399

ADAPTATION OF MONTAGUE GRAMMAR TO THE
REQUIREMENTS OF PARSING

by

Jan Landsbergen

The paper describes a variant of Meontague grammar, of which the composi-
tion rules have analytical counterparts on which a parsing algorithm can be
based. Separate attention is given to the conseguences of including rule

schemes and syntactic variables in the grammar.

1. INTRODUCTION

In this paper a variant of Montaghe ¢grammar, called M-grammar, is
developed, for which an effective parsing procedure can be designed.

By "Montague grammar” I mean the formalism for defining the syntax
and semantics of both natural and formal languages that is described in
Montague's paper "Universal Grammar® (MONTAGUE, 1970), henceforth UG. The
grammar of the English fragment in "The Proper Treatment of Quantification in
Ordinary English" (MONTAGUE, 1973), henceforth PTQ, is awell-known application
of this formalism. Montague grammar is especially attractive because of its
elegant way of defining an interpretation for a natural language, which it
does by means of a syntax—directed translation into a logical language for
which an interpretatlon is defined directly. This makes Montague grammar
suitable, in principle, for application in question-answering systems,
where the translation from a natural language inte a logical language is a
useful intermediate step (¢f., for instance, BRONNENBERG et al., 1980).

However, Montague grammar is a generative formalism. It generates
natural language sentences and their logical forms "in parallel". In a
question-answering system a parser is needed, i.e. an effective procedure
which assigns to an input question the syntactic derivation tree{s) reguir-
ed for the translation into the logical language. For applications like
this the framework of UG has to be adjusted in suck a way that for the
grammars within the modified framework a parser can he designed.

400

Obviously such a parser would alsc be a useful testing tool during the
development of a large grammar,)

" "Although the present paper mainly deals with syntactic problems, it
gives due attention to the conditions that have to be fulfilled in eorder
to maintain the systematic correspondence between syntax and semantics,

The paper is organized as follows.

In Section 2 M-grammars are defined. The rules of an M-grammar,
called M-rules, are compositional rules which construct a4 labelled bracket-
ing, called S-tree, from "smaller" S-trees and ultimately from basic expres-
sions. In having rules operating on labelled bracketings instead of strings,
as in PTQ, I follow the proposal in PARTEE (1973). As Montague's operations
on strings can always be reformalated in terms of labelled bracketings, this
is not a restrxiction. The domain in which the M-rules operate, i.e. the set
of labelled bracketings that are allowed as possible inputs and outputs of
these rules, ls defined separately, by means of a context-free grammar,

The language defined by the M~grammar is a subset of the language defined
by this context-free grammar.

Each compositional M-rule has to obey the condition that it has a
wnique apalytical counterpart. In Section 3 an analytical version of an
M-grammar iz defined on the basis of these analytical rules. It 1s proved
that the compositicnal and the analytical version of the grammar define
the same language.

Section 4 describes a parsing algerithm based on the analytical vexr-
sion of the grammar, Thisg parser operates as follows. First a context-free
parser generates the “"surface trees” for the input string, according to
the context-free grammar. Then the analytical M-rules are applied to each
surface tree.

In Section 5 the frawework of M-grammar is extended by the introduc-
tion of rule schemes, abbreviations for a possibly infinite set of rules.

A modified vexsion of the parser which is able to deal with these rule
schemes is defined.

An important feature of Montague grammar is the use of syntactic
variables (heo, hei, etc.). They are important tools for attaining a system
atic relation between syntax and semantics, but they cause problems for a
parsing system. These problems and their solution are discussed in Section
6.

In Section 7 a comparison is made with Friedman and Warren's parser for

PIQ and Petrick’s pargser for Transformational Grammar.

401

2. M-GRAMMARS

In this section I will define M-grammars and compare them with
Montague grammars as described in UG and PTQ.

An Megrammar is a triple <G$,B,R>, where Gs is a J.oop—free1 context-
free grammar, B is5 a set of basic expressions, R is a set of M-rules.

