let T denote an index
register, and consider a language with just three func-
tions. The program suggested first forms Fg(G) & Fd(D)

RUSSIAN SYNTAX 45

FIGURE 1. CONTROL FLOW FOR CT ROUTINE.

and takes the complement of the product (or, equiva-
lently, takes the union of the complements of Fg(G)
and Fd(D)). The result contains a zero for each func-
tion to be tested: 000 means three functions to test,
110 means the third function (say F3) alone, etc. A
table with 2n cells for n functions is stored with the
CT routine, occupying cells Z, Z − 1, . . ., Z − 2n + 1.
The complemented product of the function segments
is stored in T and control is passed to cell Z − con(T)
by an indexed transfer. (Here con(X) means the num-
ber stored in the cell with address X.) If the computer
is the 7090, this cell contains a decrement, the address
of the index register T, and another address Y. When
control passes to Z − con(T), the decrement in that
cell is added to T and control passes thereafter to Y. In
each cell of the table (see Fig. 2), the decrement is a
string of zeros with a 1 in the position representing a
certain function, and Y is the address of the first cell
of a subroutine for that function. With three functions,

FIGURE 2. CONTROL TABLE FOR FUNCTIONS TEST

Cell contents Functions
_______________________________ remaining

Cell Index Transfer to be
address Instruction Decrement register address tested
θ — 0 TXI 1 T Fs 1,2,3
θ —1 TXI 2 T F2 1,2
θ - 2 TXI 1 T F3 1,3
θ — 3 TXI 4 T F1 1
θ — 4 TXI 1 T F3 2,3
θ — 5 TXI 2 T F2 2
θ — 6 TXI 1 T F3 3
θ — 7 TXI — — Out to PL —

there are three subroutines to be referenced. The de-
crement for function 1 is 000 . . . 100 = 4; for func-
tion 2, 000 . . 010 = 2; and for function 3, 000 . . . 001
= 1 (the numbers on the left are binary, those on the
right octal). Each function-test subroutine ends with a

46 HAYS

FIGURE 3.

TXI instruction transferring control to Z − con(T);
when that transfer occurs, con(T) has been altered by
the insertion of a 1 for the function just tested, so that
either a new function is tested or the CT routine ends15).
Another problem, less easily solved, is that of storage.
During sentence-structure determination hundreds of
intermediate units have to be held in high-speed stor-
age. If each unit is represented by a grammar-code
symbol of 400-500 bits, half of a 32,000-cell memory
can easily be filled during the processing of a long sen-
tence, and in some cases the whole memory may not
suffice. Since each segment of a grammar-code symbol

is needed only conditionally, according to functions
governed or served and type of agreement required
(see Fig. 3), packing is not difficult; unpacking, of
course, is time consuming, and a plan for rapid access
to individual segments is important if the high intrinsic
speed of the code-matching system is to be retained. A
possible system is offered as an illustration of what can
be done.

A storage cell is a string of bit positions; in the
I.B.M. 7090, a cell has 36 positions designated S, 1,
2, . . ., 35, and divided into left and right half cells.
Each frame is assigned a definite set of positions (as in

RUSSIAN SYNTAX 47

FIGURE 4.

Fig. 4); if the frame is less than 18 bits, its location is
relative to the limits of a half cell. Thus, in the illustra-
tion, the functions frame occupies the first nine posi-
tions of either the left half cell or the right. In what
follows, it will be impossible to keep the location frames
in fixed positions; several alternatives are allowed.

The frames are also grouped in two storage cate-
gories, long and short. The long frames are N, H, and
D; all the others are short. Thirteen types of grammar-
code symbols, numbered 1-13, are defined according to
the combination of short segments that they contain.
Every type contains Fg, Fd, Fo, Td, Mg, Md, D1g, D2g,
G, and J, and all except No. 13 contain Lda. These seg-
ments are stored in the first two cells assigned to any
grammar-code symbol; these cells are designated a and

b (see Fig. 5). The other short segments are stored, in
various combinations as needed, in cells c, d, e, and f.
The long segments are stored in additional cells, begin-
ning after the last cell of short segments (in several
types of packed symbols, H segments are stored to-
gether with short segments; see the figure).

In order to reach a particular segment of the gram-
mar-code symbol of a unit, it is necessary to know, first,
the location of cell a for that unit; this information is
supplied to the CT routine initially. Next, the relative
address (a, b, c, etc.) of the cell containing the seg-
ment must be obtained. For many segments, this rela-
tive address is invariant and can be put in the CT rou-
tine as a constant, but for others it depends on the type
of symbol. Hence each grammar-code symbol must be

48 HAYS

FIGURE 5.

