
[Mechanical Translation and Computational Linguistics, vol.8, nos.3 and 4, June and October 1965]

Applications of the Theory of Clumps*

by R. M. Needham, Cambridge Language Research Unit, Cambridge, England

The paper describes how the need for automatic aids to classification
arose in a manual experiment in information retrieval. It goes on to dis-
cuss the problems of automatic classification in general, and to consider
various methods that have been proposed. The definition of a particular
kind of class, or "clump," is then put forward. Some programming tech-
niques are indicated, and the paper concludes with a discussion of the
difficulties of adequately evaluating the results of any automatic classifi-
cation procedure.

The C.L.R.U. Information Retrieval Experiment
Since the work on classification and grouping now
being carried out at the C.L.R.U. arose out of the
Unit's original information retrieval experiment, I shall
describe this experiment briefly. The Unit's approach
represented an attempt to combine descriptors and uni-
terms. Documents in the Unit's research library of
offprints were indexed by their most important terms
or keywords, and these were then arranged in a multi-
ple lattice hierarchy. The inclusion relation in this sys-
tem was interpreted, very informally, as follows: term
A includes term B if, when you ask for a document
containing A, you do not mind getting one containing
B. A particular term could be subsumed under as many
others as seemed appropriate, so that the system con-
tained meets as well as joins, that is, was a lattice as
opposed to a tree, for example as follows:

The system was realized using punched cards. There
was a card per term, with the accession numbers of
the documents containing the term punched on it; at
the right hand side of the card were the numbers of
* This document is based on lectures given at the Linguistic Research
Center of the University of Texas, and elsewhere in the United States,
in the spring of 1963. It is intended as a general reference work on
the Theory of Clumps, to supersede earlier publications. The research
described was supported by the Office of Science Information Service
of the National Science Foundation, Washington, D.C.

the terms that included the term in question. The docu-
ment numbers were also punched on all the cards for
the terms including the terms derived from the docu-
ment, and for the terms including these terms and
so on.

In retrieval, the cards for the terms in the request
were superimposed, so that any document containing
all of them would be identified. If there was no im-
mediate output, a “scale of relevance” procedure could
be used, in which successive terms above a given term
are brought down, and with them, all the terms that
they include. In replacing D by C, for example, we
are saying that documents containing B, E and F as
well as C are relevant to our request (we pick up this
information because the numbers for the documents
containing B, E, and F are punched on the card for C,
as well as those for documents containing C itself).
Where a request contained a number of terms, there
was a step-by-step rule for bringing down the sets of
higher-level terms, though the whole operation of the
retrieval system could be modified to suit the user's
requirements if appropriate.

The system seemed to work reasonably well when
tested, but suffered from one major disadvantage: the
labor of constructing and enlarging the lattice is enor-
mous, and as terms and not descriptors are used, and
as the number of terms generated by the document
sample did not tail off noticeably as the sample in-
creased, this was a continual problem. The only answer,
given that we did not want to change the system, was
to try to mechanize the process of setting up the lattice.
One approach might be to give all the pairs of terms,
 A C
for example , and then sort them mechanically
 B B
to produce the whole structure. The difficulty here,
however, is that the person setting up the pairs does
not really know what he is doing: we have found by
experience that the lattice cannot be constructed prop-
erly unless groups of related terms are all considered
together. Moreover, even if we could set up the lattice
in this way, it w ould be only a partial solution to our

113

problem. What we really want to attack is the problem
of mechanizing the question “Does A come above B?”
When we put our problem in this form, however, it
merely brings out its full horror; how on earth do we
set about writing a program to answer a question like
this?

As there does not seem to be any obvious way of
setting up pairs of terms mechanically, we shall have
to tackle the problem of lattice construction another
way. What we can do is look at what the system does
when we have got it, and see whether we can get a
lead from this. If we replace B by C in the example
above, we get D, E and F as well; we have an inclu-
sive disjunction “C or B or D or E or F.” These terms
are equally acceptable. We can say, to put it another
way, that we have a class of terms that are mutually
intersubstitutible. It may be, that if we treat a set of
lattice-related terms as a set of intersubstitutible terms,
we can set up a machine model of their relationship.
Intersubstitutibility is at least a potentially mechaniza-
ble notion, and a system resulting from it a mechaniza-
ble structure. What we have to try to do, therefore, is
to obtain groups of intersubstitutible terms and see
whether these will give the same result as the hand-
made structure.

The first thing we have to do is define 'intersubsti-
tutibility.' In retrieval, two terms are totally intersub-
stitutible if they invariably co-occur in documents.
They then each specify the same document set, and it
does not matter which is used in a request. The point
is that the meaning of the two terms is irrelevant, and
there need not be any detectable semantic relation
between them. That is to say, we need not take the
meaning of the terms explicitly into account, and
there need be no stronger semantic relation between
them than that of their occurring in the same docu-
ment. What we have to do, therefore, is measure the
co-occurrence of terms with respect to documents. Our
hypothesis is that measuring the tendency to co-occur
will also measure the extent of intersubstitutibility.
This is the first stage; when we have accumulated
co-occurrence coefficients for our terms or keywords,
we look for clusters of terms with a strong mutual
tendency to co-occur, which we can use in the same
way as our original lattice structure, as a parallel to
the kind of group illustrated in our example by “C or
B or D or E or F.”

The attempt to improve the original information
retrieval system thus turned into a classification prob-
lem of a familiar kind: we have a set of objects, the
documents, a set of properties, the terms, and we want
to find groups of properties that we can use to classify
the objects. Subsequent work on classification theory
and procedures has been primarily concerned with
application to information retrieval, but we thought
that we could usefully treat the question as a more
general one, and that attempts to deal with classifica-
tion problems in other fields might throw some light

on the retrieval case. The next part of this report will
therefore be concerned with classification in general.

Classification Problems and Theories;
the Theory of Clumps
In classification, we may be concerned with any one
of three different problems. We may have
1) to assign given objects to given classes;
2) to discover, with given classes and objects, what

the characteristics of these classes are;
3) to set up, given a number of objects and some in-

formation about them, appropriate classes, clusters
or groups.

1) and 2) are, to some extent, statistical problems, but
3) is not. 3) is the most fundamental, as it is the basis
for 2), which is in turn the basis for 1). We cannot
assign objects to classes unless we can compare the
objects' properties with the defining properties of the
classes; we cannot do this unless we can list these de-
fining properties; and we cannot do this unless we
have established the classes. The research described
below has been concerned with the third problem: this
has become increasingly important, as, with the com-
puters currently available, we can tackle quite large
quantities of data and make use of fairly comprehensive
programs.

Classification can be looked at in two complemen-
tary ways. Firstly, as an information-losing process: we
can forget about the detailed properties of objects, and
just state their class membership. Members of the same
class, that is, though different, may not be distin-
guished. Secondly, as an information-retaining process:
a statement about the class-membership of an object
has implications. If we say, that is, that two objects are
members of the same class, this statement about the
relation between them tells us more about each of
them than if we considered them independently. In a
good classification, a lot follows from a statement of
class membership, so that in a particular application
the predictive power of any classification that we pro-
pose is a good test of its suitability. In constructing a
classification theory, therefore, we have to achieve a
balance between loss and gain, and if we are setting
up a computational procedure, we must obviously
throw away the information we do not want as quickly
as possible. If we have a set of On objects with Pm
properties, and Pm greatly exceeds On, we want if we
can to throw as much of the detailed property informa-
tion away as is possible without losing useful distinc-
tions. This cannot, of course, necessarily be done
simply by omission of properties.