The context-free grammar GS is a guadruple <vN,VT,S,P>, where VN is a
set of syntactic categories, VT is a set of terminal symbols, S is a
distinguished syntactic category and P is a set of production rules. GS
defines a set Ls of labelled ordered trees, called S-trees, in the usual
way:
= a node labelled by a terminal symbol is an S-tree.
- if A »—Bl....Bn is a productioﬁ rule and tl""'tn are S—-trees with top

nodes labelled Bl""'Bn respectively, then A[tl""'tn] is an 8-tree.

I use the labelled bracketing notation A[tl,...,tn] for a tree with top
node labelled a and tl""'tn as jmmediate sub-trees, The set of basic
expressions B iz a subset of Ls' An M-rule Ri € R has the form of a
condition-action pair: <Ci,Ai>, where Ci is a predicate on n-tuples of
S-trees SWypaaapu > {if R, is an n-ary rule}. 4; is a function applicable
to the n-tuples of S-trees for which Ci holds; Ai(<u1,...,un>), il.e. the
result of applying function ai to <u1,....un>, is an S-tree. Ci and ai st
be finitely characterizable.

In order to make parsing possible, the M-rules must obey two conditions:

CONDITION Ci, For each compoesition M-rule Ri = <Ci,Ai> there is an analytical
counterpart Ri = €Ci,A£> wheke Ci is a predicate applicable to S-trees and
Ai is a function from S-trees to n-tuples of S-trees, such that

(i} Ci and Ai can be expresgsed by means of effective procedures;

{ii) for all Uproooetpy v € Lo: Ci(<u1,...,un>) and v = Ai{<u1,-..fun>)

i Ll =]
if and only if Ci(v} and <Uysecaau > Bifv}.
Condition i requires that each M-rule has a unique inverse rule. This
is a severe condition. In several cases where, from a purely generative point
of view, only one rule is needed, we need a rule scheme in M~grammars (cf.

Section 5.

CONDITION €2, There is a measure for S-trees, i.e. a function p from S-trees
to non-negative integers, such that for each rule ri holds:

if Ci(‘ulf...,un>) and v = Ai{<ul,...,un>), then for each u {1 sk £n):

plv) > u(uk).

402

An example of a measure is the number of nodes of an S-tree,
Condition C2 requires in that case that the 'results of the application of a
compositional rule iz an S-tree that is blgger than any of the input S-trees.
In Montague grammay each rule operates on strings of specific syntac-
tic categories and delivers a string of a specific category. In order to
maintain this property for M-grammars, we define the syntactic category of
an S-tree as the category of its top node and impose Condition C3.

CONDITION C3. For each n-ary rule R, there are syntactic categories

i
Pl"”'Pn' Pr € VN such that if Ci(<u1,....un>) holds, then the categories
of the top nodes nf Ryr.ee o8, are Pl' ...,Pn, respectively, and the category

of the top node of Ai (<ul,...,un>} is Pr.

Because of Condition C3 each rule can be written in a way which is close
to the notatiocn in UG:

R, = <<C_ A, >,<P

i L it ¥ 1'“"Pn>'pr)‘

The desired systematlic relation between syntactic and semantic rules
can now be achieved in the usual way: there has to be a mapping ¢ from
syntactic categories to semantic types and the semantic composition rule
corresponding with R:I. must be applicable to expressions of types
¢(Pl),... ,MPn) and build a logical expressicn of type @{Pr) .

M-rules that satisfy Condition C3, still differ from the rules im UG in
being partial rules.2 The actions A

that satisfy Condition €

i only have to be applicable to S-trees

The M-rules are t.heiactual rules of the grammay , They are composition
rules, which build an $-tree, starting from the basic expressions. The
context-free grammar Gs defines the domain in which the M—xules operate.