RUSSIAN SYNTAX 49

accompanied by a cell containing an indication of its
type. With type number and segment name, the relative
address can be obtained from a table and put in an
index register. An indirect-address, indexed instruction
puts the cell or half-cell wanted into an operating regis-
ter. Since most half cells contain two or more segments,
the operating register must now be masked, i.e., the
logical product of its content and a string of 1's and 0's
must be taken. The mask string has 1's in the positions
occupied by the segment and zeros elsewhere. Since
either left or right half cells can be moved to the right
half cell of an operating register, the position of the
segment is now invariant and no shifting across the
register (a slow operation) is needed. This, of course,
with the exception of the location segments, but their
use in the CT routine is such that it may be more eco-
nomical to use them where they are than to shift them.

The long segments are needed in so many different
combinations that naming a separate type of grammar-
code symbol for each combination would be awkward.
Instead, a cell can be reserved for their relative ad-
dresses; in this cell, fixed positions contain the relative
address of Nd, or zeros if Nd is not available; other posi-
tions contain the relative address of Ngs, Ngcl, etc. It is
possible, by using different origins for different types of
grammar-code symbols and storing the long segments
always in the same order, to limit the number of dis-
tinct relative addresses needed for any H segment to
less than 7 and for any N or D to less than 15. Hence
3-bit addresses for the H's and 4-bit addresses for D1d
and D2d (always stored together in a cell) are adequate.
There are four H's, 5 N's, and 1 D—making 36 bits of
relative addresses!

Techniques for packing information are endless, and
the plan just described is likely not to be the best com-
promise between volume and speed of access. Quite a
substantial saving of space is effected, but several suc-
cessive operations are needed to reach a single seg-
ment. Another plan would be to store N's and H's
whenever the functions of a unit can call for them; the
13 types of grammar-code symbols would be reduced
to nine, each with a fixed set of H and N segments.
This plan would increase the average size of grammar-
code symbols but shorten access time a little.

Another programming question is that of summary
encoding. The N frame, with 36 positions, can contain
any one of 236 arrays of 1's and 0's; since only a few
dozen different arrays will appear in the grammar-code
symbols of Russian forms, those that do appear can be
given abbreviated symbols and a list of array-symbol
pairs stored. The dictionary can furnish the abbreviated
symbol; the full array is needed only at the moment of
code matching. Since the conversion from array to ab-
breviated symbol requires binary search, whereas the
opposite conversion can be performed by indexed ad-
dressing, speed of operation requires that the conver-
sion go in one direction only. Hence it does not seem
economically reasonable to store abbreviated symbols

during the sentence-structure determination process,
and the only question is when to decode the dictionary
entries. The decoding can be done at the time of dic-
tionary lookup, and then needs to be done only once
for each distinct form encountered in text—but the ex-
panded grammar-code symbols have to be moved in
and out of storage. It can be done for the units in a
short span of text at the beginning of sentence-struc-
ture determination over that span, but then, although
no movement in and out of storage is required, the de-
coding has to be done for each occurrence. This ques-
tion has not been settled as yet, and depends on rela-
tive speeds of decoding and data transmission.

7. Morphology and Syntax

Terse summaries of morphology and of syntax, each
taken separately, tend to be quite short. The brevity of
this paper, although it is quite incomplete, is at least
suggestive. The statement of Russian syntax included
here consists, in fact, of the format in Sec. 4 and the
CT routine in Sec. 5. To be added are routines (more
than one will be needed) for coordinative functions
and, very likely, additional steps in the routine of Sec.
5 for tense sequence, inter-complementary agreements,
and so on. Even with these additions, the whole state-
ment of Russian syntax would be extremely short, and
corresponding statements of morphology (i.e., of con-
struction rules that apply within the form) are of simi-
lar length. Whether statements about higher strata
(transformational or sememic statements) can be
equally short is unknown, but they may well be. The
ease with which natural languages are learned makes
their simplicity almost certain—at least their simplicity
in certain senses.

There remains the fact, however, that standard
treatises on the grammars of modern languages are
large and dense with detail. This detail seems mostly
to concern interstratal relationships, and that fact is
worth noting as a guide to future research. The syn-
tactic behavior of morphologically defined categories is
studied, and morphologically unusual items are ana-
lyzed, syntactically, one by one. Since not all syntactic
properties can be derived from morphological proper-
ties, sememically defined categories are also considered.
This plan of presentation, although often somewhat
confusing because the morphologico-syntactic correla-
tions are often confounded with the sememo-syntactic
correlations, has merit.