We may now consider the classification process in
more detail. Our initial data consists of a list of ob-
jects each having one or more properties.* We can
conveniently arrange this information in an array, as
follows:
* We have not yet encountered cases where non-binary properties
seemed necessary. They could easily be taken account of.

114 NEEDHAM

properties
P1 P2...........................Pm

o O1 1 1 0 0 1 0
b
j O2 0 1 1 0 1 0
e
c
t
s

On 1 0 1 0 0 0

where O1 has P1, P2, P5 and so on, O2 has P2, P3, P5 and
so on. We have to have this much information, though
we do not need more—we need not know what the
objects or properties actually are,—and we have, at
least to start with, to treat the data as sacred.

We can try to derive classes from this information
in two ways:
1) directly, using the occurrences of objects or prop-

erties;
2) indirectly, using the occurrences of objects or prop-

erties to obtain resemblance coefficients, which are
then used to give classes.

We have been concerned only with the second, and
under this heading mostly with computing the resem-
blance between objects on the basis of their properties.
If we do this for every pair of objects we get a (sym-
metric) resemblance or similarity matrix with the sim-
ilarity between Oi and Oj in the ijth cell as follows:

O1 O2 O3

 O1 S12 S13
 O2 S21 S23
 O3 S31 S32

To set up this matrix, we have to define our similarity
or resemblance coefficient, and the first problem is
which coefficient to choose. It was originally believed
that if the clusters are there to be found, they will be
found whatever coefficient one uses, so long as two
objects with nothing in common give 0, and two with
everything in common give 1. Early experiments
seemed to support this. We have found, however, in
experiments on different material, that this is probably
not true: we have to relate the coefficient to the sta-
tistical properties of the data. We have therefore to
take into account
i) how many positively-shown properties there are
(that is, how many properties each object has on the
average),
ii) how many properties there are altogether,
iii) how many objects each property has.
Thus we may take account of i) and ii) by computing

the coefficient for each pair of objects on the basis of
the observed number of common properties, and then
weighting it by the unlikelihood* of the pair having
at least that number of properties in common on a ran-
dom basis.

In any particular problem there is, however, a
choice of coefficient, though for experimental purposes,
as it saves computing effort, there is a great deal to
be said for starting with a simple one. Both for this
reason, and also because we did not know how things
were going to work out, we defined the resemblance,
R, of a pair of objects, O1 and O2, as follows:

This was taken from Tanimoto1; it is, however, a
fairly obvious coefficient to try, as it comes simply
from the Boolean set intersection and set union. For
any pair of rows in the data array we take:

This coefficient is all right if each object has only a
few properties, but there are a large number of prop-
erties altogether, so that agreement in properties is
informative. We would clearly have to make a change
(as we found) if every object has a large number of
properties, as the random intersection will be quite
large. In this case we have to weight agreement in 1's
by their unlikelihood. There is a general belief (espe-
cially in biological circles) that properties should be
equally weighted, that is, that each 1 is equally sig-
nificant. We claim, on the contrary, that equal weight-
ing should be interpreted as equality of information
conveyed by each property, and this means that a
given occurrence gives more or less information ac-
cording to the number of occurrences of the property
concerned. Agreement in a frequently-occurring prop-
erty is thus much less significant than agreement in
an infrequently-occurring one. If N1 is the number of
occurrences of P1, N2 the number of occurrences of P2,
N3 of P3 and so on, and we have O1 and O2 in our
example, possessing P1, P2 and P5, and P2, P3 and P5
respectively, we get

This coefficient is thus essentially a de-weighting.
Though more complicated than the other, it can still
be computed fairly easily.

When we have set up our resemblance or similarity
matrix, we have the information we require for carry-

* The unlikelihood is theoretically an incomplete B-function, but a
normal approximation is quite adequate.

APPLICATIONS OF THE THEORY OF CLUMPS 115

ing out our classification. We now have to think of a
definition for, or criterion of, a cluster. We want to say
“A subset S is a cluster if . . .” and then give the con-
ditions that must be fulfilled. There are, however, (as
we want to do actual classification, and not merely
think about it) some requirements that any definition
we choose must satisfy:
i) we must be able to find clusters in theory,
ii) we must be able to find them in practice (as op-

posed to being able to find them in theory).
These points look obvious, but are easily forgotten in
constructing definitions, when mathematical elegance
is a more tempting objective. What we want, that is, is
1) a definition with no offensive mathematical prop-

erties, and
2) a definition that leads to an algorithm for finding

the clusters (on a computer).
We still have a choice of definition, and we now

have to consider what a given definition commits us
to. Most definitions depend on an underlying model of
some kind, and so we have to see what assumptions
we are making as the basis for our definition. Do we,
for example, want a strong geometrical model? We can
indeed make a fairly useful division into definitions
that are concerned with the shape of a cluster (is it a
football, for instance?), and those that are concerned
with its boundary properties (are the sheep and the
goats to be completely separated?). Boundary defini-
tions are weaker than those based on shape, and may
be preferable for this reason. There are other points
to be taken into account too, for instance whether it is
desirable that one should allow overlap, or that one
should know if all the clumps have been found.

Bearing these points in mind, we may now consider
a number of definitions. We can perhaps best show
how they work out if we think of a row of the data
array as a vector positioning the object concerned in
an n-dimensional space.

CLIQUE

(Classes on this definition are sometimes referred to
simply as “clusters”; in the present context, however,
this would be ambiguous. These clusters were first
used in a sociological application, where they were
called “cliques,” and I shall continue to use the term,
to avoid ambiguity, though no sociological implications
are intended.) According to our definition, S is a clique
if every pair of members of S has a resemblance equal
to or greater than a suitably chosen threshold θ, and
no non-member has such a resemblance to all the mem-
bers. In geometrical terms this means that the mem-
bers of a clique would lie within a hypersphere whose
diameter is related to θ. This definition is unsatisfactory
in cases where we have two clusters that are very close
to, and, as it were, partially surround, one another.
Putting it in two-dimensional terms, if we have a num-
ber of objects distributed as follows:

they will be treated as one round clique, and not as
two separate cliques, although the latter might be a
more appropriate analysis.

This approach also suffers from a substantial disad-
vantage in depending on a threshold, although in most
applications there is nothing to tell us whether one
threshold is more appropriate than another. The choice
is essentially arbitrary, and as the precise threshold
that one chooses has such an effect on the clustering,
this is clearly not very satisfactory. The only cases
where a threshold is acceptable are those where the
clustering remains fairly stable over a certain range of
the threshold. This is hard to define properly, and
there is no evidence, experimental or theoretical, that
it happens.

IHM CLUSTER
The classification methods used by P. Ihm depend on
the use of linear transformations on the data matrix,
with a view to obtaining clusters that are, in a suitable
space, hyperellipsoids. An account of them may be
found in Ihm's contribution to The Use of Computers
in Anthropology.2

This definition is unsatisfactory because it assumes
that the different attributes or properties are inde-
pendently and normally distributed, or can be made so.