The way in which the M-rules construct an S-tree can be indicated by
means of a derivation tree, or D-tree. A D-tree is a labelled ordered tree
with basic expressions at the terminal nodes and indices 1 of M-rules R, at

i
the non-terminal nodes. I will use the notation i<d ,...,dn‘b for a deriva-

tion tree with index i at the top node and imediati sub-trees dl,...,d "

With each S-tree v that can be gensrated by the M-rules a D-tree
corresponds which shows the derivational history of v. There may be more
than one D-tree for v; in that case v is ambiguous with respect to the
H-rules.

It should be noted that the applicability of an M-rule depends only

403

on the input S~trees, not on their D-trees.
The set of D-trees of an arbitrary $-tree v is defined as follows:

D-trees (v) = if v € B then {v}

def.
else {i<d,...,d > | 3u,¢eccru €L, R ke
Ci(<u1;-.-;un>] Ay = Ai{cul,...,un>)

AV¥i: 1€isn = dj € D—trees(uj)}

Less formally: if v 1s a basic expression, v is its own derivation
tree. The derivation trees of an S-tree v that is not a basic expression
have a top node labelled with an index i of an M-rule and dl""'dn as
immesdiate sub-trees. In that case there must be a tuple of S-trees
Ugseneru > such that dl""'dn are their D-trees and such that M-rule R,
is applicable, delivering the S-tree v.

Let o{v) be the terminal string of v: the seguence of terminal symbols
at the terminal nodes of the S-tree v. The language L defined by an M-gram-
mar is the set of terminal strings of S-trees with top node 8 that have a
derivation tree.

L =ger. (o | 3ve Lo: ¢=0(v) A D-trees(v) #0 A

A top-node-cat (v) = S},

Example of a simple M-grammar

GM = <GS,B,R>.
The contex~-free grammar Gs is defined as follows:

v, = {x, 7,1V}

VT = {Jchn, Mary, and, walk, talk}
The distinguished symbol is t.

The production rules are: t +~ T + IV

T+T+and + T
- {John}
Mary
walk
w - fratk)
The basic expressions of the M—grammar are:

B = {T[Johnl, T{Maryl, Iv[walkl, rvlitalkj}.

404

The set of ¥M-rules R consists of two rules: rl and R2. In this paper
no specific notation for the M=rules is preécribed. I will explain the not:
tioh used in the examples in an ad hoc manner.

RILE R1. Cl(<u1,u2>) =def.

u =T[T{ I, and, T J] A u, = vl 3.
Here IV[L] is the notation for an arbitrary S-tree with catego-

xry IV at the top. So Rule Rl is applicable to a pair <uy > if

u, is of category IV.

1

Ai(<u1,u2>} = det. t[ulfu]o

2
30 the result of A1 iz an S-tree with category t at the top and

o, u, as immedjiate sub~trees.

RULE R2, C,{<u,,us>) =T Jauw, =101

Taef, M1

By (<ug,u>) =goe T[“1‘ and, u2].

The context~-free grammar generates S-trees like
t[Tfaohn], 1v[walkl] (fig. 1), t[T[TLJohn], and, T[Maryl], IV[walk]]l (fig.
The S-tree of fig., 1 cannot be generated by the M-rules. The S-tree of fig
can be generated by the M-rules and the corresponding derivation tree is
1<2<T[John], T(Mary]>, IV[walkl> (fig. 3).

T v
| I 1IN !
John walk T and T walk

John PBLY
fig. 1 fig. 2

1
”””’ ‘H‘hhhhgatwalk]
-r[aoé}mw]

fig. 3

It can easily be checked that Rules R1 and R2Z obey Conditions Ci, C2 and

C3, if we choose the number of nodes as the measure function.

405

The analytical versions of Rules Rl and R2 are:

RULE R1'. Ci{v) v = €[l 3, and, TL 11, IVC 1],

“det.

Ai(v) =

def. <v.,1, v.2>.

Here vj.i iz the notation for the i-th immediate sub-tree of v_..

