[Mechanical Translation and Computational Linguistics, vol.11, nos.1 and 2, March and June 1968]

Some Mathematical Aspects of Syntactic Description

by Itiroo Sakai,* First Research Center, Defense Agency, 2-2-1 Nakameguro, Meguro, Toyko, Japan

The purpose of this paper is to help linguists construct a consistent, sufficient,
and less redundant syntar of langnage. A sharp distinction is made between the
syntactic function, which is an altribule of strings, and the distribution class,
which is a set of strings. The syntactic funclion of & continuous or disconlinuous
string is defined as the set of all the acceptable contexts of the string and is called
a complete neighborkood. Four different definitions of distribution classes are
proposed, and their properties are discussed. Cross-classification of strings is
clearly formulated. Concatenation rules of a language can be described in terms
of complete neighborhoods or distribution elasses. Some possible represeniations
and their consequences are discussed. Transformation rules are also deseribed in
a similar way. However, there is the additional problem of correspondence be-
tween original strings and their transforms. Finally, some trivial but practically
useful conventions are described,

1. Introduction

The grammar of a language should be consistent through-
out its entire system. No features should remain unformu.
lated in order for the grammar to be complete. At the
same time, it is desirable that the grammar be as compact
as possible. These are important requirements, particularly
when the grammar is a machine-oriented one. A knowledge
of the formal properties of syntax will help us to construet
an objective system of grammar. Every term used in a
description should be rigorously defined. If the grammar
rules produce strings which deviate from the proper usage
of the language, we should be able to trace back the defini-
tions and locate the source of trouble, If a set of grammar
rules describes the nature of a phrase marker, the label
given to each node must have an unambiguous definition
which associates the node label with the strings supplied
as texts.

‘We need at least an objective eriterion by which we can
specify a language. This criterion is the dichotomous de-
cision whether or not a given symbol string belongs to the
language in question. We leave the decision to native
speakers and consider the “acceptable strings” undefined.

A sobstring of an acceptable string is seid to have a
syntactic function. The syntactic funetion of a symbol
string is regarded as the set of all acceptable utterances in
which the string occurs [1). We eliminate the string in
question and define its syntactic function as the set of all
acceptable contexts of the string. The set of all acceptable
contexts of a string is called the complete neighborheod.
A distribution class can be defined as the set of all strings
whose complete neighhorhoods are related to a given set of
contexts in a specified way. With these fundamental con.
cepts of syntactic functions and distribution classes, we can
proceed to a more formal system of syntactic description.

A few questions may be immediately raised. Is it really

* Deceased.

32

possible to comstruct & grammar in such an elementary
fashion? How can we list the elements of a set, extracting
them, as we are, from a practically infinite number of
strings, even though each string is assumed to be of finite
length? Is it not useless to establish such sets for a natural
language, most of which are likely to have only one ele-
ment?

We would be in a better position were we creating a new
language by preparing a grammar and a lexicon. Unfortu-
nately, the situation is quite contrary when we are handling
a natural language. The language exists, and we wish to
find 2 grammar that accounts for all and only the aceept-
able strings of the language. We regard a language I as
the set of strings that can be generated by a mechanism M
whose internal structure is not known to us. We can ob-
serve only a part of the set of these strings in a limited
length of time, We want to construct a hypothetical mecha-
nism M’ that generates all and only the strings in L. The
internal structure of M and M’ may not be the same. The
output of M’ is checked as to whether it belongs to I, and
strings are supplied to M’ to test whether M’ accepls a
string if and only if it is an element of L. To do this, we
must have the set L or a mechanism which tells us whether
or not the given string belongs to L. We call this mecha-
nism a normative device, and it is a native speaker if a
natural language is to be discussed. We simplify the situa-
tion by assuming a few separate strata in the meehanism.
A string generated is supposed to have been transferred
from one stratum to another before it becomes a string of
natural language. An utterance has several different forms
which correspond to the strata, Each form has its own
grammar. The normative device will be a linguist in this
case,

Since the number of strings is practically infinite, a
linguist trying to construct a grammar will find it ad-
vantageous to establish rules that hold not for individual
strings or facts but for a set of strings or a set of relevant
facts. A linguistic phenomenon will be analyzed from vari-

SAKAlL

ous points of view, and it will help him to avoid listing a
very large number of phenomena and rules. He will at-
tach certain markers to the strings according to the way
he considers consistent with his usage of language. He will
then write down the rules in terms of the markers. He may
also establish his rules in terms of sets of strings which
share some features in their markers, The procedure of
using these rules consists of two parts: the routine that
compares each rule with the text and decides whether or
not the rule is to be applied, and the transfer routine by
which the relevant information is read out of the appli-
cable rules and transferred to the text, In these procedures,
both comparison and transfer are carried out with the
coded markers. It is important that the meaning of the
codes be unambiguously defined so that the code obtained
in the text is exactly what the linguist desires.

Some of his rules may account for the majority of texts
he has examined but may fail to account for somne others
or to rule out similar but inconsistent facis. He will test
his rules by applying them to natural texts or by generat-
ing strings. The normative device will tell him whether or
not a string is acceptable but may not tell him why, It is
obvious that these procedures cannot practically be carried
out on every string that may be supplied to a machine in
the future, and that no one is able to predict what ean oc-
cur when an arbitrary string is supplied to the machine.
Nevertheless, it is required that the grammar be able to
deal with most of the texts supplied in the future.

The grammar is inevitably affected hy the nature of
the normative device. If the normative device is so strict
that it rejects every string which fails to meet such re-
quirements as (1) the style of the string must be an ordi-
nary one, {2) the statement must be logically correct, (3)
the lexical usage must conform to the regular usage of the
language, ete,, then the linguist must prepare a separate
rule for almost every string. He can break down the de-
cision procedure into a few separate steps, The first device
will accept a string if the internal relationships of the
string are acceptable regardless of the truth-value of what
the string designates. If the grammar is to be applied to
input texts which are always grammatically correct and
unambiguous, then & grammar which satisfies the require-
ment of this device will be sufficient. However, inany un-
usual strings will be produced if the grammar is used in
random generation and many ambiguous alternatives if it
is used for analysis. The second device may reject those
strings whose structure has an unallowable combination
of lexical elements, thus eliminating some of the ambiguous
alternatives in analysis and suppressing the output with
improper usage of lexical elements in synthesis. The third
device may reject as unacceptable those strings which are
not logically consistent. If the linguist wants to have a
more rigorous grammar that may be used for the random
generation of nonsurprising sentences only, he may add
more devices to the preceding ones, so that the grammar
may be tested from such points of view. He will prepare
his grammar keeping the characteristies of his normative
device in mind. A series of digits will be assigned to the

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

coded form of markers corresponding to each decision step.
The procedure will be programmed to handle these digits
independently, thus allowing a number of rules to be ap-
plied to the same siring. If certain digits are related to
each other and if a particular combination of codes is to
obey a particular rule, the rule will be prepared inde-
pendently and the general procedure will be prohibited.

As we shall see in the following pages, a number of simi-
lar but different representations are possible. If we do not
understand the exact meaning of codes and rules or do not
prepare the right program for the representation chosen,
the rules established on the basis of ad hoc definitions will
result in chaos. The formal property of grammar is not
confined to a particular language but is common to many,
probably to all Janguages. A grammar will not deviate
greatly from its proper construction if its formal property
is carefully examined.

2. Symbols, Strings, and Languages

“Symbol” is an undefined term. Morphemes, lexes, lex-
emes, or other units can be regarded as symbols. A linear
arrangement of symbols is called a “string.”” All strings are
possible strings. If a string is considered meaningful, it is
an “‘acceptable string”; “acceptable string” is an unde-
fined term.

These definitions are quite formal. If we confine our-
selves to problems in morphotactics, the symbols are
morphs and the acceptable strings are known as expres.
sions or utterances. A symbol can be & morpheme, and a
linear arrangement of morphemes is an acceptable string
if it is recognized as a morphemic representation of an ut-
terance. A string need not always be a linear arrangement
of items. We can regard a labeled tree (called a phrase
marker) as a string and a labeled node as the representa-
tion of the substring dominated by the node, although the
term “string” seems inadequate in this case. A node repre-
sents a phrase marker consisting of all terminal and non-
terminal nodes it dominates. Another kind of branch can
be added to the syntactic tree to indicate the logical or
semantic relationship among the constituents. We call this
representation a net, provisionally., We regard a net as a
string eonsisting of a number of labeled nodes whose ar-
rangement is represented by two kinds of branches.

We define a language as the set of all acceptable strings.
An acceptable string in a natural language is considered to
have as many versions as the number of strata established
by linguists, Each version of an acceptable string is an
element of the language defined on the stratum in question,
A transfer from one version to another is essentially a trans.
lation.

3. Contexts and Neighbhorhoods

3.1. Segmenis and Frogmenis

Suppose we have a linear string. We interrupt the string
by deleting some of the symbols therein and imsert a sym-
bol () of absence at each point of deletion. If a symbol of

absence is followed immediately by another, the two are
contracted inte one, A linear string is continuous if it is
not interrupted.

All nodes in a syntactic tree are partially ordered. A
node includes another if the linear string covered by the
latter is a part of the linear string covered by the former.
A treelike string is continuous if and only if all its nodes
are included in one node D.

A substring of a string is called & “'segment” and may
be continuous or discontinuous. A discontinuous segment
consists of several parts separated from each other. Each
part of a segment is called a “fragment,” which is neces-
sarily continuous [1].

3.2. Contexts and Acceptable Contexts

Let be a string, and let s be a2 segient of 7. The string r
may be continuous or discontinuous. The remaining part ¢
of 7 is called the “‘context’ of s in r. If r is acceptable, then
we say that ¢ is an acceptable context of ¢, ¢ is acceptable
to s, or 5 is acceptable to ¢.

8.3, Neighborhoods

A context is an interrupted string which becomes a con-
tinuous string if an appropriate segment is supplied at the
points of interruption, Let iy = set (¢1, ez, ..., ¢:) be a
set of contexts. If every context in i becomes an acceptable
string when a string ¢ is supplied to it, the set y defines a
property of 5. We call the set y a neighborhood of 5. If
y i3 a neighborhood of the strings s, 81, 835 for instance,
then we say y iv a neighborhood of the set § = set (s, 2, 53),
and we say that the set y represents a syntactic property
common to all strings in 8. Note that the “neighborhood”
and the “okrjestnost]” are not the same [2]. A set of ae-
ceptable strings which contains the segment s is called a
paradigm of s [1]. Our neighborhoed is a paradigm in which
the segment s is lacking.

4. Equivalence of Contexts

Let ¢; and ¢; be two contexts. Suppose a string s is ac-
ceptable to both ¢; and ¢;, and another string ¢ is acceptable
neither to ¢; nor to ¢;. In this case, we cannot tell the differ-
ence between ¢; and ¢; as far as the aceeptability of the
strings s and f is concerned. We say these contexts are
equivalent to each other and write ¢; ~ ¢; if the condition
“e; is acceptable to a string s;, if and only if ¢; is acceptable
to 35" is satisfied for every possible string s, and we write
¢; % ¢; otherwise. The relation of equivalence is reflexive,
symmetrie, and transitive:

O 04 {l)
if ¢;~¢;, then ¢;~¢,; {2)
ife;~¢ and c;~cp, then e;~ep. (8)

34

5. Complete Neighborhoods
0.1

Let y be an arbitrary set of contexts, It may include con-
texts which are not equivalent to each other and may not
inelude all contexts which are equivalent to some context
in it. The complete neighborhood N(3) of y is the set of
all contexts equivalent to some ¢’ in y:

N{y) = set (¢: ¢~ ¢’ for some ¢’ in ¥} .

A set of contexts is complete or is a complete neighborhood
if and only if it is the complete neighborhood of itself.
Take a string # and let ©'{2)} be the set of all contexts ac.
ceptable to s, We show that C{s) is complete, for: (1) if
e € ('(s), then ¢ € N(C(s)); and (2) if ¢ € N{((s)), then
e ~ & for some ¢’ in C(s); then ¢ ~ ¢’ and ¢’ is acceptable
to s; then ¢ is acceptable to s; then ¢ € C(s). From (1)
and (2), we have N(C(s)) = Cls). Therefore, ('(s) is com-
plete. We call C(s) the complete neighborhood of the
string ¢.

One may pick up an arbitrary segment of an acceptable
string, call the remaining part the context of the segment,
and establish the complete neighborhood of the segment.
This kind of complete neighborhood contributes nothing
to a grammar but some redundant rules. These nonsensical
complete neighborhoods give rise to no trouble, because
they never appear in any rules of the language.

The complete neighborhood C'(s) is considered to corre-
spond to the syntactic function of the string s. The ele-
ments of ({s) share the common property that every one
of them can be an aceeptable context of 5, while no other
contexts which do not belong to C'(s) are acceptable to s.

Let 8 be an arbitrary set of contexts. Some contexts in
8 may be acceptable to s and some others may not. The
contexts acceptable to s must, at the same time, belong to
C{s), that is, to C(s) N 8. If C{s) M § = 0, the string s
cannot occur under the contextual condition defined by S,
and vice versa, If C(s) M8 = C{t} NV S, we have no
means for distinguishing the syntactic functions of s and ¢
with respect to the given S, If S is the set of all possible
contexts of the language, then Cf{s) M\ § = C(s) for all
strings 5. H C(s) = C{f), then we have no means of dis-
tinguishing the syntactic functions of s and ¢ as far as
acceptability is concerned.