Both these definitions depend on fairly strong as-
sumptions about the data. Ihm, for example, is taking
the typical biological case where the properties may
be regarded as independently and normally distributed
within a cluster. If these assumptions are justified, this
is all right. But in many applications they may not be.
In information retrieval, for instance, the following
might be a cluster:

There is obviously a great deal to be said, if we are
trying to construct a general-purpose classification pro-
cedure, for making the weakest possible assumptions.
The effects of these definitions can usefully be stud-
ied in more detail in connection with the similarity
matrix. First, for cliques. Suppose that we re-arrange
the matrix to concentrate the objects with resemblance
above θ, given as 1, in the top left-hand corner (and

116 NEEDHAM

bottom right). Objects with less than θ resemblance,
given as 0, will fall in the other corners. Ideally, this
should give the following*:

1111 0000
1111 0000
1111 0000
1111 0000

0000 1111
0000 1111
0000 1111
0000 1111

However, consider the following:
1101 1100
1101 1001
0011 0001
1111 0000

1100 1111
1000 1111
0000 1111
0110 1111

One would want, intuitively speaking, to say that the
first four objects form a cluster. But on the clique
definition this is impossible, because of the 0's in the
first 4-square. In fact we have found, with the
empirical material that we have considered, that the
required distribution never occurs; raw data just does
not have this kind of regularity, at worst if only be-
cause it was not written down correctly when it was
collected. Even with θ quite low, one would probably
only, unless the objects to be grouped were very in-
bred, get pairs or so of objects. In the information
retrieval application this definition has the added dis-
advantage that synonyms would never cluster because
they do not usually co-occur, though they may well
co-occur with the same other terms. The moral of this
is that we should not look for an “internal” definition
of a cluster, that is, one depending on the resemblance
of the members to each other, but rather for an “ex-
ternal” definition, that is, one depending on the non-
resemblance of members and non-members. The first
attempt at such a definition was as follows: S is a
cluster if no member has a resemblance greater than a
threshold 6 to any non-member, and each member of
S has a resemblance greater than θ is some other mem-
ber.† In terms of our resemblance matrix we are look-
* These matrices have been drawn in this way for illustrative pur-
poses. In any real similarity matrix successive objects would almost
certainly not form a cluster, and one would have to rearrange it if
one wanted them to do so (though this is obviously not a necessary
part of a cluster-finding program). One would not expect an equal
division of the objects either: in all the applications so far considered
a set containing half the objects would be considered to be too large
to be satisfactory. (In the definition adopted both the set satisfying
the definition and its complement are formally clusters, though only
the smaller of the two is actually treated as a cluster).
† This definition was the first to be tried out in the C.L.R.U. research
on classification under the title of the Theory of Clumps; in this re-
search clusters are called “clumps” and these clusters were called
“B-clumps.”

ing, not for the absence of 0's in the top left section,
but for the absence of 1's in the top right section. We
may still, however, not get satisfactory results. For
example, the anomalous 1 in the top right corner of
the matrix below means that the first four objects do
not form a cluster, although we would again, intui-
tively speaking, want to say that they should.

1111 0010
1101 0000
1011 0000
1111 0000

0000 1111
0000 1111
1000 1111
0000 1111

This definition again may work fairly well in biology,
but it suffers, like the clique definition, from the prob-
lems connected with having a threshold. It also means
that if we have a set of objects as follows

they will be treated as one cluster and not as two
slightly over-lapping ones. On this definition, that is,
we cannot separate what we might want to treat as
two close clusters.

These definitions all, therefore, suffer from the major
disadvantage that a single aberrant 0, in the first case,
or 1, in the second, can upset the clustering, and for
the kind of empirical material for which automatic
classification is really required, where the set of ob-
jects does not obviously “fall apart” into nice distinct
groups but appears to be one mass of overlaps, and
where the information available is not very reliable, as
in information processing, definitions like these are
clearly unsatisfactory. In many applications, that is,
the data is not sufficiently uniform or definite for us
to be able to rely on the classification not being af-
fected in this way.

What we require, therefore, is a definition that does
without θ, and is not affected by a single error in the
matrix. We can get a lead on a definition by looking
at the matrix distributions for the other definitions.
Considering for the moment the first four rows of the
sample matrix, we found that our previous cluster
definitions were not satisfied for the first four objects
if there was a 0 in the left half of any of the first four
rows, or a 1 in the right half; we wanted, that is, to
have either the left half of each row all 1's, or the right
half all 0's. An obvious modification would be to say
that there should be more 1's in the left half than in
the right half of each of these rows, without saying
that there should be no 0's in the left, or 1's in the right

APPLICATIONS OF THE THEORY OF CLUMPS 117

half. This would clearly be a move in the right direc-
tion, away from the extremes of the other definitions.
It would mean, for example, that the following dis-
tribution would give us a clump.*

1101 1100
1101 1001
0011 0001
1111 0000

1100 1111
1000 1111
0000 1111
0110 1111

A definition on this basis was adopted for use in the
C.L.R.U. research, where a cluster was called a
“clump,” as follows: A subset S is a cluster, or clump,
if every member has a total of resemblances to the
other members exceeding its total of resemblances to
non-members, and every non-member has a greater
total of resemblances to the other non-members than to
the members. At present, “total of resemblances” may
be taken as “total of resemblances exceeding θ”; how-
ever, this use of a threshold may be dropped, and the
total is then simply the arithmetic sum of coefficients.**
The complement of a clump is thus a clump. There
are many equivalent forms of this definition. For in-
stance: If, in the previous matrix diagrams, we label
the clump in the top left section “A,” and its com-
plement in the bottom right “B,” we can define “the
'cohesion' of A and B”: Let C be the total of resem-
blances between any two sets of objects. We can set
up a ratio of resemblances

CAB
C AA + C BB

which we call the “cohesion across the boundary be-
tween A and B.” A partition of the matrix marking off
a clump will correspond to a local minimum of C. Let
A be the resemblance matrix. We set up a vector v
defining a partition of the total set of objects, with
elements +1 for objects on one side of the partition
and — 1 for those on the other. Q is a diagonal matrix
defined by the equation

Av = Qv •

Since the elements of v are all + or — 1, the multi-
plication Av simply adds up, for each element, the
resemblance to the members of the subset specified by
+ 1 and subtracts the resemblance to the other ele-
ments specified by —1. Thus, it is clear that if the
subset specified by +1 is a clump, the entries in the
result vector Av will have to be positive in those rows
where v is positive, and negative elsewhere. This cor-

* It was found expedient to treat the diagonal elements (which carry
no information anyway) as zero rather than units. This makes the
algorithm easier to describe and implement.
** These clumps have been called GR-clumps in earlier publications.

responds to the case in which all the elements of Q
are positive.

There is clearly some relation between clumps and
the eigenvectors of A corresponding to positive eigen-
values, but we cannot say just what this relation is.
This approach does not, moreover, lead to any very
obvious procedure for clump-finding. In matrices of
the order likely to arise in classification problems, the
solution of the eigenproblem would almost be a re-
search project in itself. If we could get over this diffi-
culty we might abandon as too difficult the attempt to
relate eigenvalues and eigenvectors to clumps as de-
fined, and try to set up some other definition of a class
in which the connection was more straightforward. In-
vestigation shows, however, that the interpretation of
eigenvectors and eingenvalues as the specification of
a class is not at all obvious. This approach is also open
to the methodological objection that information is
abandoned at the end, and not at the beginning, of the
classification process.

We may, however, still learn something useful from
considering these alternative definitions, and the equa-
tion defining the cohesion of A and B indeed suggests
that an arbitrary partition of our set of objects with
interchanges of objects from one side to the other to
reduce the cohesion between the two halves can be
used as a clump-finding procedure. As this is used as
the basis of the procedures we have developed, we can
now go on to consider the question of programming.

Programming Procedures for the Theory of Clumps

In programming, the first step is to organize the data
into some standard form. We have found it most con-
venient to list the properties and attach to each prop-
erty a list of the objects that have it. Listing the objects
with their properties is much less economic, as the
data is usually very sparse. (The data can of course be
presented to the machine in this form, as it can be
transformed into the desired form very easily.) The
properties and objects can be identified with serial
numbers, so that if one were dealing with text, for ex-
ample, one would sort the words alphabetically and
give each distinct word a number.