RULE R2'. Cé{v] =

dqer. V= o[3, and, T[13

Ai(v) = <v,1, v.3>,

def,

3. THE ANRLYTICAL VERSION OF AN M-GRAMMAR AND ITS EQUIVALENCE TO THE
COMPOSITICNAL VERSION

Because the rules of an M-grammar have to satisfy Condition C1,
there is an analytical Rule Ri = <ci,n£> corresponding with each composi-
tion rule R, = <C_,A.>. If R' is a set of such analytical rules we will

call <GS,B,;'> anianilytical M-grammar. An M~grammar as defined in Section
2 will be called a compositional grammar, For each compositional grammar
there is an analytical version.

The set of derivation trees that an analytical grammar assigns to an

S-tree is defined as follows:

if v € B then {v}

else {i<dl,..;;dn> I 3u1;....un£Ls; R‘{E R':

D—treesan(vl = ef.
C;_(V)A <u1,...,un> = Ai(vl A

¥ij: lsjsned, ¢« D—treesan(uj)}.

3

The definition suggests how the derivation trees of v can be found by
top—-down application of the analytical rules. In Section 4 a parser will he
described based upon this definition. In this section I prove the equiv-
alence of the analytical and the compositional version of an M-grammar.

I will call the two versions squivalent if they assign te each string
the same set of derivation trees. As both versions use the same context-free
grammar Gs’ it ig sufficient to prove that they assign to any S=-tree v the

same set of derivation trees,
LEMMA 1, Vv ¢ Ls: d ¢ D-trees{vi = d ¢ D—treesan(v).

PROOF. We use induction on the number of nodes in d: #nodes{d).

-

The analytical versions of Rules Rl and R2 are:

ROLE R1'. Ci{v) v = t[T{1T 3, and, ®C 31, V[1],

“def.

Ai(v} = <y l, v.2».

def.

Here vj.i is the notation for the i-th immediate sub-tree of v_.

]

RULE R2'. C}(v) v =7[T[1, and, T[1]

“def.

[] —
Az{v) =def. <v.1l, v.3>,

3. THE ANALYTICAL VERSION OF AN M-GRAMMAR AND ITS EQUIVALENCE TO THE
COMPOSITIONAL VERSION '

Because the rules of an M-grammar have to satisfy Conditiom €1,

there is an analytical Rule Ri = <Ci‘Ai

tion rule Ri = <Ci,Ai>. If R' is a set of such analytical rules we will

call <GS,B,R'> an analytical M-grammar. An M-grammar as defined in Section

> corresponding with each composi-

2 will be called a compositional grammar. For each compositional grammar
there is an analytical version.
The set of derivation trees that an analytical grammar assigns to an

S-tree is defined as follows:

D-trees, (v) =, . if v ¢ B then {v}
else {i<d1,...,dn>| Juy ... €L, RIER':
C_,'L(v} A<uy,eaou > = Af(v) A

Vi: 1£€3snwd, ¢ D—treesan(uj}}.

3

The definition suggests how the derivation trees of v can be found by
top-down application of the analytical rules. In Section 4 a parser will be
described based upon this definition. In this section I prove the equiv-
alence of the analytical and the compositional wversion of an M-grammar.

I will call the two versions equivalent if they assign to each string
the same set of derivation trees. As both versions use the same context-free
grammar Gslr it is sufficient to prove that they assign to any S-tree v the

same set of derivation trees.
LEMMA 1. Vv ¢ LS: d € D-trees{v) = 4 ¢ D—treesan(v}.

PROOF. We use induction on the number of nodes in d: #nodes(d).

406

1. #nodes(d) = 1,
If a derivation tree d in D-trees!{v) consisis of one node, v must be a

basic expression. In that case
D-trees(v) = D—treesan(v} = v,

So the theorem holds for all d with #nodes(d} = 1.
2., Assume that the theorem holds for all d with

#nodes (d) < k.

3. Proof for #nodes{d) = k+ 1.
d has more than one node and therefore must have the form i<dl"“'dn>'

According to the definition of D-trees(v}:

(1 Elul,...,un € Ls’ Ri € B such that Ci(<u1,...,un>),
v = ni{<u1,{..,un>} and dj € D—trees{uj) {1 £3 <n).
From Ci{<u1,...,un>} and v = Ai(<u1,...,un>) it follows {Conditien Cl} that

BRi € R' such that Ci(v) holds and <u,,...,u > = Ai(v). Because #nodes(d) =
k+1, #nodes(dj
= dj € EFtreesan[uj). So from (1) we can deduce (2).