Suppose that the complete description of a language,
beyond the phonological or graphic stratum, consists of
formats and CT routines for morphological, syntactic,
and sememic levels (not strata, since morphology and
syntax belong to one stratum), together with a diction-
ary and rules for interlevel conversion. Suppose, fur-
thermore, that the CT routines and formats are all sim-
ple. The conversions may not be. One conversion was
mentioned at the end of Sec. 6, in the guise of a storage

50 HAYS

problem: Syntactic grammar-code symbols for forms
have to be obtained as the end product of a dictionary-
lookup operation that may involve a morpheme list and
a CT routine; syntactic properties then have to be as-
cribed to stem morphemes, affix morphemes, and their
constructions. Design of a good routine for this purpose
calls for exactly the kind of information supplied, with
more or less precision and accuracy, in large gram-
mars. The syntactic-to-sememic conversion, since it
crosses a stratal boundary, calls for another dictionary
lookup, but again for information about inter-level re-
lationships. Despite the grammars, the amount of such
information still to be collected and systematized can
hardly be exaggerated.

8. Acknowledgments

The author is indebted to K. E. Harper, C. F. Hockett,
M. J. Kay, Y. Lecerf, S. L. Marks, B. Vauquois, D. S.
Worth and T. W. Ziehe for the benefit of their criticism
and suggestions.

1 A routine invented by John Cocke is described by D. G. Hays in
“Automatic Language-data Processing”, Chapter 17 of Computer
Applications in the Behavioral Sciences, Prentice-Hall, 1962. Several
others are reported in 1961 International Conference on Machine
Translation of Languages and Applied Language Analysis, H. M. Sta-
tionery Office, 1962.
2 Standard references on dependency theory include L. Tesnière,
Elements de Syntaxe Structurale, Klincksieck, 1959; Y. Lecerf, “Pro-
gramme des Conflits, Modèle des Conflits,” La Traduction Auto-
matique, vol. 1, no. 4 (October, 1960), pp. 11-20, and vol. 1, no. 5
(December, 1960), pp. 17-36; and D. G. Hays, “Grouping and De-
pendency Theories”, in H. P. Edmundson, ed., Proceedings of the

National Symposium on Machine Translation, Prentice-Hall, 1961,
pp. 258-266.
3 Three examples of specialized routines, each intended to find one
or a few structures for any sentence, but not all: D. G. Hays and
T. W. Ziehe, Studies in Machine Translation—10: Russian Sentence-
structure Determination, RM-2538, The RAND Corporation, 1960;
Ida Rhodes, “A New Approach to the Mechanical Syntactic Analysis
of Russian,” Mechanical Translation, vol. 6; and a system being con-
structed by E. D. Pendergraft at the Linguistics Research Center of
the University of Texas, thus far described only in a series of quarterly
progress reports to the U.S. Army Signal Corps and the National Sci-
ence Foundation.
4 As in the work of Rhodes and Pendergraft cited above.
5 Code-matching techniques were suggested by A. F. Parker-Rhodes,
“An Algebraic Thesaurus”, presented at an International Conference
on Mechanical Translation, Cambridge, Mass., Oct. 15-20, 1956.
Ariadne Lukjanow, then at Georgetown University, used the term to
apply to a method that she proposed, and Paul Garvin (of Bunker-
Ramo, Inc.) has developed a system, somewhat different from that
proposed here, for Russian syntax.
6 J. Lambek, “The Mathematics of Sentence Structure,” American
Mathematical Monthly, vol. 65, no. 3 (1958), pp. 154-170.
7 Y. Bar-Hillel, C. Gaifman, and E. Shamir, “On Categorial and
Phrase-structure Grammars,” Bulletin of the Research Council of
Israel, Section F, vol. 9, no. 1 (1960), pp. 1-16.
8 H. Gaifman, “Dependency Systems and Phrase Structure Systems,”
P-2315, The RAND Corporation, 1961.
9 Cf. the discussion of strong and weak government in L. N. Iordan-
skaya, Two Operators for Processing Word Combinations with "Strong
Government" (for Automatic Syntactic Analysis), Moscow, 1961.
Translated in JPRS 12441, U.S. Joint Publications Research Service,
1962.

10 Cf. Hockett's discussion of “Construction types;” C. F. Hockett,
A Course in Modern Linguistics, Macmillan 1958, pp. 183-208.
11 K. E. Harper, Procedures for the Determination of Distributional
Classes, RM-2713-AFOSR, The RAND Corporation, 1961.
12 Iordanskaya, op. cit. fn. 9.
13 This restriction, suggested by Y. Lecerf, is discussed in D. G.
Hays, Research Procedures in Machine Translation, RM-2916, The
RAND Corporation, 1961.
14 International Business Machines Corporation, Reference Manual,
IBM 7090 Data Processing System, revised March 1962, p. 39.
15 This plan was devised in a discussion with M. J. Kay, S. L. Marks,
and T. W. Ziehe.

RUSSIAN SYNTAX 51