The next stage is to set up our similarity matrix.
This is done in two stages, collecting the co-occurrence
information, and working out the actual similarity co-
efficients. In the first, we consider each property in
turn, and count one co-occurrence for each pair of
objects having the property; we are thus only opening
a storage cell for the items that will give positive en-
tries in the similarity matrix. The whole is essentially
a piece of list-processing, in which we list our objects,
and for each item in the list we have a pointer to a
storage cell containing information about the object
concerned. As we can store only information about the
relation between the given object and one other object
in a cell, we require a cell for every object with which

118 NEEDHAM

a particular object is connected. These are arranged in
the serial order of the objects, with each cell pointing
to the next one. The objects connected with a given
object are thus not linked directly with this object, but
are given in a series of storage cells, each leading to
the next.

If we are given n objects, we have, for any one of
the objects, n—1 possible co-occurrences with other
objects (by co-occurrences, we mean possession of a
common property). We could therefore have a chain
of n—1 empty storage cells attached to each item in
our object list, and fill in any particular one when we
found, on scanning our property lists, that the object to
which the chain concerned was connected and the ob-
ject with the serial number corresponding to the cell
had a common property. This would, however, clearly
be uneconomic, as we would fill up our machine store
with empty cells, and only use a comparatively small
proportion of them. What we do, therefore, is open a
cell only for each object we find actually co-occurring
with a given object, when we are scanning our prop-
erty lists. We will thus, as we go through our property
information, add or insert cells in our chains. As we
shall not meet the objects in their serial order,* but
want to store them in this order, we have to allow in-
sertion as well as addition in our chains of storage cells.

We may find also that two objects have more than
one property in common. When we open a cell for a
co-occurrence, we record the co-occurrences as well as
the objects that co-occur; the next time we come
across this pair of objects we add 1 to our record of
the number of co-occurrences, and so on, adding to
the total every time the two objects come together.
(It should be noticed that as co-occurrence is sym-
metrical we will need** a cell under each of the ob-
jects, and will record the co-occurrences twice).

What we are doing, therefore, is accumulating in-
formation by list-processing, either opening new cells
for new co-occurrences, or adding to the total of exist-
ing co-occurrences. Each storage cell contains the
name of an object, the number of times it has co-oc-
curred with the object to which the chain concerned
is attached, and a pointer to the next cell in the series.
As this looks rather complicated when written out, even
though the principle is very simple, we can illustrate
it with a small example as follows:
P = property, O = object, () = storage cell, → = "go to";

Data P1 : Ol O5 O8
P2 : Ol O5 O7
P3 : 03 04

Store Ol
O2
O3
.
.

* Because the initial data comes with serially-ordered properties.

** The duplicate storage of the co-occurrence information doubles
the size of the matrix, but makes it much easier to handle.

Operations
1. Scan P1 list; Ol, O5 co-occur; open cell for O5 under

Ol, for Ol under O5; note 1 co-occurrence in each; the
entry for Ol now reads:

O1 → (O5,1)
for O5:

O5 → (O1,1)
2. Scan P1 list; Ol, O8 co-occur; open cell for O8 under

Ol, for Ol under O8; note 1 co-occurrence in each; the
entry for Ol, with the new cell added to the existing
chain now reads:

O1 → (O5,l) → (O8,1)
for O8:

O8 → (O1,1)

3. Scan P1 list; O5, O8 co-occur; open cell for O8 under
O5, for O5 under O8; note 1 co-occurrence in each; the
entry for O5, with the new cell added now reads:

O5 → (Ol,l) → (O8,l)
for O8, with the new cell added:

O8 → (Ol,l) → (05,1)

4. Scan P2 list; Ol, O5 co-occur; add 1 to the co-occur-
rences totals for O5 under Ol, for Ol under O5; the
entry for Ol now reads:

Ol → (O5,2) → (O8,l)
for O5:

O5 → (Ol,2) → (O8,l)

5. Scan P2 list; Ol, O7 co-occur; open cell for O7 under
Ol, for Ol under O7; note 1 co-occurrence in each; the
entry for Ol with the new cell inserted now reads:

O1 → (O5,2) → (O7,1) → (O8,1)
for 07:

O7 → (Ol,l)

6. Scan P2 list; O5, O7 co-occur; open cell for O7 under
O5, for O5 under O7; note 1 co-occurrence in each; the
entry for O5, with the new cell inserted now reads:

O5 → (O1,2) → (O7,1) → (O8,l)

for O7, with the new cell added:

O7 → (O1,1) → (O5,1)

7. Scan P3 list; O3, O4 co-occur; open cell for O4 under
O3, for O3 under O4; note 1 co-occurrence in each; the
entry for O3 now reads:

O3 → (O4,l)
for O4:

O4- → (O3,1).

When this information has been collected it is trans-
ferred to magnetic tape in a more compact form, in
which the name of each object is given, together with
a list of all the objects it co-occurs with, with their re-
spective total co-occurrences. The matrix is thus stored
in a form in which it can be easily updated if neces-
sary. Some other information is also included: the total
number of objects each object co-occurs with, and the
total number of properties it has. This gives us all the
information we need for working out any similarity
coefficient. When we have worked out our coefficient
for each pair of objects, we replace the co-occurrence

APPLICATIONS OF THE THEORY OF CLUMPS 119

totals by the appropriate similarity coefficients. Our
entry for O9, say, might read:

O9 : O2 = .35, O4 = .07, O28 = .19,

The serial list we obtain is our similarity matrix, and
we are now in a position to start clump-finding.

This is where the matrix terminology introduced
earlier is useful. What we want to obtain is a partition
of our set of objects, into, say L and R, such that we
have a clump and its complement. If we imagine our
set and a partition as follows

what we have to do is consider the sets of objects on
each side of the partition to see whether they form
clumps, and if they do not, try moving objects across
the partition until we get the required distribution. To
see whether a set is a clump, we have to take each
object in turn and sum its connections to the set and
complementary set respectively.

The initial partition will be defined by a vector v,
and we can, as we saw, obtain the diagonal matrix Q
in the equation

Av = Qv

after multiplying the similarity matrix A by v. We
know that if all the elements of Q are positive, we
have found a clump. If we have a negative element in
Q, this means that the partition is unsatisfactory, either
because we have an object in R which should be in L,
or an object in L which should be in R. (The sign at-
tached to the corresponding element of v will tell us
which). We can deal with the anomalous object by
shifting it across the partition,* but we have to see
what effect this has on our two sets. We mark the shift
by reversing the sign of the element in v which cor-
responds to the negative element in Q, and then use
the new vector, defining the new partition, to recom-
pute Q. If we still have a negative element in Q, we
repeat the whole process. We thus have an iterative
procedure for improving an unsatisfactory Q by re-
moving the next negative element in the series. Rectify-
ing one negative element can mean that we get others
that we did not have to start with, but it can be
shown that the procedure is monotonic.

The important point is that we carry out the whole
multiplication Av only once; after this, as we are only
dealing with one element of Q, corresponding to one
object, at a time, we have only to consider one row
of A. We have, that is, changed only one element of v,
and therefore have only to carry out the multiplication
* Thus diminishing the cohesion between the two sets.

on the corresponding row in A to get the new result
vector Av. This all means that the procedure is quite
economic, and that we can store A, row by row, in a
fairly compact form. Recomputing Q is not a very seri-
ous operation. We have to do it all because we are
dealing with the totals of connections between objects,
and shifting one object could affect the totals for all
the other objects in our set.