-

&

2

It often occurs that a string » behaves like a string s under
a certain condition and like ¢ under another condition.
This phenomenon will be restated as follows: for some
set 8" of contexts

N8 =CcENnNs,
and for another set 8 of contexts

CH N8 =CHNnas”

SAKAI

Setting
r=C, y=08, =z2=00,
we have
rASNS"=yNS NS,
and

il

rYS NS =z2N8 NS,

Taking the union of these two, we obtain
xS N8 =UsN8NS".

This means that r accepts every context in & () 87 if it
is acceptable to s or £. Now, we shall see the behavior of »
with respect to the context set § = 8 1) 8.

tN§=cNE U8,
NsYU NS,
=xNSHU NS,
SwNHUENS,
=@UzNSs.

It

This result suggests that the behavior of # can be inter-
preted in terms of y = C(s) and z = C{#) and, moreover,
that y and z may account for something lacking in = =
C(r) with respect to § = §' |) 8

FUaNS=Ua N{E U,
= (U2 NS U U NS,
=NSHUENSHUFNSHU
N8,
=@NWUSNUENs)U
N8,
=@NHUENsITUENS).

6. Elementary Neighborhoods

We have seen above that a complete neighborhood 2 =
() is interpreted in terms of y = Cfs) and z = C{).
We expect ¥ and z to represent a simpler and more specific
syntactic function. If x =y U 2z, y =<5 y= 0, 270,
then, for some ¢; in y and ¢; in 2, we have ¢; % ¢

A set of mutually equivalent contexts leads us to the
concept of the ultimate unit of syntactic function. Given
a context ¢;, the elementary neighborhood ¢{Z) with ¢, as
an element is defined as e(i) = set (¢: ¢ ~ ¢;). Since the
equivalence is reflexive, symmetric, and transitive, no two
distinet elementary neighborhoods have any elements in
common.

Let z be a complete neighborhood and e(7) an elemen-
tary neighborhood. If an element in z is a member of e(5),
then &(?) is a subset of x because x is complete. Take an
arbhitrary element ¢; in x. There is an (i) such that ¢; is
in e(f), Therefore, we have x = | e(i) for every com-

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

plete neighborhood = and for all e{t)’s having at least one
element in x, Every elementary neighborhood is complete.
The intersection of complete neighborhoods can be com-
plete, because every complete neighborhood is a union of
elementary neighborhoods. Every union of elementary
neighborhoods is also complete,

7. Distribution Classes

We have thus far discussed the syntactic function of sym-
bol strings in terms of their acceptable contexts. A context
is an environmental condition in which the strings oceur.
Given a context, we can elassify the strings into two cate-
gories: the strings that can oceur in the given environment,
and the strings that cannot occur there.

7.1

7.1.1.—That the strings s and ¢ are always mutually re-
placeable means that s can occur wherever { can occur and
conversely ¢ can occur wherever ¢ can occur. In other
words, every context ¢ is in €'{2) if and only if ¢ is in ('{s}:

@) = Cls) .
We represent the set of such strings ¢ by
JIC{8)y = set (£ CY) = Cfs)) .

7.1.2.—The distribution class I(('{s)) is the set of all
strings f that can be always replaced by s:

HC(s)) = set (1: C(6) S C(s)) .

7.1.3—Suppose a string ¢ can occur wherever ¢ can oc-
cur but s cannot necessarily occur in all contexts accepliable
to ¢ In this case, C'{f} includes C'(s) as a subset. We define

H{C(s)) = set (1: OO 2 C(s)) .

7.1.4.—If there exists at least one context e in which
both s and ¢ can occur, then ¢ is in both ('{s) and ()

e NCH =0,

We introduce the convention 4 {=) B, which denotes that
the intersection of the two sets 4 and B is not empty,
and we define the distribution class

G(C(s)) = set (&: C(t) M Cls) = 0},
set (£: C) (=) C(s)) .

ficcls

We set x = ('(s} so that distribution classes can be defined
without referring to a particular string s. A distribution
class iz defined as the set of strings whose complete neigh-
horhood is related to a certain complete neighborhood # in
& specified way, The distribution classes of the types men-
tioned above are written as:

J{z) = set {£: C(0) = 2),
Ix) = set (: CH S 2),
Ha) =set (: CH2 1),
Glx) = set (1 O (=) x).

A distribution class is said to be real if it is not empty,
and imaginary if it is empty.

7.3
Let us examine a simple illustration. Suppose that a lan-
guage consists of the acceptable strings:

they are (flying/red/making} planes ,

a (flying/red) saucer is an object ,

{Alying/making) planes is an industry ,
and only these. We ohserve the strings
s, = flying,
57 = red

making ,

i

i

and their contexts
¢ = they are {) planes ,
fe = a {) saveer 1s an ohjeet ,

¢z = () planes is an industry .

The complete neighborhoods of the strings are
() = C(flying) = set (¢4, ¢4, ¢3) ,
Cls:) = Ofred) = set (ey, e2),
(Y5 = Clmaking) = set (e, e3) .

The distribution classes are determined by these complete
neighborhoods as shown in table 1.

TARBLE 1

lItLvsTRaTION OF TRE Distrinttion CLasses J/, I, H, anp €,
as DETERMINED BY THE COMPLETE NEIGHRORHOODS (!
OF THE STRINGS §

j &5 C('?J') J(("t'?.f)) }(C(‘?r) } H (C(‘SJ)) {‘I{C("';)}
1. .. fiving (o1, 03 ¢4} (a0 {31, @ 851 A3) {81, 85, a1
2. red {er, o) (#) (89) (81, 82) (%1, 82 8
3. .. making {c, e} (o) (5) o 830 (80 an 1)

The elemcntary neighborlioods ave found immediately,
The context ¢, is the only context acceptable to all three
strings—*“flying,” “red,” and “making.” Therefore, (1} =
set (c: e ~ &) = set (¢;). The context ¢, is acceptable to
“ftying” and “red,” and neither ¢, nor ¢; is acceptable to
both these two and only these two strings: ¢{2) = set (c:
e~ ¢y) = set (rz). Similarly, ¢(8) = set {c;). Therefore,

Clsy) = e(l) U e(2) U (3,
Clsz) = e(1} U e(2),
Clss) = e(1} U «(3) .
7.4
P40 —Jx) = Hz) M Hiz), because { € J(2) if and
oy if €(f) = x, if and omly if € S r and @) 2 =z, if
and only if £ & I{(x) M H{x).

ThL—IE) UV Hx) S G{x) for x# 0, because
€ Faxy \) Iz) of and only if ¢t € Hz) or t € H{z), if
and only if O} S « or (@) 2 a; then €0 (=) 2 for
r# 0if and only if 1 € G(r).

oo
P

The equality & = g of two sets is reflexive, svmmetric, and
transitive. Therefore, J{z) = J{y) if and only if J{x) (=)
J{y). This means that any two different sets can have
no elements in common and, consequently, that every ele-
ment helongs to one and only one set of the type J{x).

7.6
7.6.1—Let x be an elementary neighhorhood:
Hz) =set (. CH T 2),

set (: C(E) = 2,
J(z),

I

I

so that C'() is also elementary, If 2 # 0, we have

Gix)

set (£: ¢ (=)),
st (0 CH D x),
H{z}.

]

il

7.6.2,—Let x be a complete neighborhocd, and let C(6)
be elementary for all £

Glr) = set (¢ Ct) (=) x),
set (£: (T 2,
Iz) .

If x # 0,
H{x)

[l

set (t: () O),
set (. CE) =),
= U@,

Il

s that « iz also elementary.
7.8.3—If C{1) is elementary for all £, and z is also ele-
mentary and nonempty, then

Gin) = Hir) = I{z) = J{2}.

SAKAI

7.7

Ifx = y U 2 then

Glz) = G U G(z), (1)
Hxy = H(y) N Hiz), (2
I D I) U IGE). (3)

Proof (1): ¢ € G{x) = G{y \J 2) if and only if C{f) (=)
g=y\J sz ifand only if C{) (=) yor C®) (=) z, if and
onlyifi € G(y)ort € G{z),ifand onlyif? € G{y) U Giz).

Proof (2): £ € IHa) if and only if OQ) 22 =y U 2
if and only if C(f) 2 yand € 2 2, if and only if ¢ € Iy
and 1 € H{z), if and only if + € {3y (Y Hiz}.

Proof (3): £ € Iy U Iz) if and only if €{) © y or
) S 2 then OB T y\ Uz =xifand only if & C Iz).

7.8

Ii £ = y () z, then
H) © Gly) M Glzy (1)
I(z) = Hy) N I() . (2)

Proof (1): ¢ € G{x) if and only if (¢} (MY & &= 0, if and
only ¥ CEHMNypMz=0; then C{H N y=0 and
Gy MYz 0, tfand only if ¢ € G{y) M Giz).

Proof (2):¢ &€ I{m ifand only if CH S 2 =y M if
and only if ('{() C g and C{) T 2, if and only if £ £ Iy
and t & I(z), it and ouly if £ € Iy MY I{z).

8. Concatenation
8.1, Concatenation of Sefs

Let a, b, ¢, etc., be elements of sets. We call an ordered ar-
rangement of these elements a concatenation, Let 4, B, €,
ete., be sets, We define the concatenation of sets as

AR, D =set{ah ... diain.l,
and b B, ... and o in D).

In our present discussion, the elements are all strings or
all contexts.
The following formulas are frequently used:

AB =P itandonlyif A =Cand B =D, (1)

because 1B = D if and only if (@b € 48 if and only if
ab € O, if and only if ((a < 4 and b € B) if and only if
(@ € " and b € D)), if and onlv if ({« £ 1 if and only
if e ©¢Yand (b € Bif and only if & £ D)), if and only
fd=~Cand B =D,

ABUC) = ABU AC, (2)

because ab € A(BJ) if and only if @ € 4 and b £
BUC itandonlyiffa € 4 andd & B)or (a © 4 and
b€, if and only if ab € AR or ab € AC, if and only
ifab € AB) AC.

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

Similarly,
(AU B = AC\J BC. (8)
ABYCD = (A N OYBMN D), 4

because ab & AB (Y CD ff and only if ab € AB and
ab € CD, if and only f e € 4 and 4 € B and a € (
and b & D, ifandonlyifa € A Y Candb E BN D, if
and only if ab € (A MY VB MY D).

8.2, Concatenation of Sels of Strings

Let p be a string and let 7, rs, . .., rn be segments of p
which do not mutually overlap. A segment ¢ consisting
of r, ro. ..., re 15 the concatenation of these segments.
The segment ¢ is also a segment of p, consisting of the
fragments of ri, rs, . . ., r, arranged in their relative order
in the original string p. It is conventent to assign a definite
notatienal form te a concatenation in order to specify the
arrangement of fragments,

Let Ry, Ry, ..., R, ..., R, be sets of strings, and
let P =R1R":... K ... R, be their concatenation. Let
pP=rre...r ...r be a concatenation of strings
which is in P, If p is an acceptable string, it is at the same
time in the language L:

e C R R RN L.

P=Fre... T

Ifr P =mRE. . R ... By C L, then this is a gram-
immar rule which generates the subset P of L. Assume we
have such a rule and that we add ancther string r'; to
R If the concatenation yields unacceptable strings, then
do not add », to B, If no more strings can be added to
any sets R the rule defines a particular type of strings
in L. It should be noted. however, that this is by no means
a systematic description of the grammar of L. If every p
in I’ is acceptable. the set F is a context-free grammar
rule.

8.2 Concatenalion of Sets of Contexts

SA1—let p=rr. v ... 1 be a string
of symbols, and let e(r./p) = rire. . v Yoy o . o 1
and elr;/p) = rire. o (s - . o7 be the contexts
of r; and r; in p, respectively. By ofr,/ple(r;/p), we mean
the concatenation of contexts, formally stated as follows:

(‘(r;,”p)c(rj/p) TR P | TR RN J"J'_l()I‘j+| PR £

elririip) .

g2 —let P = KRy .. K. .. Ry be the concatena-
tion of sets I’s of strings. The set of all possible contexts
e{ri/p} of ri in R; is written as

T!'_]()Tf_f_l P Y] E R}) »

where j =1, 2, ...,i—1,i+1,...,n This is the
concatenation P in which the set K; is lacking. So, we
write

set (ry. ..

CR/P) = RiRy. .. R (), .. Ry

37

If another set R; is lacking in P, we have
C{R:R;/P) =R Rio()Ripy ... Ry a(OORy . . By

and consider this the concatenation of C(R,/P) and
C'(R;/P). This means, for instance, that the concatenation
of AQYCDE and ABC()E is put equal to A()C()E,
and that A()CD and ABOD yield 4()()D = A4()D

when they are concatenated.

8.4. Linear Strings and Phrase Markers

We make a distinction between linear conecatenations and
tree structures, If abed is a linear concatenation, we have

abed = a(bed) = (ab){cd) = (abe)d

If the concatenation is used to represent a tree structure,
the forms abe, {ab)e, and a(be), for instance, are not the
same, Therefore, for

ABC = set (abe: ¢ in A, & in B, and ¢ in (),
(AB)' = set {{ab)e:ain 4, din B, and ¢in (),
A(B(Y = set {albe):ain 4, bin B, and e in (),

we have

ABC MY (ABYC =0,
(ABC M ABC) = 0,
A(BC) (M ABC = ¢,

By an acceptable phrase marker, we mean a phrase
marker which appears during the process of generating an
acceptable string, Therefore, a phrase marker assigned to
a potentially acceptable string introduced for the plausible
derivation of an acceptable string is also an acceptable
phrase marker.

We confine ourselves to binary concatenations for sim-
plicity. The following discussions can he easily generalized
to longer concatenations. An unambiguous concatenation,
ARBCD for instance, is considered to be one of the three bi-
nary concatenations A(BCDY, (ABY(CD), or (ABCYD,
when the discussion is strictly binary. In a linear string
deseription, however, this is not very important. One can
assume one of these three to be acceplable and discard
the other two as unacceptable. In a tree-structure de-
scription, some one of these three will he chosen so as to
make the whole description of the graminar simpler.