We can describe this iterative series of operations, in
which we modify our initial partition, as one round
of clump-finding; we will either find a clump, or finish
up with all our objects on one side of the partition.
When we do not find a clump, that is, it is because we
have, in trying to improve on our initial division,
moved all our objects onto one side of the partition, so
that the whole partition collapses. After each round,
whether we find a clump or not, we have to start again
with a new partition. It is clear that the way we parti-
tion the set initially can influence our clump-finding;
it can also affect the speed with which we find clumps.
Again, when we start a new round, we want to take
account of the partitions we have already made. We
obviously do not want to repeat a partition we have
already tried, and we may also be able to take account
of previous partitions in a more sophisticated way.
How, then, should we set up our partitions, either to
begin with, or for a new round? How should we set
about getting a useful partition?

We first tried using some very crude cluster, which
we had found by another method, as a sort of “seed”;
it would partition off a potential clump. In one experi-
ment, for instance, we used cliques as starting points.
This is not, however, very satisfactory. In many ap-
plications we have found that we cannot obtain any
cliques, and so cannot use them as a lead; this was
true of the information retrieval application, with
which we were most concerned at the time, so we did
not pursue the approach. The procedure is also rather
inefficient; it is no better than other methods, and in-
volves the additional preliminary stage in which the
crude clusters are set up.

We then thought that as we have an iterative pro-
cedure, we could start with a random equipartition;
we can start, that is, in a comparatively simple-minded
way because clump-finding is not a hit or miss affair:
we can improve on whatever division we start with.
When we start a new round, we make another equi-
partition, though we found it more efficient if partitions
after the first are not made at random, but are ad-
justed so that we do not start with anything too close
to the partitions we have already tried.* We thus have
a kind of orthogonal series of equipartitions.

This procedure has, however, one defect: although
we sometimes find a clump, in general any partition
that we make is far too likely to collapse. The whole
process becomes a succession of collapses, each fol-

* This is effected by a rule for modifying the vector v.

120 NEEDHAM

lowed by an entirely new start. This is unfortunate, be-
cause although a given partition is not right, something
near it may well be, and this is clearly worth looking
for. We found that we could avoid the unfortunate
consequences of a collapse by using a binary section
procedure. When we fail to find a clump, we take suc-
cessive binary sections, with respect to our starting
partition, inspecting each in a round of iterations,
either until we find a clump or the binary chopping
reaches its limit. We thus have a series of rounds, and
not merely one round associated with each starting
partition, each testing a partition which is a modifica-
tion of the original one.

The actual procedure is as follows: Suppose that we
partition our set into two parts, L and R, with the ele-
ments of L corresponding to +1 in our vector, and
those of R to —1:

TL becomes P1

TR " TL (“best” half)
TR (rest)

In any subsequent partition the permanent part stays
permanent, while the temporaries are reconsidered.
Suppose we have

Now suppose that we carry out our iterative scan and
transfer, and find that L collapses. We do not start
afresh with a quite independent partition, but try to
give L a better chance: we inspect R, find the mean
total of resemblances to L, and restart with the ele-
ments with greater than average resemblance to the
old L in a new L:

and L still collapses. We then set up:

PL becomes PL
TL " PL

TR " TL (“best” half)
 TR (rest)

that is

We now scan again, and with a bigger L, may find that
it no longer collapses.

We can illustrate the process in more detail by using
the notions of “temporary,” T, and “permanent,” P. We
label our initial parts TL and TR:

Suppose we find on iterating, that L collapses, and we
want to give it a better chance. We make alterations
as follows:

Suppose we now find that R collapses, and we must
give it a better chance. We now set up:

PL becomes PL
TR " PR

TL " TL (“best” half)
 TL (rest)

that is

The procedure thus consists of a continual reduction
of the temporary sections, in an endeavor to build up
the permanent sections in a satisfactory way.

If we find a stable partition where neither side col-
lapses, this gives us a clump. It in fact gives us a
clump and its complement, which is also formally a
clump, though we only treat the smaller one of the

APPLICATIONS OF THE THEORY OF CLUMPS 121

two as a clump in listing our results. If we go on par-
titioning until there are no more elements to partition,*
we have failed to find a clump, and have to start all
over again with a wholly new division of our set. In
any given attempt at clump-finding, therefore, we are
always concerned with a partition which has some
relation to our initial one, as we want to find out
whether anything like the one we started with will
give us a clump; and as we think that it is worth
making a fairly determined search for one, we go on
trying until it becomes clear that there is none. It is
clear that this improved procedure for clump-finding is
a general one and can be used with any method of
choosing starting-partitions; thus if we have an appli-
cation where we think that we can suitably use other
clusters as seeds, we start with them and then go about
our clump-finding this way. The procedure as it stands
can be usefully refined in a number of ways; in many
applications we are not interested in clumps with only
two or three members, and so there is no point in car-
rying on the partition procedure when one side is very
small. We can avoid this if we redefine 'collapse', so
that, for instance, we say that a partition has collapsed
if one side has, say, less than 10, elements in it. In
some applications we may be interested in clumps
centered on particular elements, or have reason to
think that particular elements will lead to clumps; if
this is the case we can start with a single element,
making our initial partition between this element and
the rest of the set. We will clearly get an initial col-
lapse, as all the element's connections will be to the
other side of the partition, but after this we can pro-
ceed.

Setting up the initial partition between one element
and the rest has in fact turned out to be a better way
of starting in general. The trouble with equipartitions
is that they tend to lead to aggregate clumps. The defi-
nition of 'clump' is such that the union of two clumps
may be a clump, and if we start clump-finding by con-
sidering half of a large set of objects, we are very
likely to find that the nearest clump is a large one
which is an aggregate of smaller ones. This is not
necessarily a bad thing, but we found that the aggre-
gates we got in our experiments were too big to be
suitable for the purpose for which the classification
was required. Starting with one element avoids this
difficulty, and as we have a clump-finding procedure
in which the collapse of a partition is not fatal, we
can begin with a partition which cannot but collapse,
but from which we may be able to derive the kind of
clump we want.

This procedure seems to work satisfactorily, though
some problems do arise: we do not know

1) when we have found all the clumps, or
2) how many there are to be found.

* Experience shows that the total disappearance of elements to par-
tition is most unusual.

These facts are most objectionable. They illustrate
an important aspect of work on classification at pres-
ent, namely that approaches that are amenable to
theoretical treatment are not good in practice, largely
because they embody assumptions that are often in-
applicable to one's data, whereas approaches that do
seem to work in practice are very unamenable to
proper theoretical analysis. Until a method is found
that can both be theoretically analysed, and works well
on real data, we cannot be satisfied. We are, however,
convinced that the way to progress at present lies
through experiment, A valuable aid at this point is to
have an operational test of the usefulness of the classi-
fication found. If such a test is available, we may
simply continue to find clumps until it is satisfied. It
is at any rate possible that such tests connected with
the usefulness of the product may continue to be more
helpful than theoretical termination rules; they need,
after all, to be satisfied regardless of what the theory
predicts.

Within these limits we want to be as efficient as pos-
sible. We want to find clusters quickly, and if there are
quite different ones to be found, to find at least some
of them, and we can legitimately use any information
as an aid. We may, for instance, find that we can use
an existing classification, or clusters found by some
other, perhaps rather crude, method, as a starting
point. This kind of thing is not always possible or ap-
propriate, and we may have or want to apply our
procedure to our data without making any assumptions
about it at all. In this case we may be able to make
our procedure more efficient for example by looking for
clumps centered on a particular element that has not
already occurred in a clump; we can note when we
have found the same or very similar clumps, so that
we start somewhere different.

3) We may get into another difficulty over our re-
semblance coefficients: many of these coefficients are
rather small, and we have to decide the precision that
we should store them to, as this can affect the size of
the clumps we find. For example, suppose that we
have an element x in L: we may find that x is pulled to
R by the aggregate of its very small resemblances to
members of R, when we want to keep it in L, as it
genuinely fits into the L-clump. We can counteract
this tendency only by making L bigger, which may be
unsatisfactory for other reasons. We have found, how-
ever, that this defect may nevertheless be turned to
advantage, because we can use this information as a
parameter in relation to the clumps we require.