We assume that the binary concatenations required by
the grammar are {(AB)(C'D), A(BC). (BC)D, and only
these. The possible binary tree structures of ABCH are:
ABCD = A(BCD)) {ABYCD)Y \) (ABC). Since we
are to handle hinary concatenations ounly, we regard two
concatenations as not the same if their structures are not
the same:

{4B)(CD) M A{BCD)
(ABYCD)Y M (ABC)YD

03
0.

38

Therefore, ABCD = (ABYCD) if and only if

(ABY(CD) = 0, (1)
ABCDHY =0, (2)
(ABCYD = 6. (%)
By assumption, AB(C' = 4(RC) U (4B = A(BC).
Therefore,
A(BCY = 0, (4)
(ABYC = 0, {5)
because A(BCY (M (AB)C = 0. Similarly, BCD = B{CD)
U (BOYD = (BOYD if and only if
(BCYD = 0, (6)
B(CD) =0, 6]

From (2) we have
ABCDy =
By {7} and (6),
ABCDY =0 U AUBOD) =0,

ABECDY U (BOYD) = 0,

or

A0, (BODFE 0, A(BOID) = 0. (8}

From (3) we have
(ABYD = (4{BC) U (AR)CYD = 0.
By (4} and (5),
(ABOYD = (1(BC) U 0D = (LB =0,
ABCYyA 0, DFEO, (ABOHD = 0. (%

Now, we can describe the syntax of these strings in terms
of binary concatenations only, if we establish the rules

(1) ~ (9).

9, Concatenation of Complete Neighborhoods
2.1

If the distribution classes J (&) and J{y) are real, then there
exist strings » and s, suel that €'{r) = > and Cfs) = p.
By definition, Cir;) = » for all #; in J(z). and C(s;) = »
forall s; in J(y). Any string which contains the segment r—
pir) =...r;...—is acccptable if and only if p(r) =

..7...1s acceptable, the string p(sj) B TR
a.(ct-ptab]e if and only if p(s} = R a.('ceptable‘
Suppose plrs) = ... r .. .8 ...05 & string with hoth
r; and & in it. Any such string is acceptable if and only if
plriz} = ... ri...s...is acceplable, and p(ris) is ac-
ceptable if and only if pl{rs}) = .. .7is accept-
able. Therefore, pir.s)) is acceptable if and only if p{rs)
is acceptable, That is,

Clris) = Clrs)y .

We define the concatenation C(r)(’(s)} of complete
neighborhoods as the complete neighborhood C(rs) of the

SAKAI

concatenated strings, Generally, we set zy = C(rs),
r € J(a), s € J(y) for all complete neighborhoods 2 and y,
where J(z) and J(y) may be real or imaginary.

9.1.1.—We make a distinction between the concatena-
tion of complete neighborhoods xy = C{r){(s) and the
complete neighborhood s = C'(rs) of concatenated strings.
The property of the language is intreduced when they are
written xy = z or C(r)((s) = ((rs), where the property
7 of rs is derived from the properties x and y of the con-
stituent strings r and s, Note, however, that, if z = C{r)
and ¥ = C(s), then zy = Cirs), while xy = C{rs) does
not always result in * = C{r) or y = C{s). This is seen
when one assumes that Cirs) = C(+'s’), and hence both
grst and gr's’t are acceptable but neither grs’t nor gr'st is
acceptable. Set z = (), o = C{s), 2" =CU), ¥ =
€(s'y. We see that ¢()st is in x but not in o', ¢{)5t is in 2’
but not in z, or * # z’; and that gr()¢ is in y but not in
¥, gqr'()is in ¥ but not in y, or y # y'. That is,

e and y =y,
even if
xy = 2y .

9.1.2—0ne may want, to regard the strings r and #' as
having the same syntactie function, even if their constitu-
ent segments are syntacticallv quite different. Formally
speaking, one wants to assign the same complete neigh-
borhood x to r = st and ' = §'f, even if 5 and &' and/or
{ and ' are not syntactically the same. That is, setting
2=00) =C{), y=0Ck), ¢y =Ci), 2=0C0), 2’ =
€, we obtain x = gz and x = %2, even if y = » and/
or 2 & z'; yz’ and y% may or may not be equal to 2, In
this case, we write

r =y (+) y%

and consider this an abbreviated form of two equations,

9.2

We have generalized and transferred the conecatenated
strings to concatenated sets of strings and then to con-
catenated complete neighborhoods. The complete-neigh-
horhood representation provides us with a less compli-
cated approach, especially when the string is syntactically
ambiguous. The distribution class J(5) represents the
narrowest classification of strings and no further subclassi-
fication is possible, whereas its complete neighborhood z
can be subeclassified if z is not an elementary neighbor-
hood. If r € J(x} and & = y | %, then we can talk about
imaginary strings »* and r”, such that C{*') = y and
€'}y = z. These imaginary strings, always referred to
implicitly in terms of distribution classes, can be discussed
explicitly in terms of complete neighborhoods.

8.3

¥e introduce coefficients which indicate the presence or
ahsence of sets. Let g, b, ete., be the coefficients, and x, ¥,
etc., sets. The value of a coefficient is either 0 or 1:

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

ar = 0 = empty set, ifa=0,
=z, ifa=1.
The sum a + b of coefticients a and b is given by
ar\Jbr =(a+bx =12, fa=1oo b=1,
=0, ifa=bb=0,

The product ab = @ X b of coefticients @ and b is given
by

ax (N by = abx N y) = (@ X D)z N y)
=rMy. ifa=0=1
=0, ifa=0o0or b=0,

Therefore, the coeflicients are Boolean:
04+0=0, ¢t4+1=1+0=1+4+1
X0=0X1=1XxXx0=0, 1x1

|
L [

Consequently, for concatenation, we have
(az)(by) = abay .

We saw that a complete neighborhiood 2 can be repre-
sented hy the union of elementary neighborhoods efi):

r=eld)fore(d) (=)x.
Let us introduce cocfficients 2(7), sueh that
D =0ifefdMz=0,
=1ife(d) C z;
and no other cases can possibly occur, In virtue of the
coeflicients, we write x =) x(Ne(®), y = U y({e(j)
z = | z{kle(k), where the indices /, j, & are to cover sll

possible elementary neighborhouds of the language.
(: Iz =2x)y then

2 Uy = (U 2De®) U (U y@eli)
= U @) + yh)ek) ,
=) zlk)elk) .

If ey S & or ek} © g, then efk) © z Therefore, for
z(k) + ylk) = zk), we have

0+ 0=10,
1+0=0+1=14+1=1,
(2): If z = xy, then
z = (U z(De@)(U y(fei)} .
= WU 2(Dyelde) .
= UU z(i)elide(d) . -

By the definition of conecatenation. e(t)e(7} & ay if and
only if (@) © 2 and e(j) © y. That is, z(7.j) = 1 if and

39

only if () = y(j) = 1. Therefore, for x(Dy{(j) = z(i,j).
we have

1xX1=1,
0X0=0X1=1X0=20.
(3): The concatenation of two elementary neighbor-
hoods is complete, because it is the complete neighborhood
of the concatenated strings » and & such that C{r} = e(2).

C'(s) = e(j). Therefore, we set e(De(f) = \J a(ijk)elk),
and we have

2=y,
U a(ieli)els)

= U =2l pali jk)elky
= U z(kelk) .

We have also (k) C 2 if and only if e(fe(f) € ay and
e(k} C e(f)e(7). Therefore, for the expression z(1.f)ali,j&} =
z(k), we have

0 X0
1X1

0 X1=1X0=0,
1.

10. Concatenation of Distribution Classes
10.1

J)JS () S S (ur), because rs & J{u)S(v) if and only if
r € Huyand s € Jv), if and only if C'{r) = wand Ofs) =
#, if and only if C(r)C(s) = ue; then C(rs) = wr if and
only if rs € J(uv).

02

[(0)I() © Huv), because rs € I{w)I{z) if and only if
v € Iw) and ¢ € I{v), if and only if C{r} © uwand C(s)
v, if and only if C(r) M u = C{r) and Cis) M v = Cs),
if and only if C(F)C{s) MYy ur = (C(ry N u}{Cis) M2} =
Cin0(s), if and only if C(r1C{s) & ue; then Cirs) © wr
if and only if rs € T{up).

10.3

H{u)H () T H{ur), becanse rs € H{u)H(r) if and only if
r€ H) and 5 € H{p), if and only if C(r) 2 u and
Coy D e, ifandonlyif (r) (V2 =uwand Cls) My ==z,
if and only if C(ACG) N ue = (CF) NMWICEH Nt =
ur, if and only if C(r)C(s) 2 ue: then Cirs} 2 we if and
only if re € H(ur).

10.4

Gay G C Gur), because rs € Gu)G(r) if and only if
r € G(w) and ¢ € G(), if and only if C{r} M} u = ¢ and
Oy My e # 0, if and only if C(F)C(s) (M wr = (C{r) MY u)
{Cis) M #) & 0; then C{rs) M uv = 0 if and only if
rs € Gluw).

11. Concatenation Rules for Generation
and Recognition

The generation of acceptable strings usually begins with
an axiom which is expanded repeatedly into a string of
constituents. After generating ohe or more strings by this
procedure, we transform them to yield a new string. Each
rule of a grammar indicates the arrangement of a few items
to be concatenated, accompanied by some other neces-
sary information. We assume the items arranged in a rule
are either complete meighborhoods or distribution classes.
Let us see what happens during the generation and recogni-
tion of acceptable strings,

The axiom indicates that the string to be generated has
to be aceeptable. This axiom node is expanded by phrase-
structure rules as a concatenation of constituents arranged
in the form of a tree. Each node has a label representing
its nature. It may deminate another node or a concatena-
tion of nodes. This is terminated when the lexical items
replace the nodes. In doing this, no two or more nodes
are contracted to a single node or rewritten as another con-
catenation of nodes, and no nodes are erased.

The eonstruction of a context-sensitive rewrite system
depends on the order of applying the rules to the terminal
nodes, If a node is rewritten, the context of the other
nodes changes, and this chiange lias to be taken into con-
sideration when the rules are prepared. The situation he-
comes simpler if we observe the following scheme, Let A
be the axiom node or the root of a plirase marker. We apply
a rule to 4 and expand it into a few nodes, and the nodes
are equally distant {rom A4, say, ohe unit of distance. We
rewrite these terminal nodes, and, if there are no more
rules applicable or if we no longer want to apply the op-
tional rules, we make use of the earry-down rules to re-
write the terminal nodes, that have not been rewritten,
with the identical node symbol [3). Now, all the terminal
nles are ene unit farther from the root, and they are
again equally distant from the root. We specify the neces-
sary contexts of the rules not in terms of the terminal string
heing generated but in terms of the string that was gen-
erated. The machine makes use of two stores: the one for
storing the string that was generated, and the other for
writing the string being generated. Let us examine a simple
example. Let 4 be a node and consider a derivation by
the context-sensitive rules

A/BC,
B/F// O,
CGiiB_,

where X/Y//U7 I means “X is rewritten as ¥ in the
environment ¥ " If B is replaced by F to yield FC,
the third rule can no longer be applied because of the lack
of necessary context B___; if € is replaced by @ first, the
second rule cannot be applied. In our system, the second
rule is applicable to BC because B is followed by €, and
the third rule is also applicable because C is preceded by B.
We call this type of rule a realization rule [5, pp. 105, 122].

»

SAKAL

One can regard each step of the above procedure as a type
of transformation: Transformations and realizations are
the same in that they are Loth mappings.

We assign lexical items to the terminal nodes before the
phrase marker undergoes any transformation. This is to
ensure the right choice of transformation rules in aceor-
dance with the lexical items chosen and to ensure the corre-
spondence among the base phrase marker and its trans-
forms without keeping a separate note of the node corrve-
spondence. “John,” “doctor,” and “examine” must be in-
troduced before the sentence takes the feature of active
or passive voice, so that “John was examined by the doc-
tor” will never he paired with “the man built a house.”

A symbol string is recognized as a sentence when its
derivational history is accounted for by virtue of trans-
formation and phrase-structure rules. In this case, the
phrase marker is not known. Every combination of termi-
nal and nonterminal nodes should be tested against the
concatenation rules before the possible phrase matkers are
obtained, which are to be transformed to base phrase mark-
ers by the use of inverse transformations,

1.

Let us consider that the node labels are comnplete neigh-
borhoods.

The label of the axiom node which deminates the whole
seutence to be generated is then the set of sequences of
sentences in wlich the sentence is to he generated. We con-
sider only the syntactic mechanism of sentence gencration
and do not take the environment into consideration, The
normative device is then generous enough to admit sen-
tences without logical or stylistic consideration. and the
node label of the axiom is the complete neighborhood whose
members are all possible sequences of all possible sentences,
The axiom node is expanded as a concatenation of a few
nodes labeled by their respective complete neighborhoods,
Each node generated may or may not be further expanded.
The expansion of a node A labeledt by the complete neigh-
borhood x into the coneatenation of the two nodes B and O
labeled by y and =z, respectively, implies that yz be a subset
of x, because every context acceptable to the concatena-
tion BC must be acceptable to 4. The expansion is termi-
nated when every terminal node is given a lexical item
whose complete neighborhood shares at least one ele-
mentary neighborhood with the node.