The definitions and procedure just described have
been worked out over a period of time and have been
tested on different kinds of material. They are not at
all regarded as perfect, and in fact are subject to
continual improvement. They have, however, reached
a stage where they can be applied fairly easily, and
their various applications will therefore be considered
next.

122 NEEDHAM

The Application of the Theory of Clumps to
Information Retrieval

The most important application of the Theory of
Clumps has been to information retrieval, and this
will therefore be described in some detail. We saw
that we might be able to group terms on the basis of
their co-occurrence in documents, and then use these
clusters in the way in which immediately-connected
sets of terms were used in the original C.L.R.U. library
scheme. This system currently contains some 2000-odd
terms, and any attempt to classify them will therefore
be a large computing problem; this is in spite of the
fact that the library is quite small—nearly 800 docu-
ments. This point emphasizes the main problem in
automatic classification, which is the quantity of data
we must be able to handle. Automatic classification
procedures are no use unless they will deal with realis-
tic amount of material—their basic purpose, indeed, is
to be able to deal with more data than human beings
can manage. In the information retrieval case, there-
fore, we need to be able to deal with large numbers of
terms.

We have discussed the general problem of defining
co-occurrence measures, but it is perhaps worth look-
ing at the problem in connection with a particular ap-
plication in some detail. There is no great difficulty
about finding co-occurrence measures, as they can
depend only on a small number of factors. Putting them
in a specifically information retrieval form we have:

1) the number of times each pair of terms co-occurs;
2) the number of times each term occurs;
3) the number of terms for each document in which
each pair of terms co-occurs (that is, has each docu-
ment got 2 or 50 terms);
4) the number of terms altogether;
5) the number of documents altogether.

The only ones involving any computation are 1) and
possibly 3). 1), as we saw, gives us a matrix; in the
most recent information retrieval experiment we had
342 terms (representing some 400 documents), which
would give us a 3422 matrix. From a computing point
of view this is quite impracticable,* and we have to
hope that the potential matrix is fairly empty, and can
therefore be stored economically. In most of the ex-
periments so far carried out the matrices were quite
empty, and we have to hope that this will usually be
the case. In the library case, for example, there were
only some 12,000 entries out of a possible total of
nearly 125,000. The best way of tackling the problem
of choosing the most suitable coefficient is to try a
number of alternatives, accumulating information un-
der 1) and 3), and evaluating the results in relation to
2), 4) and 5). As we saw, the best coefficient may vary

* This is not strictly correct. A 3422 matrix, even if it is quite full,
can be handled, but the matrix does not have to be much bigger be-
fore it cannot be handled when full, and we must take this point into
account when we design our programs.

with the application, and there is much to be said for
choosing a simple one. In the information retrieval ex-
periments we began with the first one we defined, (A),
and after we had found that the second, (B), worked
better in another case, adopted it for the library classi-
fication as well, where it also gave more satisfactory
results.

We now have to consider our requirements on the
classes to be found, if we are to use only mechanically
generated clusters, and not make any modifications of
our data or results by hand:
1. We must be able to cope with synonyms and near-
synonyms.
2. The classes must not be too large, or the disjunction
we get when we replace a term by its class will be too
long. (This means that we lose discriminating power
when we retrieve. We get the same result if we pro-
ceed by too many steps at once in the lattice in the
scale or relevance operation in the old library system.
If our clusters are too small, on the other hand, we are
liable to find that we are not generalizing enough.)
3. We must be able to obtain overlapping classes. (This
is to cover cases where keywords are used in different
ways, and corresponds to meets in the lattice structure,
where one term leads to two or more terms on the
next higher level. The number of meets in the existing
lattice show that if we were to look for mutually ex-
clusive classes we would either fail to find any, or get
very bad ones. The situation is obviously different, if
we are clustering documents.)

The definitions and procedures we have outlined do
satisfy these requirements. We can cope with syno-
nyms, because we have not defined a clump in such a
way that every pair of members has to be directly
connected; experiments have shown that we do not
get either very large or very small clumps, because our
definition is neither so weak that any set of elements
that are connected chain-wise, for example, will sat-
isfy it—in which case we would get very large clusters,
—nor so strong that we would only get sets in which
every pair of elements is directly connected—in which
case we would probably get very small clusters; and
we can get overlapping classes, because total resem-
blances can be compounded in different ways.

The following are some sample clumps:

1. Grammar, paradigm, parts of speech, adjective, prepo-
sition, phrase, phrase marker, tense, ending, stem, syntax,
diacritic.

2. Number, deductive system, Brouwerian terms, intuition-
ism, logic, observation.

3. Phrase marker, kernels, string operation, transforma-
tional grammar, terminal language, Markov process,
finite state process.

4. Term abstract, descriptor, request, term vocabulary.
5. Style, text, paragraph, information retrieval, classifying,

indexing, term abstract, thesaurus head, Roget, the-
saurus, descriptor, encode, bits, partial ordering, Boolean
algebra, confounding, request, parody, term vocabulary,
reality.

6. Style, text, paragraph, chunking, interlingua, posteditor,

APPLICATIONS OF THE THEORY OF CLUMPS 123

source language, target language, thesaurus head, Roget,
Pask machine, Latin, technical language.

Some of these, for example No. 3, are reasonable by
any standards; others, which appear less obvious, are
quite reasonable given the character of the documents
from which they are derived. No. 2, for instance, is
based on a number of papers on intuitionist mathemat-
ics ('Brouwerian terms' is a portmanteau term for sev-
eral exotic terms occurring in some papers by Brouwer
that we did not think it worth treating separately). No.
5 comes mostly from C.L.R.U. workpapers on the use
and encoding of a thesaurus, though there is some
“noise” in the clump. No. 6 is also from C.L.R.U.
workpapers, this time early ones on machine transla-
tion. These two clumps show how the same terms,
when used in different contexts, may appear in differ-
ent clumps. The way in which the classification reflects
the documents is especially shown by No. 1; the clump
is quite plausible, but does not include all the parts
of speech; we have papers dealing with, for example,
Russian prepositions, but not with Russian conjunctions.

What we now have to consider is what we do with
our clumps when we have found them. We know that
we want to use them to the same effect as our original
lattice, but something more detailed than this is re-
quired as a specification of how they are to be used.
We start with a set of documents and their keyword
lists; from this information we derive a set of clusters
of keywords. What have we gained by doing this? The
only way to answer this question is to set up a system
embodying the clusters and test it in retrieval. This,
however, only brings us up against the problem of how
to test any system we devise. Testing any retrieval
system involves a vast amount of work, and we get
into the evaluation problem as soon as we start: how
are we to say whether a retrieval system is any good
or not? We can really only see how it works out in
practice, and this is rather late. We want to find out
whether a proposed system is likely to work quite soon.