Every symbol in the string to be recognized as an ac-
ceptable sentence is first given its complete neighborhood.
{onecatenation rules are then applied to the string of com-
plete neighborhoods, and the possible phrase markers are
to be found. Let 2 = C{r) and y = C'(s) be the complete
neighborhoods of the segments r and s, respectively, and
fet a number of rules describe the relation u» = w between
the concatenated complete neighborhoods ur and the com-
plete neighborhood w. A subset of 3 = xy is obtained by

these rules in the form z (| w = xy (M) uo, which is not .

empty if zy (MY ue = {& MY u)(y ()) # 0, We expect the
complete neighborhood z to be determined when all the

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIFTION

applicable rules of the grammar are applied to ay. If 5 is
empty, the strings r and s are not to be concatenated.
Otherwise, rs is a possible concatenation of the phrase
marker. After repeating this procedure over every possible
combination of nodes, we can find the phrase marker of
the given string: It is the phrase marker which is dominat-
ed by a single node and covers the whole string. If the
string is amhiguous, we have the same number of possible
alternatives, These plirase markers are then te be changed
to their corresponding base phrase markers by means of
inverse transformations, which are also described in terms
of complete neighborhoods.

11.2

Acceptable strings are also generated by means of phrase
markers whose nodes are labeled by sets of strings, A set
of strings is defined as a set of tree structures dominated
by the node. Generation beging when the axiom is given
as the set of all phrase markers that can be generated by
phrase structure rules. The axiom node P{0} is expanded
as the concatenation of a few sets of strings P{1)P(2) ...
P(i) ... P(mn) which is a subset of P(0). Each node P(z)
is also a set of strings, and it may or may not be expanded
as a concatenation of sets of strings P{id) ... P(if) . ..
Pin) which is again a subset of P(7}. Every time a node
is replaced by a coneatenation of one or more sets, it is
replaced by its subset. The choice becomes narrower and
narrower. When the expansion process is terminated, each
terminal node is assigned a fexical item which is a member
of the set on the node.

Transformations take place on this phrase marker and
on the transforms generated by the preceding transforma-
tions. The phrase marker is checked against the structural
description of rules which are given in terms of sets of
strings. A rule is applicable to a phrase marker only if the
node labels of the phrase marker are the subsets of the
corresponding sets in the rule and the lexical items helong
to the corresponding sets in the rule.

The phrase marker of a given string can bhe obtained by
the use of concatenation rules prepared in terms of scts of
strings, A rule is applicable to a segment of the string if
the symbols of the segment are the members of the corre-
sponding sets in the rule. ‘The inverse-transformsation rules
are also prepared in terms of sets of strings.

12. Complete Neighborhood Representation of
Concatenation Rules

We say a sel of concatenation rules is complete if it gives
the concatenation z = xy of all complete neighborhoods
z and y of the language. It is not necessary, however, to
list all possible x's or y's. If their use is properly pro-
grammed, a small number of rules can be sufficient to cover
all possible complete neighborhoods.

We assume that a rule f(ur;w) represents a relation
between the concatenated complete neighborhoods ur and
another complete neighborhood w. Each rule gives infor-

41

mation to zy if r (=Yunand y (=)eo: MWy Mv) =
a2y () ur, which is a part of z = ay.

In order to obtain the given concatenation xy, we de-
termine the set R{xy) of rules applicable to ry. We de-
termine whether or not each rule is applicable to xy by the
condition g, so that flur;w) € Rixy) if and only if gla;w)
and g(y;v). The terms w are read out of the rules in R{xy)
so that z = zy may be determined. It is obvious that
there exist certain restrictions in choosing the type f of
rules, the condition g for determining R (ry), and the pro-
cedure for finding z. We must specify these three for the
grammar to he written,

When the complete neighborhood z is given and its ex-
pansion xy is to be found, the set R(z) of applicable rules
is determined by the condition k{z;): R{z) = set (F(uvyw):
hiz;w)). The situation is a little complicated in this case.
We can expeet cases in which both 2 = 23 and 2z =
zays are true under the condition z; (M & = 0 and/or
#1 (MY y2 = 0. Note that this is not the case of formal con-
catenation of sets AB N CD = {4 M OB M D): aun
and xsy» happened to be z because of the syntax of the lan-
guage being studied. In this case, we write

z = 2 () 29

and mean that z is the concatenation of either xy, or
xay5. Finally, we have a set of possible expansions xy.,
each such x; being accompanied by the subset Rz} of
R(z}, such that &, and y; are determined by the rules in

R{z;d).
In order to observe the property of rules, we assume
four simple forms of fluvie): ur = w, wr © w, wr D w,

and ur (=) w.

121

Let us see how the rules flur;w} are used to cobtain the
complete neighborhood z = zy which is the concatenation
of the given x and y. The applicability condition g{zu) is
assumed to be r = u, S u, x 2 u, or ¥ (=) u, and,
similarly, g(y:#} is slso assumed. Then, the condition
gix:u) and glyr) imposed on each constituent separately
can be replaced by the same condition imposed on the
whole concatenation:

TY = uv (1}

ifandonly fr = vand y = #»;

S w (2}

if and only if ay Mur = {x M Wy M) = 2y, if and
only if xrNu=zandy v =y if and onlz if 2 & «
and y & o

Ty = ur (8}

if and only if xay Nur = &M wly Nv) = w, if and
only fu = uandv =y M if and only f a2 u
and y = v;

oy (=) wr (4)

42

if and only if 2y Nurt = x MY W)y M) = 0, if and
only if £ (=) v and y (=) ».

The rule flur;w) is applicable to zy if glay;ur) holds.
Therefore, the concatenation z = xy has to satisfy
(z = 2y} and glzyur) and fluriw). There are sixteen
combinations of glay;ur) and f{ure) as shown in table 2.

TABLE 2

THE SIXTEEN COMBINATIONS OF gizy;ut} AND
flaee;10) CLASSIFIED ACCORDING TO THE
ReLation = R w

(z = xy) and g{zy;ue) and fluvar) aw
2=.‘l"y=?ﬂ‘='ll‘ = Mt
z=ay=weSw. . s T w
T=ay = w2 v 2w
T=ry=ur{=w........ zi=}w
s=rp Uy = .. s Cw
=y SuweSw. 28w
=TIy ur 2w . .
z=gy Swe{=)w. L L
TEIy U= L. L 22w
s=ayur Sw o L {=}w
2=ay Dur DM, z T
=Ry D (=)W, oL (=)
F=ayl=)ur = w. . zi=}w
z=ay{=tur S w.......... z{=)w
= xy (=)m-"2-ur.. .
c=gy{=}ur(=Yw.

Let us classify the cases according to the relation
z [w, and see how the desired complete neighborhood 2
can he found,

12.1.1~—We have 2 = w only if 2y = we and ur = w,
and we see that z is found by virtue of only one rule, How-
ever, the condition xy = s is too strict to be practical:
The numhber of rules to be prepared for all combinations
of # and y is astronomical, and it is very hard to assure
the equality u» = w-.

I12.1.2-—We have 2 © w in the following cases:

s=ay =uww S w0,

3 =ay S uwe = w,
or
=y S wCaw.

In short, these are the cases in which we have xy © ur
for gleyiue) and ue & w for flurw). For all rules appli-
cable to &y, we have

2= 2y S uwen T oy,

2 Y g v g wi,

2= 2y C wer S wy,
and hence z & wi (MY w; (1. .. () ¥ If we have enough
rules applicable to xy, we can expect to have z = wy, ()

we (Y.) e

SAKAIL

12.1.3—The relationz R wis 3 2 w, if

t=ay =w 2w,

z=ay D uw =w,

or
g=ay 2 w2 w.

That is, z D w if we have 2y 2 uv for glzy;ur) and
wv = w for f(uvyw). For all rules applicable to xy, we have
L
22wy,

22 w.

Then

22w UJw ..) w.
We can expect to have 5 = wp U w,) ...) wy if we
have enough rules applicable to xy.

We know that the concatenation ry of complete neigh-
borhoods is broken down into the concatenations e(7}e{s)
of elementary neighborhoods and that each e{de(f) is
represented as a union of elementary neighborhoods. If

x 2 e(l)
y =2 e(2) U e U ed),

for instance, and if we have the rules

e(1)e(2) 2 e(5) U e(6)

e(1)e(8) 2 (5},
and

e(1)e(d) = e(6) .
then

zy 2 e(5) U e(6) .

These rules can be broken down as
e(1)e(2) 2 e(5} ,
e(1)e(?) 2 e(6),
e(1)e(8) =2 e(8),
e(l)e(4) =2 e(63,

and then contracted as

e(1)(e(2) (+) (8)) 2 e(5),
e(1)(e(2) (+) e(4)) 2 «(6) ,

where the symbol {(4+) means an alternative choice.

The number of elementary neighborhoods increases
rapidly as the linguistic analysis becomes more precise,
and hence a grammar prepared in terms of elementary
neighborhoeds comprises a great number of rules. How-
ever, this kind of representation is preferred when a par-
ticular technique is available [6].

If the rules are given in terms of elementary neighbor-

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

hoods in the form e(@)e(j) = w(i,7), then, by virtue of
the expansion coefficients x(?) and y(5), we have

M u=zeld) = z(@eld),
y Mo =yNel) =yDe),
M wly M) = x@yHeded) .
Therefore, the rule e(i)e(f) = wiif) is applieable to xy if

() = y(f} = 1. The result z = xy is obtained as the
union of all w(%,§)’s of the applicable rules:

z=Uw=UadyHwls) .
12.1.4—The relation z R w takes the form z (=) wu, if

z2=xy =ur(=)w,

=y 2w w,

& wgut!(=)yj»

=y (=)u =w,
or

s=ay (=) wC w.

The rules say only that the interseetion of z and w is not
empty. We cannot obtain the complete neighborhood » un-
less some other information is available.

Rules can be prepared and used more freely if we Liave
some means of finding the intersection and the union of
given complete neighborhoods. This operation is possible
if we have a coding system by which every possible com-
plete neighborhood is given a name or a code and the
intersection and the union of two complete neighborhoods
are obtained by definite operation on the coded form, as
we do with the numbers: The numbers whose names are
encoded as a string of a few digits of figures or as a com-
bination of a few such codes can undergo an arithmetie
operation, and the name of the resultant number is gen-
erated in the coded form. In the following scheme [7] a
complete neighborhood is represented by a code consisting
of a number of digits, and each digit is checked, modified,
and transferred independently of others. Suppose x and y
are given, and their concatenation z = zy is required.
Both & and ¥ can be syntactically ambiguous, and their
ambiguity is to be reduced in the course of finding z. Ini-
tially, z is assumed to be the set of all possible contexts.
Then x, i, and 5 are transferred to a temporary storage space
(r,y1,21). Arule s applicableif z (=) w, y (=) vand z (=) w,
and the set (131,71} is modified every time a rule is ap-
plied. If &, {=)u, s (=) 2 (o = 0, then the rule
is not applied to this set, and another set {(x;,5,25) is stored
in another storage space as another possible result. All
the applicable rules are applied one after another to all
the possible sets of (x;3.,2).

12.2

We want to find possible expansions of a complete neigh-
borhood z as a concatenation of the complete neighbor-
hoods & and y. The rules are applied to x if they satisfy

43

the condition A(z;10), and the rules describe the relation
flw;ur) between the complete neighborhoods w and ww:
For the rules applicable to z, we have (zy = 2) and hiz;w)
and f{w;ur). In order to see the property of the rules, we
assume k(z;t0) and f(w;ur) as shown in table 3.

TABLE 3

THE PROPERTY OF THE RULE® APPLICABLE TO X
UNDER THE ASSUMPTION OF k(z;w)

AND f{w;uo)

(xy = z} and k(z;0) and fQw;ur) xy Bur
Xy =z =1w = Ty = up
gy=z=wCur. xy S ur
=z=wIur. .. Ty = up
=z =wi=due.... T =) up
gy=zCw=wr. xy = ue
sy =S wSuw. .. Yy S uw
Y =20 WU, .
xy=sCw(=)ur............

Y =Z2W =W ry 2 up
sy=z2w T ur. ... xy (=) up
IW=z2wur. ay =2 ue
y=zIwi(=)ur ry (=) ue
ty=z(=)w= WO Ty (=) up
rp=s(=)wowr.. oy {=) upr
sy =z{=)w2ur.
zy=z(=)wi=)ue...............

1231 —2xy = uv if and only if ay =z = w = wr. If
% = w for more than one rule, we have
xy:z:ﬂ!:uh‘ph’
Xy =z =w = gy,
Xy =5 = w = Wy,
and hence
ay = wpon () wary (). () wre

That is, * = ua, ¥ = v, OF

T = U,

or
= e,

1222—xy © w if
ry =g =wC ur,

=30 w=w
or
ry =58 w ur,

In short, &£y © uv if and only if 2 C w and w € ue. Let
the rules w; S uwy, ¢ =1, 2, ..., n satisfy the condi-
tion z © 1w, Then, we have

p=z2C N w S MY wa,

We canmot conclude, however, s © M u;or ¥ © (M 7. The
following procedure consists of two different operations.
Take the rules w; S w2, and w; © wpy, and obtain
{u; (Y u;) (0; (M v;), which requires an operational device
for finding the intersection of given complete neighbor-,
hoods.

Operation 1—If 2C w0, S uwy, 2C w; © uyey, and
2 C (i M u)dlo M vy, then S wi N wy, y S v N v))
is a better pair of candidates than (x € u,, ¥y C »)) and
{2 € u;, ¥y € v). H we have another rule wy T uwry, such
that = & (u; M) wy (M wedles Y 27 (7Y), then this gives
a still better pair of candidates: = < w; (M) u; () wa
¥ S 2. M v; M v By repeating the same operation with
other rules, we obtain

y=Nw,

Operation 2—I 2C wy, © wrty, 32 wx © vy, but
not 2 S (ux () wedor M) #4), then we have 2y = 5 C
upey, (+) wrvy. That is, @S w, yCw) or @ T w,
¥ € w). Applying Operation 1 on these pairs separately,
we obtain the paits (@ = N up,y = N and (2 = N s,
¥ = () tx). Assume

2 5 (M un){M oacny) for rules in R(z;1),
2 S (M unez) (M 2an) for rules in R(z:2) ,

=) u;, Ty =4,

PR

2 S {MY wnemy) (MY vagmy) for rules in Bizm) ,
and we have
2 (MY wrn) (M) oayy) S
() (MY a0 o) s

L3

(XN waem) () Oreo)

That is,

S Nww, S N o,
or

s Nuwa, ¥S N,
or

S N, S M oam -

Let the rules be prepared in terms of elementary neighbor-
hoods in the form w# & e()e(f), and let xy be a possible
expansion of z: 2y = 25 w € e(De()), or xy & eldfe(y).
That is, 2 © e{i) and ¥y S e{f). U xy = 0, then el) S 2
and ¢(f) © y. Therefore, x = e(i) and y = e(§) is a pos-
sible expansion of z:

z = eGeG®) (+) .. . (4) elilm))e(i(m)) .

1228 —xy O w

[
[
V)
g

xy:

Yy =

o
U
g 8
!
&

or
y=382w2 ur.

In short, xy 2 wue if h(z:w) and f(w;ur) are such that
320 w2 ut, or B(z) = set (w2 ur:z 2 w). For all rules
in R{z), we have

D Dueyy, 1=1,9...,1,
and hence
a2 w2 we U ue) oL U tiats
= Juyr;,, 1=19%2...,%1n.

Note, however, that \J «,0; is not always rewritten as
(L u)(U =), and we cannot always say * 2 U u; or
y 2 | ;. Instead, we have

2y 2w () were () L. () tatn .

If 22 (u: U w)(e; U o)), then the térms ww; (+) wp;
are rewritten as

(u; U upp(ee U),

Q’Qu-:U%‘, ?JQ#'«'U*‘:‘-

or

If the set R{z) has enough rules, we can expect to have x
and y.

1224—ay(=)w it ay =z =w(=)ur, or ay =
DwC worxy =z2w(=)u,orzy =s{(=)w =
up, or zy = z{=) w0 T wr.

Generally speaking, such » and y can be found by sue-
cessive approximation: We take z’ and »' as a pair of can-
didates and obtain z' = z'y’. The difference between z
and 2" is further and further diminished by adjusting
2" and y':

Ny Ny =2y Naey =2 Na.

To do this, we have to know how to obtain the intersection
and the union of given sets.

13. Distribution Class Representation of
Concatenation Rules

Possible concatenations of a language can be formulated
as concatenated sets of strings. Let R = set (r: g(r)) and
S = set (2: g{s)) be sets of strings satisfying the conditions
g(r) and g(s), respectively, and let their concatenation have
the property h(rs), so that rs € T = set (f: 2()). We con-
sider the concatenation rules of the form RS © T, which
reads: if r € R and # € 8, then rs € T. The point of this
representation is that if » € By M B N ... (M Bz and
s €8s 8. .. N S then the same number of rules
are applicable to rs, and they give s C D VT MY . ..
M Tx = T. The intersection T’ has fewer elements, and,
if the rules are precise enough, the character of the strings
in it is determined as precisely as required. Of course, this
1s not to be done by listing all members of the sets. Each
set in the rules is represented by a code. Every entry of

MATHEMATICAL ASPFECTS OF SYNTACTIC DESCRIPTION

the lexicon has a code, and it can be determined whether
or not this code helongs to a certain set. A similar code is
to be generated and attached to rs to indicate that it be-
longs to the set T

Practically, it is convenient to classify the strings ac-
cording to their complete neighborhoods:

R = set (r: g{C(r);)) = R(w),
S = set (s: g(C(s))) = S(v),
T = set (t: H{CHw)) = Tlw) .

A grammar of concatenation will be a set of rules of the
form R{u)8(v) © T(w) with a relation f(uv;w), and they
can be described in a number of different ways according
to the choice of R(u)8{r}, (Tw), and f(ur;w). In order to
observe the principle, we simplify the situation by making
use of the distribution classes J, I, H, and G, and by as-
suming the relation fluv;w) as ur = w, w0 S w, wv 2 w,
or ur {=) w. The type of T(w) is chosen so as to deseribe
the language adequately.

13.1. J Representation

Set R{u) = J(u), 8(r) = J(»). This type of grammar is
not practical, because the rules must cover all real distri-
bution classes J of the language. This condition corre-
sponds to the complete-neighborhood representation of
rules f{ur;w} applicable to 2y only if w = rand v = .

13.2. I Representation

Set R{u) = Hu), S(v) = o), If r €) and 5 € I{p),
then rs € T2} (e) © I(ur). Assume ur T 1, and we have
rs € Iuw) © I{w), because ¢ € I{up) if and only if
€t} € uv, where up & w; then C() © w if and only if
t € Hw). If a number of rules are applicable to rs, then

rs € Hua) () © Taon) © Iws)

rs € Iu)l(w) © Huw) © I,

rs € Tu)on) S Flugee) © (i),
then .

re € Tawn) MY ICw) My ...) T(ww)

= Jlwon OYywe (Yoo (O we) -
Cra S wn MY we (Yo . .) We.

Or,

The situation is similar to the case of the complete-neigh-
borhood representation C{r)C'(s) = zy © ur © w.

13.3. H Representation

Set R(u) = H(u} and S(») = H(p). If r € H(u) and
s € H(v), then rs € Hu)H(v) & H{uvr). If ut 2 w, then
rs € Hu)H(e} & H(ur) © H(w), because t € H{uv) it
and only if C(f) 2 upr, where ur 2 w; then O 2 w if
and only if ¢+ € H{w). We set T(w} = H{w)} to have the

rules of the form H{u)H (s) © H{w). If a number of rules
are applicable and

re € H{un)H(pz) © Hlwy) ,
rs € HupH() © H(w) ,

rs € H{u)H(vy) S Hws)
then

rs € H(w) MY Hw) OV ... M H{wy)
=Hiw, Uw: U .. U w),

Clra) Dy Jwy ..U e

then

The rules of this type are equivalent to the rules of com-
plete neighborhoods of the type ay 2 wr O w, although
they are coded as sets of strings,

13.4. G Representation

Put R{u) = Giw) and S{e) = G{), and let » and 5 be
in G(u) and G{»), respectively. If uv = 1, then rs €
GGy S Glur) and Clre) (=) uwr = 2w, If w T w,
then rs € Gu)G () C Huo) and) (=) v C w. If
ur =2 10, then rs € G()G () © Gluw) and Cirs) (=)
wr = w, If ue {=) 1w, then rs € Gw)G(x) © Gur), and
Clrs) (=) ur (=) w. Even if a few rules are applicable
to rs in these cases, we have no simple means of finding
({rs) from w's. We cannot specify a smaller set which
adequately indicates the property of rv, unless more
specific information is available.

Suppose, however, u and » are elementary. If C'{r} (=)
and (s} (=) ¢, then C{r) © u and (s} = v. That is,
r € Glu) = Hiw) and s € G{z) = H(z).

Assume () and C(s) are elementary, If C(r) (=) u
and ((s) (=) v, then ((r) € u and C{s) & ». That is,
rC I(u)and s € I{r),

14. Some Remarks on Transformations

141

Let us assume another function of our normative device.
We give it a pair r = (r, r”') of acceptable strings ' =
PR .. rE) L m) and A o= 2(LP(2) L.
P L L (m). We set m” = 0 3f "' is absent. We then
give it another acceptable string & = s(1)s(2) .. . (i) . ..
#(n), and ask it whether or not the string s as an expression
is true if both " and #"/ are true. If the device says “yes,” we
sav that the string s is generated from r by a transforma-
tion. We call r the original string and s its transform, If
the device says “no,”” no such transformation exists. Con-
versely, we ask the device whether or not " and r are
true if s is true. If it says “yes,” we say that an inverse
transformation exists.

A transformation or an inverse transformation is called
singulary if »" in r is absent, and generalized if both
and "/ are present. If this is an embedding transformation,
" and " are called matrix and constituent strings, re-

spectively. We can find many cases in which the device
would say “yes” for transformation but “no” for inverse
transformation. Some information is supposed to have been
lost in generating the string 5, which cannot he retrieved
unless appropriate, possibly nonlinguistic, information is
supplied. This situation is bevond the scope of svntactics.
If we find r and s such that r is true if and only if s is true,
then we say r and # are equivalent to each other and write

reqvs.

Obviously, this equivalence is reflexive, symmetric, and
transitive, Let us call a transformation that changes a
string mto an equivalent string an equivalence transforma-
tion. If we have 2 grammar consisting of equivalence trans-
formations ouly, it provides us with a straightforward
means for both analysis and synthesis of texts. Let us con-
fine ourselves for a moment to equivalence transformations
in order to simplify the discussion. A generalized transfor-
mation transforms a pair r = (¢, r"’) of strings into one
string ¢. The inverse transformation by the same rule dis-
solves a string s into a pair of strings (', ¥*"). Then, 7" or "
is regarded as an s, and, if we find an appropriate rule, it
is again dissolved into two acceptable strings. By repeat-
ing the same, we have a number of equivalence relations
which can be arranged as a tree:

s eqv (r(1), r(2)},

r(1) eqv (+(11), #(12)},
r(2) eqv (r(21), r(22)},
r{12) eqv (r(121), r(122)),

Throughout this process, the strings are expected to be-
come shorter and simpler, because the equivalent informa-
tion is expressed by means of more separate strings,

If an acceptable string ¢ can no longer be dissolved into
two or more acceptable strings, we call ¢ a terminal or an
atomic acceptable string. It may still be possible to trans-
form an atomic string to another atomic string by means
of a singulary transformation. We have different atomic
strings which are equivalent to each other. We pick up one
of them and call it a kernel sentence,

142

Transformation is a peculiar operation which changes the
structure of phrase markers. If a string is given and its
phrase marker is not given explicitly, the phrase marker
is &0 be determined by virtue of concatenation rules, We
say a string r is transformed to ¢ and mean that the phrase
marker of r is transformed to the phrase marker of 5. If
the string is ambiguous, the transformation rules are ap-
plied only to those phrase markers which meet the struc-
tural description.

The transformation is not always meaning preserving
or truth-value preserving, or even acceptability preserv-
ing [8]. What if it is not meaning preserving, for instance?
The features of the original string are modified, and we

SAKAT

shall have a transform which has no longer the same mean-
ing as the original string. It is quite all right if exactly the
intended feature is given to the string, so that the final
meaning is determined by the series of transformations
applied. Unfortunately, the meaning is {oo often distorted
in an unexpected way.

What, then, is 2 transformation? What remains invari-
ant throughout a transformation? We need not care what
it may be as far as the formal properties are concerned. A
transformation T is defined as an ordered pair (p,q) of
the phrase marker p of the original string and the phrase
marker ¢ of the transform. The operation is called an in-
verse transformation if it changes ¢ baek to p:

Tpy=9¢, Ty =p.

This is not, however, exactly the way in which we
understand a transformation, A transformation—passivi-
zation, for instance—changes many distinct strings to their
corresponding passive counterparts. A transformation is,
therefore, a set of ordered pairs of corresponding phrase
markers:

T =set ({pag:i =12 ...).

’

Given a set P of p;’s, we have the set @ of the correspond-
ing ¢;'s:

Q = set (g, (pog) m T, and p, in P)

= TP

which is the image of the set I under the relation T.
Let T be a transformation such that

T = set {((p,g), (p.9): (2g"), - -2).

The relation T includes such pairs as (p,q}, (p,¢), (g},
and it gives three distinet phrase markers ¢, ¢, and ¢ as
the possible transforms of a single phrase marker p:

Q = T" set (p) = set (g, ¢, ¢ .

If there are no such pairs as {(p,¢") or (p,¢”"), we have the
unique transform g of p, and write:

¢ =T .
If this is true for all p’s in P, we write
Q=T

Suppose we have two transformations:

T = set ({png), (Page), ...),
and
T = set ((risn), (rase), ...).

We can define one transformation T which changes p, to g,
prtoga ..., ntog, rptos,, ...

T

set ((Pl,fh), (pagady « v .« (riysihy (rase), ...)
=ruUT.

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

We see that two distinet transformations can be brought
together to be regarded as one transformation. and some
transformations established separately ecan be included in
a more general transformation. This is not always the case
in practice, {iiven & set of phrase markers, we consider, for
instance, that the phrase marker p beeomes r by passiviza-
tion T(pass) and it becomes s by nominalization T{nom),
The union T of T{pass) and T(nom) does not give the sets
of passivized and nominalized forms separately.

In practice, a transformation rule is not given as a set
whose elements are listed explicitly. Instead, it is provided
with the information to determine for every string whether
or not the rule can be or must be applied. Two transforma-
tion rules prepared separately can be united only if a com-
mon description of applicability is prepared and the fea-
tures of the transforms can be properly specified.