The most useful approach seems to be to try a num-
ber of variations and compare them; if we change our
resemblance coefficient, or our clustering procedure, we
can see what effect this has on a given body of mate-
rial. This is of course only an internal comparison; we
can clearly learn more if we compare a system con-
structed on this sort of basis with one that is con-
structed in a completely different way. But this is just
what is so difficult, and we must therefore set our
sights lower. We have not got out of the evaluation
difficulty either; we can compare the effects of any
changes we make in our procedure, but we have to
have some means of evaluating them as well. What
can we do if we do not want to go to the lengths of
constructing a whole retrieval system and trying it out
for, say, a year or two?
1. We can simply look at the clumps we get. The
trouble here is that our intuitive criteria of what looks
all right may in fact be inapplicable; we may, that is,

get clusters that do not look all right, but in fact are
entirely plausible, given the data from which they are
obtained. In grouping index terms we tend to assume
that the clusters we get will have some obvious kind
of conceptual or semantic coherence, for instance, that
they will all be concerned with one subject, or be a
collection of terms that are more or less synonymous.
We may not get clusters like this at all, and when we
look into the question we can see that there is no real
reason why we should. The clusters we get are after
all based on the co-occurrence of terms, and while this
usually means that there is some conceptual connection
between them, it may not be a very obvious or straight-
forward one. We may also have terms that are being
used in exotic ways, and this will affect the way they
cluster. What this all means is that we have to take
the character of our sample into account, and if we
get apparently odd results, to check back with the
documents. We may also get into difficulties if we have
to inspect large clusters. In some of the other applica-
tions of the procedure the clusters are so large that
they can hardly be looked at properly, and this could
easily happen in the information retrieval case.
2. We may be able to learn something from transpos-
ing the results, as follows: we can form a list of clusters
for each keyword, and then sort so that we can com-
pare the keywords with the same clusters. These should
have something in common. This method is again of
only limited usefulness, because although clusters with
the same lists usually do have something in common,
there are hardly any keywords with identical lists, and
we are therefore faced with deciding whether the lists
are sufficiently alike for the comparison to be valid.
3. We may alternatively try a third method as follows:
suppose that we set up an index code for our docu-
ments by taking the list of keywords for each docu-
ment, and replacing it by the list of clusters in which
these terms occur. We will thus obtain a cluster list
for each document. We can then sort and compare the
documents with the same cluster lists. This is a better
approach to the problem than 1 or 2 if we have a
reasonably-sized library, though it does mean that we
have to be fairly familiar with the contents, or the
whole process will take too long. This third method of
evaluating any classification we get is essentially testing
it by retrieval, and we have in fact tried the crudest
possible retrieval system using our automatically-ob-
tained classification, without any hand modification.

If we obtain cluster lists for documents, as described,
we have found in our experiments so far that this gives
a gross classification of the documents, which is satis-
factory as far as it goes, but does not go far enough.
Keywords alone, on the other hand, resolve the docu-
ments too much.* The obvious approach to try, there-
* This is not necessarily true of any keyword-using system. The key-
word classification in our own system, for example, is very nearly just
right, but it is not quite right, and something less refined seems to
be required. There is equally no theoretical reason why a classification
in terms of clusters should be too crude; it just turned out that way
in this case.

124

NEEDHAM

fore, is to combine the two; for each document we
have a term list and a cluster list, and we treat each
request in the same way. A request as it stands gives
terms, and we can look up the clusters for these in
the same way as we do for the terms derived from the
documents. We can then carry out our retrieval in
two stages. Retrieving on clusters alone is too crude,
but retrieving on keywords alone is inefficient over a
whole library. Retrieval on keywords, that is, is all right
if we get an exact match with a document list, but
not otherwise, and as we hardly ever do get an exact
match, we want an alternative approach by which we
can get better results than inexact matching with key-
words will give us.

The most efficient procedure is not to match our
request term list against the whole library, but only
against the term lists derived from documents that have
a cluster list relevant to the request cluster list. We
make, that is, a first-stage selection from the library as
a whole by matching cluster lists, and then a second
stage selection from this subset of the library by match-
ing keyword lists. We select the documents with a
cluster list relevant to the request by taking all those
whose cluster list includes that of the request, and we
pick out all the documents with more than one key-
word in common with the request.

Although we could evaluate the results only by using
our knowledge of the library, this seemed to work
quite well. An interesting point is that we did not look
at the clusters we used in the process; we generated
them and then used them without inspecting them.
The classification was thus judged solely by the quality
of its retrieval output. It might be argued that we can-
not be sure that the procedure is more efficient (in out-
put as opposed to operation) if we use clusters as well
as keywords, rather than keywords alone. We can,
however, find out whether the clusters do anything for
us by carrying out retrieval in the opposite way. We
can pick out all the documents with keywords in com-
mon with the request, and then select those that have
cluster sets including that for the request. We tried
this out and got very good results. A document with,
for example, three terms in common with the request
and cluster inclusion was more relevant to the request
than one with five keywords in common but not cluster
inclusion. A similar test is to make requests using ran-
dom sets of terms. If we match a random set with the
documents sets we may not get much, but we will
probably get something. If, however, we try a cluster
match as well, we do not get any retrieval at all. This
again shows that the clusters do make retrieval more
effective.

This was all very much in the way of a first stage
experiment. Clump inclusion as a criterion for match-
ing may well be too simple. We might find that we
could get better results by refining the cluster lists for
documents and requests in some way. Instead of taking
all the clusters generated by the keywords concerned,

we could try taking the intersection of the sets gene-
rated by the keywords, and use only those clusters that
recur to represent our document or request, or we
could select the most frequent clusters.

We should now look at our automatic classification
from the point of view of the specific problem that we
started with: how to construct the library lattice. We
wanted to see whether we could set up our term lattice
automatically, and we should now, therefore, see
whether we can actually construct a lattice for our
terms like the one we would have set up by hand.
(This is not to say that the hand-made and machine-
made lattices for the same set of terms should be iden-
tical; we want only to see whether we can construct
lattices from clumps.) We do not have enough infor-
mation, however, to do exactly what was done by
hand. When we had our lattice we could say that

could be replaced by 'A or B or C or D'. When we
start with the latter, however, there is nothing to tell
us which is the inclusive term; should A include the
other three, or B, or C, or D? The only lattice struc-
ture we can obtain is

and this is not the same thing. There is also more over-
lap in the mechanically-generated system than in the
human one, so that any lattice we tried to set up would
be more complicated.

The real point, however, is whether we really do
want to obtain a lattice structure, and specifically, a
lattice like the original one. It may have been what
we started out to try to get, but it is not clear that
we need it. We want a classification to do a job,
namely, organize a set of documents in such a way that
we can retrieve from them effectively, and the way to
test our classification is therefore to try it out directly
in retrieval. There is no reason for thinking that the
classificatory structure we obtain by one method will
be like the earlier one we obtained by a different

APPLICATIONS OF THE THEORY OF CLUMPS 125

method, nor is there any reason why they should be.
The point is that we are concerned with two classifica-
tions that are to be used for the same purpose, but not
with two classifications that are to be the same, and
the methods we use to construct them are too different
for the results to be comparable.

One or two final points can appropriately be made
in connection with the use of automatic methods for
information retrieval in general. The library has to be
a handleable size. This is not determined simply by
the number of documents in it, but varies with its con-
tent. The determining factor is the number of key-
words and keyword co-occurrences. This in turn means
that the level of detail of analysis that the keywords
represent, and the number per document, is relevant.
We may thus be able to classify quite a large library
if we keep the number of keywords in the document
lists down.