143

Sometimes it is considered linguistically more reasonable
to assume that a string is not acceptable but that its trans-
form is an acceptahle string or a constituent of an accept-
able string. In other cases, a string may be an acceptable
string and its transform may not be an acceptable string
or a constituent thereof. We can prepare the rules in such
a way that & sequence of obligatory transformations is con-
tracted to a single rule. This seems formally simpler and
more consistent. However, it will result in a more entangled
system of grammar. We admit some such strings as poten-
tially acceptable and indicate this with a marker. This con.
vention is sometimes useful not merely as a technique but
also as a consistent and more plausible derivation of ac-
ceptable strings, It is known that some strings of a Chinese
dialect marked potentially acceptable for the derivation of
apparently inconsistent strings are quite acceptable in an-
other dialect [9]. We say a string is acceptable if it is really
or potentially acceptable. A phrase marker is acceptable if
it underlies an acceptable string or an acceptable phrase
marker, ’

154

Let A be a node of a phrase marker p. The node 4 is ealied
the root of p if it dominates the whole structure of p. Let
B be the voot of another phrase marker g. We say the roots
A and B belong to the identical part of p and ¢ if 4 and B
have the same label. Let 4 immediately dominate the
nodes .1, and 42 and only these, and let B dominate the
nodes B, and B, 4(4,,45) and B{#,,B:). We say the
phrase markers p and ¢ are identical up to the nodes A,
and 43 or up to By and B, if and only if the nodes 4, and
B have the same label, .4, and B, have the same label,
and 4, and A are arranged in the same order as B, and B..
Every node of p and ¢ is eompared successively from the
roots in this way. I they are identical up to their terminal
nodes of lexical items, they represent the same syntactic
interpretation of linear strings r and s which are also iden-
tical.

47

By “p I " we mean the identical part of phrase mark-
ers p and ¢ meluding the root. Given that p, becomes ¢, and
that p; becomes ¢, by a transformation 7, we expect that T
be applicable to another phrase marker p; if (1) the identi-
cal part p, I p: is & subtree of p; including the root, and
{2) the labels on the corresponding nodes of ps and py I p+
are the same. We also expect that the transforms g, and ¢
share certain features and that the features be found in
the transform ¢; of p;. In other words, 4, I ¢2 is a part of
¢s and their corresponding node labels are also the same.
If pa cannot undergo the transformation T or if ¢, does
not share the features mentioned ahove, we consider that
parts of p. and p, not in p, I p. are not the same but
still have features in common which permit the transfor-
mation T, while the corresponding part of ps does not meet
the structural requirement of T. Therefore, it is desirable
to describe a transformation in such a way that {1} the
structural requirement of T be met by both p, and p; al-
though they are not the same, and (2) p; not meet the
structural requirement of T although it contains p, I p2
as a part of it. This means that it is not desirable to specify
the structure in terms of identity of tree structures and
node labels. The description should be prepared in terms
of features of trees, so that the phrase markers p, and p.
tneet the specification and p; fails to meet it. It is also de-
sirable to have a mechanism which permits the features
of the original phrase markers to be transferred to their
transforms so that a rule can cover a number of distinct
phrase markers and still maintain a distinction among the
transforms and a correspondence to their original phrase
markers.

145

Most rules are accompanted by a number of restrictions
imposed on the original strings and their transforms as
well as some manipulations of strings. These are classified
into a few types, and a subroutine must be prepared for
each. Some of the restrictions which have been picked up
sporadically from the rules for generating Chinese strings
are listed below [10]:

1. Certain segments r(h) and r(z) in the original string
must or must not share a certain feature in common and /or
r() must or must not have a certain feature.

2. The segment r{t) of the original string and the seg-
ment s(5) of the transform must or must not have the same
feature.

3. Some segments in the transform must satisfy a con-
dition similar to (1),

4. Absence and/or presence of particular segments must
be checked.

5. Positions of certain segments in the string must be
found.

6. A check of the derivational history sometimes decides
the recursive application of some rules.

7. The tree structure of the transform is specified.

48

146

A generalized transformation rule consists of terms « and =,
where

w = {au'"
= w(Du®R) ... u(@®...ulm),
wo=u (D). W@ W (m),
o=@ ... "0 .. W w),

m=m + w,

u becomes v,

o= o(1}0(2)...0() ... ofn).

If the rule is not the one for generalized transformation,
we set m” = 0. The terms % and v are node labels of the
roots dominating the entire phrase markers.

The rule says, if the string r has the feature

= a(lu(®) ... ui)... uim),

then it is transformed to another string s which has the
feature

p=o(1)e(2)...2(...v(n).

VWhat are these features? They must be defined on the
basis of the answers of our normative device. The program
must be consistent with the features defined. Once a pro-
gram is written and accepted for usage, the program is the
definition.

We say that the node labels are complete neighborhoods
if the concatenation rules are written in terms of complete
neighborhoods. If the concatenation rules are written in
terms of distribution classes, we consider the node labels
distribution classes.

14.7

We want to associate the node labels of phrase markers
with the set of acceptable strings, The definition directly
associated with the set of acceptable strings is rarely used
in the description of transformations, beeause the strings
of apparently identical structures can be the realizations
of quite different logical or semantic content. For this rea-
son, our universe of discourse is the set of all possible phrase
markers including deep and surface structures, as well as
the intermediate forms under transformational operation.

We confine ourselves to singulary transformations, and
the generalized transformations are to be handled by the
use of phrase markers in.which the constituent phrase
markers have been embedded or conjoined. We assume
that the recursive elements are introduced to the base
phrase markers before the transformations are applied:
We do not want to generate such sentences as “the man
who ate an apple ate an apple” or “the box s white and
white”” by syntactic transformations [11].

148

Take an acceptable phrase marker and suppose that the
list of all its transforms and inverse transforms has heen
prepared. The list is in the form of a matrix. The names
Ty Tl ... Tj ... of transformations are given on the
upper horizontal side, the names py, p2, .. ., ps, . . . of the
phrase markers are given on the left-hand sile, and the
name p of the transform of p, by T, is given at peosition
(7,7). If the transformation 7T; is not applicable to p;, the
position {(7,7) remains blank. Take another phrase marker ¢
and suppese all its transforms and inverse transforms are
listed on the positions (i,7) of another matrix where the
arrangement of T; is identical with that of the matrix of ps.
The horizontal rows can be interchanged without losing
the linguistic meaning of the matrix. If the matrix of gx can
take the same form as that of pi, we say that the two ma-
trices belong o the same ¢lass, Thus, we have a class N of
matrices of the same structure but of different phrase
markers. We take the phrase marker p; at position (i,7}.q
at {77}, and so on, and consider the set P; of phrase
markers:

Pk)

set (Pry oo Py - - .)

set (pr: pr at (I,7) of matrix in N) .

Now we have a matrix M whose (7,j) elements are P{k). If
the matrix M’ of one class differs from the matrix M" of
another class only in thet M has the set P'(%) at the (7,7)th
position while the corresponding position of M* is blank,
the two classes can be united by assuming a set P(k} of
potentially acceptable phrase markers at position {Z,5) of
M’ which was blank. However, reckless application of this
principle may result in a conelusion that every language
has only one class and hence only one matrix M of P{%),
and the class symbols are eliminated for the price of mark-
ing many phrase markers as potentially acceptable, It is
impossible to list all potentially acceptable phrase markers
intreduced by the above procedure: Again we need a classi-
fication of phrase markers so that the potentially accept-
able phrase markers will be properly marked.

The matrix M can be represented by a network. Each
node is labeled with a set P(¢) of plirase markers, and is
connected to other nodes of P'(k) by the arrows T(j): P(k)
is the set of transforms of the phrase markers in P(i). The
routes in the network show the sequences of transforma-
tions T(j).

4.9

Not all possible transformations need be described in a
grammar: Some of them can be realized as a sequence of
several others, We break off the transformation routes in
the network representation if there exist two or more
routes from one node to another, rearrange the routes in a
serial order, and then establish the new transformations
which connect the top of a broken route to the tail of the
preceding one. In the matrix representation, we eliminate
the element P{F) at position (1,5} if the transformation of

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

P(7) to P(k) by T(j) is to be prohibited, and establish a
new column § with the element P(}’) at 'th row if the
tail P(i’) of a route segment is to be connected to the top
P{£'y of another route segment by the transformation
7'(7). A choice of transformation route means a choice of
grammayr, VWhat is the principle of choosing a grammar?

14.9.7,—S8implicity of description can be a criterion,
Some people prefer to apply a series of deformational opera-
tions to realize a transformation. The possible aperations
are limited to a few elementary ones for changing the
structure of phrase markers. One may arrange the sets
P(k) of phrase markers in such a way that one can go over
to another set by applying a sequence of elementary opera-
tions and ecover all the sets in the network. Two distinet
possible routes can be compared with respect to the num-
ber of elementary operations or the number of sets of po-
tentially acceptable phrase markers, so that one may pre-
fer one route to the other.

14.9.2—Two or more routes from one set P(k) to an-
other set P{(k") were reduced to one by the preceding oper-
ation. We may still have a loop which comes back to the
same node from which we started. Even the simplest sen.
tences have quite a few alternatives of the same meaning.
We can also think of many truth-value-preserving trans-
formations which establish correct relations among the sen-
tences [12]. ¥e have no grounds for regarding any one of
these transformations as the most fundamental and deriv-
ing the others from it,

It is possible to have a phrase marker and derive many
sentences by applying transformations which are not mean-
ing preserving or truth-value preserving. One might say
that the sentence of active voice is more fundamental be-
cause it can be transformed to its passive form by an un-
ambiguously formulated rule and the actor can be deleted
if so desired. On no poorer ground, one might say that the
passive sentence is more fundamental because it does not
heed to have two noun plrases explicitly, because, if nec-
essary, one can be added at a later step of generation, Why
should a sentence be passivized before it is nominalized or
noeminalized before it is passivized? The choice on the basis
of economy seems only to be technical, subjective, or arbi-
trary from the purely syntactic point of view.

14.9.3.~—The synthesis of a meaningful sentence or the
encoding of the thought to be conveyed is realized only
if the derivation is directed by information sufficient to
specify the choice of lexical items, their dependence on
each other, the syntactic and stylistic features of the sen-
tence, and so on. We do not want to generate such sen-
tences as “Bill asked, ‘Dyid Jaek kill the pig?” and Joha re-
plied, ‘Yes, it was"” [11]. One takes a deep structure,
applies a transformation, keeps note of the change of mean-
ing and the features of the phrase marker, checks the
phirase marker against the specification of the desired mean-
ing and features, and repeats the same procedure for the
generation of the desired sentence. To perform this opera-
tion suceessfully, one must know which path to take on
every branching point of the transformation routes. A
chart must be available which shows the change of mean-

49

ing, modification of syntactic and stylistic features, ete.,
along all possible routes the phrase marker in question
may take.

This is not exactly the way we use language. YWe do not
remodel a sentence repeatedly until we come upon the de.
sired form, except when we have made a wrong choice of
words. We know what we want to mean, consciously or un-
consciously, and we look for the proper way of expressing
it,. The whole sentence is synthesized according to what
is to be expressed if it is not too complex. A part of a long
sentence is generated first, and the remainder is generated
similarly; the syntactic and stylistic features of the latter
part are affected by the part already generated.

14.10

We assume that the fact to he encoded is known to the
man who wants to express it, or that it is available to the
machine in an appropriate form. One may eall this, after
stratificationalists, the sememic representation, or, after
transformationalists, the deep structure with all the op-
tional transformations specified. At any rate, we suppose
that the transformational process of generation starts with
this. Given this kind of representation with information
enough to specify the sentence to be generated, the follow-
ing operations are directed toward the final form of the
sentence. That is, the process is the realization into the
lower and lower strata, or the application of optional and
obligatory rules toward the surface structure. The whole
system is now oriented in a definite direction, and every
step is a mapping of one set of phrase markers into an-
other, The choice of rules at every step of mapping is made
by the information already given to the phrase marker
whose image s to he obtained.

Let us consider two types of rules for describing trans-
formations: deformational transformations, and realiza-
tional transformations.

14.10.1.—We can descrtbe a transformation by means
of a sequence of deformational operations. When a phrase
marker is given, It is checked to find if it meets the strue-
tural deseription of the transformation to be applied, and,
if it does meet, the structure of the phrase marker is
changed in the definite way as specified by the rules, and
the node labels are also modified if necessary. The set P
of original phrase markers is the set of all phrase markers
which meet the structural deseription. In this case, the
set P is not defined explicitly, and, therefore, the structural
deseription has to be applicable to all possible phrase mark-
ers as the eriterion. The node labels have to be defined
over the set of all possible phrase markers so that they can
always be checked against the criteria during the process
of a sequence of transformations.

14.10.2.—Let us say a transformation is realizational
if it is & mapping of an explicitly defined set P of phrase
markers into the set of transforms. It does not matter if
the practical procedure is hroken down mnto a sequence of
simpler operations, as in the case of deformational transfor-
mations. The set P is the set of all phrase markers to which

the transformation T is applicable, and a phrase marker is
a member of as many sets if it can underge more than one
transformation. Henece, the node labels are to be defined
over each such set P,

15. Complete Neighborhoods and Transformations

Complete neighborhoods are defined on the basis of con-
catenated strings, and we have to associtate them with
the labels given to the nodes of phrase markers. Let us see
what happens when the node labels are assumed to be com-
plete neighborhoods.

151

Let p be an acceptable string, and let » = r(1)r{2) . ..
(i) ... r(m} be a segment of p. The string » is trans.
formed to ¢ by T, and the segment r appears in ¢ as the
segment s = s(1)3(2) . .. s(f) ... s(n). Some fragments
may have been added and some may have heen deleted.
Let 2(¢) = C(r(Z)} he the complete neighborhood of each
fragment r{7) of r. By virtue of the concatenation rules,
we have

~
it

Corr(2) ... v ... r(m))
(D@ xl;),

and similarly,

i

Cle(I)s(2) ... 80 .-, slu))
yMyi@) ..oy ..oyl

¥

4

-\ string can be ambiguous and it can be the realization
of more than one tree strueture. When a particular tree is
chosen, the complete neighborhood of a segment is a sub-
set of the complete neighborhood it would have otherwise.
Every segment belongs to one and only one distribution
class of type J. Therefore, instead of writing the transform
of # by T in the form

Ty, oor@ o)) = 5@ ..o . sl
we write
TiJ(e()) ... J{=z()) . .. Slz(m)))
=JE) .. JEH) . S

Since all elements in a distribution class of type J have
the same comnplete neighhorhood. we rewrite the above as

Ty . ..z@...«bn) =y .. .G} ...yl
This is rewritten again in the form
r==z(l)...z(}...x{m),
T{(z}
y() . y(d)

If we have a complete set of rules which gives the con-
catenation of complete neighborhoods of the language, we

I

¥

fl

Lylu) .

can find the complete neighborhood z. The transformation
takes place when 7 is changed to y. The string y is to be
generated by virtue of the information brought forward
from x and the structural requirement of y itself. A trans-
formation is then interpreted as: “The complete neighbor-

hood z of the node dominating the string of complete
neighborhoods

() ... z{D ... z(m)

is transformed to another complete neighborhood y of the
node dominating the string of complete neighborhoods

¥y .oy .oy

This interpretation, however, suggests a few problems.
We know that

J@(1) .. J@m) € J@),
JE) TG S) .

The statement “z is transformed to ¥ is a generalization
of the original fact, and this generalization is not always
true. Two strings r and r* may replace the same nontermi-
nal node to yield a longer acceptable string. However, when
a transformation T is to be applied, the two strings must
have the specified strueture; thus, the string p with r as
a segment in it may be transformed by T, while the string
p’, which differs from p only in that it has the segment r’
in the place of », may not. The lack of transform of p’ by
T implies that C'(r) = C{').

We may say that the structure mentioned above is a
representation of the derivational history. The history can
be recorded by listing all the derivational steps the string
has experienced, This representation, however, will not
always be sufficient, because it is possible that the strings
¢ and ¢ of different histories result in an identical string,
and that string is ambiguous since the string from p can
undergo a sequence of transformations and the same string
from ¢ another, thus the structure itself ean not be an ab-
solutely reliable marker. We think it more practical to as-
sociate the rules with the features of the phrase markers
te which the rules are applied. Fhese features should corre-
spond to the series of transformations applicable to the
phrase markers in the case of synthesis and a series of in-
verse transformations in the case of analysis.

15.2

Because of this complexity involved in natural languages,
we encounter a difficulty when we try to prepare a set of
syntactic data for practical purposes. We confine ourselves
to the set P of strings p to which the transformation T is
to be applied and the set @ of transforms g of p by T, and
do not consider the other strings which are not in P or §:
('(r) is the set of all contexts of r defined over P, and D(r)
is the set of all contexts of r defined over ¢, so that

CHU D) = E,

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

where E(r} is defined over the union of P and @, Let
p=p1)...p0...pm
be a string in P, and let
g=q¢)...q()...q0)
=T

be the transform of by 7. By modifying the meaning of
the notation, we set

() = C(p{d)) over P,
¥(i) = D)) over Q.
The requirement that p(¢) should appear uachanged as
¢(3) in g gives
p(i) = ¢(i),
Clpy) # 0,
Dig(Gn =~ 0;

if p(7) does not occur in any ¢ of {,
2(7y = C(p(i})) over P
= E{(p(®)) over P U @ ;

if ¢(5) does not occur in any p of P,

¥ = D)) over @
= Elg{/)) over P Q.

The relational conditions imposed on the segments p(i) of
the original string and ¢(7) of the transform are indicated
in terms of E{p(?)) and E(g(f)), or by a relation hetween
C{p()) and Dig(7)).

15.3

Let us examine some examples in which the separation of
the sets P and @ Lelps us understand the behavior of lexical
items on the syntactic level.

Take the Japanese verbs ataern and jaru (pronounced
approximately as if they are written in the international
phonetic alphabet) with their restricied meaning ‘‘to give
[something to someone].”” The strings

A ga B ni C o atae-ru {1)
and
A ga B ni €' o jar-ru {2)

are acceptable, and they mean
AgivesCto B, (8)

where afae-ru and jar-ru are realized as ataeru and jaru,
respectively. Since both (1) and (2) are acceptable, the
context

Aga Bnilo{)ru {4)

51

is acceptable to both afae and jor. One of the passive forms

B ga € o atae-rare-ru {5)

is acceptable and means
B is given ' by someone , {6}
while the corresponding form
B ga € o jar-rare-ru "N
is not: The context
B ga ' 0 ()rare-ru 8)

is acceptable to atae but not to jar, We cannot describe the
applicability of this transformation in terms of the com-
plete neighhorhoods defined over the set P of active forms.
The distinction is made if jar is marked for its forbidden
rule and atae is unmarked [4], or if the complete neigh-
borhoods are defined over both P and @Q.

The above formulation of the difference between ataeru
and jaru is a description of the phenomenon as it appears
on the syntactic level, and it is by no means a description
of the essential difference. The difference is of a semantic
nature: As the result of {1),

B becomes the owner of €' ; (9)

while as the result of (2),
A4 no longer has € and €' goes away from 4. (10)

In fact, the form (7), which is strange to most native
speakers, means, if it is acceptable at all,

B is caused to have C taken away . (11)
Another example is seen when the strings

John is eager to please (12)
and
John is easy to please (13)

undergo some of their meaning-preserving transformations.
The strings eager and easy are not the same in their syn-
tactic function because they cannot be interchanged in
the same constituent place of

it is {) to please John (14)
or
John is {} to please some one [12] . (15)

In our terminology, the complete neighborhoods of eager
and easy are not the same if they are defined over the union
of P and &, so that the structural descriptions eager and
easy meet are not the same [4].

The difference is the consequence of the semantic con-
tent of the two words. This fact should be taken into
consideration when the deep structure is constructed on
the stratum of semantics, and the following syntactic
operations are to be directed in zccordance with this in-
formation.

52

15.4

Now, let us consider the complete neighborhoods of nodes
of phrase markers. Let A(0) be the node dominating the
whole phrase marker p, and let 4(k) be a node of p domi-
nating a subtree whose terminal string is r(k). The string
r(k) is, then, a segment of the terminal string »(0) of p.
We define the context e(A(h)/p) of A(h) in p as the part
of p other than the subiree dominated by A(h), and the
complete neighborhood C(A{h)) of A(h) as the set of all
contexts of A(h) in all acceptable phrase markers:

C(A(R)) = set (e(A(h)/p): p Is acceptable) .

Let A(h) immediately dominate one or more nodes
A2y, 4(f), ete. Then the terminal strings covered by A4 (i),
A(7), ete., yield, when they are concatenated, the terminal
string of A{k), We say, then, the node A(}) is the concate-
nation of the nodes A(7), 4(;), etc. The concatenation of
nodes is not the same as the concatenation of linear strings:
The same linear concatenation of strings can be generated
as the terminal string of a few different trees. The com-
plete neighborhood of & node dominating a subtree is not
the same as the complete neighborhood of its terminal
string.

We make use of this type of complete neighborhoods to
describe transformations of phrase markers. Of course, we
can also define them separately over the set P of phrase
markers to which a transformation may be applied and
over the set ¢ of transforms:

CAR)} = set {e(d(h)/p): pin P},
D(B(R)) = set (c(B(R)/¢):qin @),

where B{h) i3 a node of the transform ¢ of p. In this case,
the phrase markers not in P or § are not taken into ¢on-
sideration.

16, Complete Neighborhood Representation of
Transformation Rules

We cannot describe a transformation by listing all pairs
of phrase markers in it. We have to describe it in terms of
the features of phrase markers which may undergo the
transformation. We regard the complete neighborhood
given to each node as the representation of the feature of
the node, and a phrase marker is characterized by its tree
structure and its node labels.

Let p he & phrase marker and let ¢ he the transform of p.
Let p consist of the nodes

Ay, i=12..., M,

whose complete neighborhoods are

={1), i=12 ..., M,
and let g consist of the nodes
B(j)s j=132)-">1\."s

SAKAIL

whose complete neighborhoods are

¥,

We want to deseribe the transformations in terms of the
features of 4{:)’s and B{j)’s. ¥We suppose the features of
z(t)’s are described in the form g{x(2);u(i}) relative to the
complete neighborhoods u{#)’s and the features of y(j)’s
are described in the form g(y(7);¢(j}) relative to the com-
plete neighborhoods #{j)’s so that we have rules of the
form

i=1%....N.

“if gl () ;uli)) for all nodes 4() ,
gly(5) {5 for all nodes B(5)”
for transformations and rules of the form

“if h{y(7);0(3) for all nodes B(j) ,
R{x(2);u(0) for all nodes A()”

then

then

for inverse transformations.

6.1

Let us assume we have a tree u whose nodes are labeled by
the complete neighborhoods

wiy, i=12....M,

and another tree ¢ with its nodes labeled by
of), 7=12...,N.

Let p be a phrase marker and let
() = C4@)y, i1=1,2 ..., M

be the complete neighborhoods of its nodes A7) defined
over P, Let ¢ be the transform of p, and let

¥ = D(BG)) .

be the complete neighborhoods of its nodes B(j) defined
over §. We consider a set of rules of the form

i=Le .. N

If % is a subtree of p including the root and if g{x(z);u(2)) holds for
every pair of corresponding nodes, then the transformation T is
applicable to p and its transform ¢ has the tree » as its subtree
including the root and g{y{j);2(j)) holds for every pair of the
corresponding nodes of ¢ and .

We need not have () in an explicit form, but we can make
use of a number of complete neighborhoods w(j k) such
that f{#(j):{f,k)} as we did for the description of concate-
nation rules.

16.2

Inverse transformations make use of the rules of a similar
form:

If v is a subtree of ¢ including the root and if A(y{j};2(;)) holds for
all corresponding nodes of ¢ and », then the original phrase marker
prof g has the tree u a3 its subtree including the root and k{x(i);u{i))
holds for all corresponding nodes of p and .

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

Each of such rules is accompanied by a set of relations
Su(i);e0(i,4)): We need not have the explicit form of w(7).

Sometimes, the phrase marker ¢ is ambiguous and it can
be regarded as a degenerate realization of two or more dis-
tinct base phrase markers. We then write py {+) p2 and
mean an alternative choice as we did when we expanded
a node into its constituent nodes.

16.3

With all the linguistic difference between the coneatenation
rules and transformation rules, they exhibit formal similari-
ties when the labels are assumed to be sets of contexts. We
would not repeat a similar discussion on the choice of
g(x(@)sulD)), flei) (i), ky(@ie(d), fu(i)pe@,k)), or the
algorithm for finding y(j) or x(f). The correspondence is
shown in table 4. We can also compare concatenation with

TABLE 4

A. THE CORRESPONDENCE BETWEEN THE CONCATENATION RUuLEs
AND THE TRANSFORMATION RULES WHEN TRE LABELS
ARE AssuMED TO BE SETs oF CONTEXTS

Concatenation Transformation

p becomes ¢

ey = C(re). z(f) = C{A{F)) for all &
z=Cy .. ¥ = D(B(3) for all j
T = R e the tree of x{7}’s becames

the tree of (j}'s

if g{z(Lyu()) for all 4,
then g(y(j):e(f)) for all j

Fle(3)eeli.k))

if g{z;u) and gl{y;v}, then gixy}.

Fluwne) oo

B. Tue Same ror TneE Expansion RuLEs anp THE
InvERsE TraNsFormaTiON RULES

Expansion Inverse Transformation
thecomesvs. q becomes p
e=0W .. wh = D(B{f) for all §
xy=008) ... 200} = C{A()} for all ¢

the tree of ¥(j}'s becomes
the tree of #((i\)'s or
the tree of #:(#:)’s

it Aly(d)ie(s)) for all j,
then A(z{i};u(r}) for all ¢

Fla() ol k)

if h{z:w), then Alryue).

Slhowe) ..o

inverse transformation, or expansion with transformation.
The parallelism observed in this comparison is also a super-
ficial one.

17, Distribution Class Representation of
Transformation Rules

Let us make use of the sets B and § of phrase markers de-
fined over P and @, respectively, for the purpose of de-

seribing the transformation T without listing all pairs of
phrase markers of T. Let r be a phrase marker and s its
transform, and consider the rules of the form “if r € R,
then ¢ € 8.7 If a number of rules are applicable, we have
r € RhﬂR;ﬂ...ﬂRkandsé ShnS{m mSk,
so that the features of the transform be specified as pre-
cisely as desired. Let

R = set (r: g{ryr))
be the set of phrase markers » defined over P, and let
8§ = set (s: g(2;8")

be the set of phrase markers s defined over . We mean by
these that (1) #' is a subtree of r mcluding the root, (2} the
node labels of r satisfy the same condition as the corre-
sponding node labels of #* do, (3) &' is a subtree of 5 in-
cluding the root, and (4} the node labels of s satisfy the
same condition as the corresponding node labels of & do.
Let us make use of the following conventions:

A, {=1,2 ..., M, are the nodes of " ;
A@D, 1=19 ..., M, are the nodes of r
corresponding to those of 4'(F) ;
B, j=12 ..., N arethe nodesof s ;
By, jF=1,2 ...,N, arethe nodes of ¢

corresponding to those of B'(j) :
L(A4) means the label of the node A .
The condition ¢ is then reduced to the form
g{L{A(2));L{A' () for all £

LB LB () for all j .

We further consider that the nodes are characterized by
their complete neighborhoods, and put:

L{AR) = C(4Q),
LA’} = ul®),
L(B{) = D(BG)) .
LB'()) = »(j) .

and

R = set (r: g{C{A());uld)) for all A7) of r)
= R{u},

8 = set (s: g(D{B(§)):e(4)) Tor all B(j) of s)
= 8@,

where « and » denote the phrase markers whose node labels
are u{{)'s and »(§)’s, respectively. The rules will take the

form
if ris in R(u), then s 15 1n S(¥) .