We can appropriately conclude this section on classi-
fication and information retrieval with a suggestion for
a future experiment. As we saw, we can either start
from scratch in our clump-finding, or use “seeds” or
“proto-clumps” obtained in some other way. The use
of existing classes as a lead suggests an experiment of
a thoroughly down-to-earth character, and one that is
perhaps more relevant from the point of view of the
ordinary working librarian than many of the ones car-
ried out in this field. What we can do is make use of
any existing library or semantic classification, such as
the U.D.C., Roget’s Thesaurus, or the ASTIA Techni-
cal Thesaurus, in a quite straightforward way. We can
include pieces of the U.D.C. or a thesaurus in our data
just as if they were keyword lists representing docu-
ments. We cannot, of course, take the precise struc-
ture of a set of related terms into account, but can only
list them, though by treating any such piece as the list
for a document, we are treating them as connected,
and therefore are indirectly taking their structure into
account. We have also to make our own choice of the
pieces we take out of the existing classifications, but
the use that we are going to make of them is such that
the particular details are not important, and so the
problem of whether we have chosen “properly” does
not matter. We then give these terms a fairly low
weighting, so that these previously-constructed classes
will not affect the classification we want to get from
our actual documents too much. What we essentially
want to do is to use these pieces of other classifica-
tions as rather nebulous proto-clumps to be modified
by what we get from the documents we are really
concerned with. It might be objected that if we are
going to do things like this we might just as well not
bother with pure automatic classification procedures at
all. The point, however, is that we are relying on our
automatic procedures in constructing a classification
for the documents to hand; it is just that existing
classification schemes are based on a great deal of ex-
perience, and if we can make use of them as an aid,

without accepting them as gospel, there is obviously
something to be said for doing so. We give the terms
we take over a low weighting specifically in order that
they shall not influence our machine classification too
much. What we want them for is to give us something
to start with, which will either be reinforced by what
we get from the documents, and which will therefore
turn into a genuine clumps, or be cancelled out by
the different clumps that we get from the genuine
terms. All we have to do is adjust our weightings so
that the terms we take over do not, as it were, turn
non-clumps into clumps.

Other Applications of the Theory of Clumps
We have, as we said earlier, tried out the procedures
we have constructed on material derived from quite
different fields. We thought that any classification
scheme would work better for any particular applica-
tion if it had some general validity, and was not de-
signed for one purpose only, and we found, in practice,
that what we learnt from one application was often
useful in another.

The most instructive application of the procedure,
apart from the information retrieval one, was to some
semantic material. This is fully described elsewhere,3

and will only be described here in sufficient detail to
show how it is connected with the general research on
classification. The object of the research is to construct
a thesaurus-type classification, and to carry out as
much of it as possible automatically. The data consists
of small sets of words that are synonymous in at least
one context; these “rows” are to be grouped on the
basis of common words to give conceptual groupings
of the kind exemplified by the sections in existing
thesauri such as Roget’s. A clump, that is, consists of
semantically similar rows. The results of tests on 500
rows (some 350 words) so far carried out are satisfac-
tory, but the sample is not really large enough. The
need for classification programs that will deal with
large quantities of material is indeed very well exem-
plified by linguistic applications, where we have to be
able to deal with at least several thousand objects.*

As in the library case, we were faced with the eval-
uation problem. We set out to produce something like
Roget's Thesaurus4 but this was not a detailed enough
requirement to tell us whether any particular clump
was satisfactory, and even if we felt, on intuitive
grounds, that the clumps obtained were plausible, this
was again not enough when it came to deciding
whether each member of a clump should indeed be a
member, and also whether any non-member should be
a member. There did not, however, seem to be any
alternative to just looking at the results, and we there-
fore had to hope that this was sufficient. (This appli-
* The size of the classification problem is well brought out by the
fact that good dictionaries and thesauri may contain hundreds of
thousands of words. Our only hope at present is to divide the material
we have to classify up into subsets, perhaps in alternative ways, and
deal with them separately.

126 NEEDHAM

cation was the one which showed up the defects in
the first similarity definition.)

The program has also been applied to some anthro-
pological material. This consisted of a list of American
Indian tribes each characterized by the rituals they
practiced in connection with the puberty of their
young girls. There were 118 tribes and some 120 ritu-
als altogether. The program again worked fairly well,
though some difficulties arose over “doubtful” entries
in the data array; these were read as 'yes', and it
turned out afterwards should have been read as 'no'.
The results of the automatic classification could fortu-
nately be compared with the (very carefully carried
out) hand classification for which the material was
originally collected. The classification we obtained was
substantially the same as the earlier one, and what dif-
ferences there were were mostly due to the doubtful
entries.

An early version of the program was used for a small
and rather tentative experiment in the classification of
blood diseases. The data consisted of a list of 180
patients with their symptoms (there were 32 symptoms
altogether), and the classification was a genuinely
“blind” one, as we did not know what the symptoms,
which were merely given by numbers, were. We were
in this case able to compare the results with the con-
ventional classification of the diseases, and we found
that we had got the same groupings, with the excep-
tion of one disease, which is indeed very ill-under-
stood, and is not defined by a well-marked set of
symptoms.

We have also carried out an experiment in archaeo-
logical classification. This concerned 500 Neolithic pot-
tery beakers, each represented by a list of decorative
and other properties (45 altogether). The beakers were
to be grouped on the basis of their properties. This
application brought up a number of general problems
about data to be classified. We have argued that we
have to treat any data as sacred, that we should as-
sume that the properties concerned are independent—
if not in the pure logicians' sense, at least from a com-
mon-sense point of view.* We started out, too, with
the belief that all the properties were equally informa-
tive, that is, that their relative frequency of occurrence
did not vary too much. In this application, as in the
semantic case, we found that we had to take the num-
ber of times a property occurred into account, and
therefore that the second similarity definition was more

* For the abstract theoretical issues, see Carnap, Der Logische Aufbau
der Welt5, and Goodman, The Structure of Appearance6.

appropriate than the first. We also found that some
of the properties were so obviously dependent on one
another, that we had to take this fact into account. A
large number of the properties, for instance, were
concerned with various different forms of decoration,
such as zig-zag, or hatching, but there was also a
property which was simply “being decorated,” which
was clearly associated with any particular form of
decoration. The archaeologist concerned said that these
general properties could be disregarded, but there is
something unsatisfactory about having to deal with
the problem in this way. Otherwise the clumps ob-
tained were plausible, and could again be checked
independently, for example by stratificational evidence.
We have also used the program for a rather differ-
ent purpose, which is instructive as a comparison, as
it in a sense concerns division rather than grouping.
Given the logical diagram for a computer consisting
of nodes and connections between them, we want to
divide it (for handling and printing purposes) into
sections, and preferably into sections with the smallest
number of connections to any other section. We are
looking, that is, for the areas with the least cohesion
between them. This is not a question of classification,
except in a second-order derivative sense, but it is a
useful application of the program, as it saves a great
deal of hand work and is quite efficient.

Conclusion
It is to be hoped that these notes on the different ap-
plications of the classification procedures we have
developed are sufficient to show that we have a gen-
eral theory of classification, and to support the argu-
ment that a generally-applicable theory is more use in
any particular application than an individually-tailored
one. We have in any case constructed a program which
can be applied to any data that can be presented in
the form of a binary incidence array, and as most in-
formation can be given in this form, this does mean
that we can try out our procedure without much
difficulty. We have indeed concentrated on experiment
rather than theory in our research, because we felt that
we could learn more from it. A lot of work has been
done on classification theory, but very little on auto-
matic classification practice, and we thought that even
if more work should be done on the theory, there was
more to be learned from trying to develop computer
techniques, which are still in their infancy, than from
refining on already refined theories.

Received August 11, 1964

References
1. Tanimoto, T. T., “An elementary

mathematical theory of classifica-
tion and prediction,” I.B.M. Cor-
poration, New York, 1958.

2. Ihm, P., “Methoden der Taxome-
trie,” Eur 1671.D, Euratom, Brus-
sels 1964

3. Sparck Jones, K., “Experiments in
semantic classification,” Mechani-
cal Translation, this issue.

4. Roget, P. M., Thesaurus of English
Words and Phrases, Penguin Books,
London, 1953.

5. Carnap, R., Der Logische Aufbau
der Welt, Berlin, 1928.

6. Goodman, N., The Structure of Ap-
pearance, Harvard University Press,
Cambridge, Mass., 1951.

APPLICATIONS OF THE THEORY OF CLUMPS 127