For the flexibility of description, we can make use of the
trees w consisting of the nodes labeled by w(j) under the
relation f{e(§);0(7)), so that

if ris in R{u}, then & iz in P{w),

where the type of the sets
Tlw) = set (s: h(D(B()):wl())

is to be chosen so as to deseribe the transformations ade-
quately. The formal properties are parallel to those of the
concatenation rules, and the algorithm can be reduced to
that of complete-neighborhood representation (see table 5).

TABLE 3

THE PARALLELISM BETWEEN THE Formar PROPERTIES OF THE
CoNCaTENATION RULEs AND THE TRaANsFORMATION RULES

(onecatenation Transtormation

R=setiriglr)).........
S=set{s:igls)).

Ri{u) = set (» g(C{rhady. ...
S{p) = set (s: g(C{sho)}.

B o= set (r: glrr'))
Riwy = set {r: g(CCA((D))

if 7 & Rix) and & £ Sz}, then
e € R8sy, ... ifr € R(w), thens & S(

Tlw) = set (L RO ... T} = set (3: B{D(B{j})e{j})}

- Stolg) el)

flamaeyo .o

18. Establishment and Representation of
Complete Neighborhoods

A syntactic function is called a complete neighborhood if
it is defined as the set of all aceeptable contexts. We use
conventional terms and redefine them as symbols assigned
to complete neighborhoods.

18.1

When we establish the complete neighborhoods of a natural
language, we regard a few of them as undefined terms and
derive the others by hypothetical concatenation rules.
Sometimes we have a choice among a few hypothetieal
rules, We take one of them to define a complete neighbor-
hood and regard the others as the property of the complete
neighborhood defined by the former, Thus, we distinguish
two kinds of rules: definition rules and property rules. Let
azxh = ¢ and ad = f be hypothetical rules. If one decides
to regard the former as the definition of z, the latter is a
property of 2, Every time a definition rule is established as
a hypothesis, it must be determined whether or not the
rule contradicts any other definition rules. No property
rules should contradiet any other rules. Whenever a con-
tradiction is found, the source of trouble can be found by
tracing back the definition rules, and the hypothesis that
has given rise to the trouble should be modified.

18.2

It seems adequate, for most natural languages, to admit
two complete neighborhoods, nominals and verbals. Many
other complete neighborhoods are derived from hypotheti-
cal concatenations that can oceur in acceptable strings,

SAKAI

The prepositions in many European languages are sub-
classified according to the case of the nominals they govern,
and the nominals according to their case. gender. and num-
ber. A rule for yielding prepositional phrases will he stated
as follows: A preposition that govern: nominals of the
case ¢, followed by a nominal of the case ¢, of any gender
and of any number, results in a prepositional phrase, pro-
vided the cases ¢ and ¢’ are the same. As suggested in this
example, subclassification and desubclassification are useful
in deseribing syntax. A number of indices are made use of
in subclassifying a broadly defined complete neighborhood.
The example above will he rewritten, by introducing the
indices ¢ for case, g for gender, and n for number, and a
coefficient dic,c’), in the form

prepicinie’ygin) = dle,e’)prep-n,
where
dice) =1,

=0,

ife=c¢",
ife=c.

Usually, the linguist will define complete neighborhoods
broadiy so that the majority of acceptable strings can be
generated and recognized correctly. As his analysis pro-
ceeds further in detail, he will take an example that is not
generated or recognized correctly by his hroadly defined
complete neighborhoods: Generation may give him some
unacceptable strings, or the syntactic analysis may give
him erroneous or unnecessarily ambiguous interpretations.
He will then trace back the definitions and find that some
of his rules hold in his example with respect to a subset of
one of his complete neighborhoods. Suppose he has a set
R(zy) of rules to concatenate x and y. His new exampie
may indicate that the rules are not always true. He will
then establish the subsets 2/, z”, ', y”/, and a new set of
rules which allows 'y’ and z"y", for instance, but not

x!yff or x!!’y!.

18.3

Let a broadly classified complete neighborhood be repre-
sented by a symbol, say, ¢ If a subclassification thereof is
desired, we introduce an index p, such that

v=2(p) Uvlp) U ... U vlpn) .
When the subclassification is not necessary, we set p = 0:
v(0) = U vlpi},
The union of a few subsets is written as
2(pupaps} = v(p1) U v(ps) U o(ps), ete.

If a complete neighborhood is subclassified from several
different points of view, as many indices are introduced:

i=1,2...,n.

v(pig), vipigir), ete.,

v(pLpag) = v(Pie) U v(pag)

v(pignge) = olpiq) U o(pige) ,

o(p:0) M 2(0:9) = (U o(mig)) M (U o(pise))
= v(piq), ete.

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

Hence, for the distribution classes, we have

H{o(py,psq)) = He(pug) N Hv(pae) ,
Hy(pig)) = I(p:0)) N I(»(0;9)},

ete.
Sometimes, an index depends upon other indices:
v(piglrisit)) ,

for example. The meaning of », ¢, and ¢ depends on the
meaning of ¢.

18.4

The above scheme can be further generalized. Let a com-
plete neighborhood be represented by a number of indices
fasbie; ... m),
where the first broad class symbol v in the previous repre-
sentation is one of the indices and each index represents a
classification from a certain point of view. This kind of
homogeneous representation, although it is redundant,
enables us to describe the syntax of a language more sys-
tematically. Each digit can be regarded as an indication
of a certain feature common to some elementary neighbor-
hoods, and they are classified according to their speecific

features.

Suppose a concatenation rule f(uv;iw) is to be applied
to a text string &y to determine 5 = 2y, and the complete
netghborhoods are represented with the tndices in the form

x = (al@)b(x); ... nlz)),
y = (alg):bly); .. . n@),
z = {a(@):b(z); ... @),
w = (alu)blu); ... m@),

v = (a(e)b(0); ... (),
w = (alwhb(w); . .. m(w)).

If a rule indicates the relation between the pair {i(u).j(#)),
and %(w)}, and if all the others are independent of these,
we have

w=(0;... 0600, .., D),
= (0;...:05eh0:...6),
w=(0;,..:0k();0;...;0}.

If the pairs (i(x),i(w)), (F(y).i(¢)), and (k(2),k(w)) satisfy
the condition specified by the grammar system being used,
the rule is applied to zy and gives a z modified by this rule.
The rule gives no information regarding the other indices.
The information should not be lost if it is available in z
or y. We have to indicate in the rule how to transfer the
information to z from x or y. A simple method was used in
a translation program [7].

The transformation rules require that certain features

of the original string be carried forward to its transform.
This requirement is usually indicated by the identity of
features of certain segments in the original string and its
transform. The use of rules is to be programmed in such a
way that the value of the index in the original string is
transferred to the corresponding index of the transform
and vice versa in case of an inverse transformation.

18.5

An extremely simplified example iz given. The complete
neighborhoods are no longer regarded as sets. The symbol
“+" means “or.” The symbol “=" does not necessarily
mean an identity: It can be replaced by an arrow. The
segments of the string

they are red planes
1 ¢ 38 4
are represented in the form (h%):
(1,1) = they,
{1,8) = they are red ,
2,3) = arered,
ete.

Both (k,2){j.k) and (k,{) & (j,k) mean the concatenation of
the segments (A7) and (j,k). The following abbreviations
are used: adj: adjective; adj-pred: adjectival predicate;
compl: complement; m: maseuline; n: nominal; nonh: non-
human; n/n: modifier of nominal; nom: nominative; pl:
plural; pn: pronoun; s: sentence; v: verhal.

Input Language {English)

(1,4){v;s) = (1,1){pn;3d;pl} & (2,2)(v;be;pres;3d;pl}
& (3.4)(m;pD),

(8,4)(m;pD) = (3,3)(adj) & (4,4)(n;pl} .

Intermediate Representation

(1,4}(v) = (1,1)(pn;3d;pl;nom} & (2,2){copula;
pres) & {8,4)(n;eompl;pl) ,

(8,4} (n;compl;pl) = (8,8)(n/n} & (4,4){n;compl;pl) .

Output Language (Russian)
(1,1){pn;3d;plinom) = on(pl;nom} = onji,
(2,2) (copula;pres} = (),

(3,3){red)(n/n} = krasn(adj},

(4,4)(plane}(n;compl;pl) = (rubank + samoljet}(n;m;pl;
nom)

= (rubanki + samoljeti){n;m;
plinomy) ,

(8.4) (n;complipl) = (3.3)(ad]) & (4,4)(n;m;pl;nom)
= (S,SJ'ije(494) >

(L4 (v)

(1,1)(2,2)(3.9)

onji krasnije (rubanki + samoljeti) .

Output Language (Japanese)
{1,1) (pn;3d;pl;nom)
= (kare(human) + sore(nonh)){pn;pl;nom) ,
(2,2)(copula;pres) = ar(v;5;pres;final) = ar-ru = aru,
(8,8)(red){n/n) = aka(adj-pred;n/n),
(4,4){plane)(n;comp;pl)
= (heimen + hikooki){n;non-h;compl) ,

(8,4) (n;compl:pl) = ((8,3){n/n}) & (4,4)(n;nonh))(n;
comp)
= ((8,8)-i(4.4))(n;nonh)-de ,
(1.4){(¥) = (1,1)(human,nenh;pn;pl;nom)
& (8,4)(n;nonh)-de
& (2,2)(v:5;pres;final)
(1,1}{non-h;pn;plinom) & {(3,4}(n;nonh)-de
& (2,2)(v;5;pres;iinal)
sorera (ga + wa) akai (heimen + hikooki)
de aru .

8.6

We observe in the above example that the index of human
or nonhiuman objects affects the choice of a lexical element
in Japenese while it is not relevant in Russian, This phe-
nomenon may be considered syntactic in one language and
semantic in another. Take two languages 4 and B, and
suppose 4 has a syntactic marker of gender and B does not.
The gender is considered syntactic in A and semantic in B,
The syntactic genders are sometimes arbitrary and cannot
always be preserved in the transfer process from cne lan-
guage to another. We must prepare two separate pro-
cedures for handling gender. Similar problems can arise
with respect to other indices. The complicated syntactic
case-number choice in Russian is another example.

The choice of lexical elements depends greatly upon the
habitual usage of language. The situation is similar when
we observe the combinations of longer constituents. The
choice of constituents is limited for logical, semantie, or

- habitual reasons, Sometimes the choice is quite capricious.

It seems more practical to handle this kind of information
separately [13] corresponding to the separate normative
devices the linguist has conjectured.

Acknowledgment

The need to define distribution classes was recognized when
I was with the Machine Translation Project, University
of California. The basic approach was worked out at the
First Research Center, Defense Agency of Japan, Further
development was made at the Project on Linguistic Anal-
ysis, Ohio State University, and a previous version of this

paper was read at the 1965 International Conference on
Computational Linguistics held in New York. I have ap-
preciated the encouragement of these organizations.

Recetved July 17, 1968

References

1

Parker-Rhodes, A. F. “A New Model of Syntactic Descrip-
tion.” In 1981 International Conference on Mackine Transla-
tion of Languages and Applied Language Analysis. London:
Her Majesty's Stationery Office, 1962.

. Kulagina, Olga 8. O0b Gdnom Sposobje Oprjedjeljengija Gram-

matjiteskiz Ponjaijij ne Bazje Tjeorjiji MnoZestv Probljemi
Kibjernjetjiki. Vipusk 1. Moscow, 1958,

. Rosen, Barry K. “Context-sensitive Syntax Analysis,” In

Report No. NSF-18, Mathematical Linguistics and Automatic
Translation. Cambridge, Mass.: Computation Laboratory,
Harvard University, 1967.

. Lakofl, George. “On the Nature of Syntactic Irregularity.”

Report No. NSF-16, Mathematical Linguistics and Awlomatic
Translation. Cambridge, Mass.: Computation Laboratory,
Harvard University, 1965.

. Lamb, Sydney. On Alteration, Transformalion, Realization,

and Stratification. Monograph Series on Language and
Linguistics, no. 7, 1984,

MATHEMATICAL ASPECTS OF SYNTACTIC DESCRIPTION

10,

11,

13.

. Charney, Elinor K. Structural 8

. Opler, A.; Silverstones, R.; Saleh, Y.; Hildebran, M.; and

Slutzky, I. “The Application of Table Processing Concepts to
the Sakai Translation Technique.” Mechanical Translefion
7, no. 2 (1963): 40,

. Bakai, 1. “Syntax in Universal Transtation.” 1961 International

Conference on Machine Translation of Languages and Applied
Language Analysis. London: Her Majesty's Stationery Office,
1962,

. Hillman, Donald J. “Grammars and Text Analysis.”” Report

No. 1, Computational, Phonological, and Morphological Lin-
guistics and Retrieval Studies, Cenler for Information Sciences.
Bethlehem, Pa.: Lehigh University, 1965,

. Wang, W, 5, “T'wo Aspect Markers in Mandarin.” In Project

on Linguistic Analysis, report no. 8, 1964.

Hashimoto, Anne Yue. “Resultative Verbs and Other Prob-
lems.” In Project on Linguistic Analysis, report no, 8, 1964,
Watt, W, C. “Acceptance, Acceptability, Grammaticality,
Sentencehood.” National Burcau of Standards Repor! 9051,
1964,

tic Foundafions fOr a
Theory of Meaning. Mechanical Translation Group. Chicago:
University of Chicago, 1966.

Maittbews, P. H. “Problem of Selection in Transformational
Grammar.” Journal of Linguistics, no. 1 (1963).

57