) £ k. Acceording to the induction hypothesis: djeD—trees{ud

{2} Sul,...,u € LS, R! ¢ R' such that Ci(v),

n i

Wypaee 0> = Al (v} A d, € D-trees {(u), (1 £3 <€ mn). a
L J an 3

n
From (2} it follows immediately that d ¢ D—treesan(v}.

LEMML 2. Vv ¢ L : d ¢ D-trees_ (v) = d € D-trees(v).
PROOF. Completely analogous to the proof of Lemma 1. [J

THEOREM, ¥v ¢ L_: D-trees(v}) = D-trees_ (v).

PROOF., The theorem follows immediately from Lemma 1 and Lemma 2. [

4. A PARSER FOR M-GRAMMARS

On the basis of the definition of D_treesan(V}' a procedure M-PARSER
can be designed which assigns to an S-tree v its set of derivation trees.
I present here the main structure of this procedure. It is so close to the
definition of D-trees, that one can trust that it indeed delivers the set
of D-trees defined by the analytical M-grammar. The proof of Section 3

407

guarantees that this is the set of D-trees defined by the compositional

M-grammar.

M-PARSER (v) :
begin
SD 1= @
if ve B
then S := {v}
elze for each analytical rule Ri € R' do
L}
if Ci(v)
then begin
WUiraaasu > 3= Ai(v);
for each tuple,<d1,...,dn> €
H—PARSER{ul) XL L..% M-PnRSER{un} do
Sp #= 8, U {i<d1,...,dn>}
end;
M=-PARSER := SD
end

M-FARSER applies the analytical M~rules to the S-tree v in a top-to-
bottom fashion. SD is the set of D-trees, originally empty. Successful

application of a rule Ri to v results in a tuple <u1,...,un>. M-PARSER is

then applied to LIPERRL I Each application of M-PARSER to a uj gives a

{possibly empty) set of D-trees for uj. For each tuple of D-trees
<d1,...,dn> in the cartesian product of these sets, a D-tree i<d1,...,dn>
is constructed and added to Spe M-PARSER comes to a successful end if it is
ultimately, at the deepest level of recursion, applied to basic expressions,

The procedure M-PARSER is effective, i.e, it ends after a finite
number of steps. This follows immedjately from the fact that Ci and Ai are
effective procedures and that each application of A{(v) results in a tuple
of S-trees with a measure smaller than u{v). Because of this the maximal
recursion depth of M-PARSER cannot be more than the measure of the S-tree
to which it is applied.

I assume here that the number of rules R{ is finite. In Section 5 I
will discuss rule schemes, which may define an infinite number of rules.

M-PARSER is not yet a complete parser. It has to be preceded by an
ordinary context-free parser, called CF-PARSER, which assigns to a string
s all S-trees that have s as their terminal string and a top node labelled

S. Thanks to the requirement that the context-free grammar is loop-free,

408

there is always such a parser. The complete algorithm is:

PARSER{=):
begin SD = @
for each v ¢ CP-PARSER(s) do
S_ := & | M-PARSER(V);

D D

PARSER := SD

end

5. RULE SCHEMES

The parsing procedure of Section 4 is only effectiwve if the number of
M-rules is finite. In this section I wiil define rule schemes, abbrevia-
tions of a (possibly) infinite set of rules, and describe & parser for an
M=grammar with such rule schemes. In Montague grammars rule schemas occur:
"rule" §3 of PTQ, for instance, is in fact a rule scheme, with an instance
for each variable index. In M~grammatrs rule schemes are needed more often
than in purely generative grammars, because of the condition that for each
single rule there is a unigue inverse rule.

A rule scheme is a triple § = <P,I,A>.

- P is a possibly infinite set of parameter values.

- I is a function from n-tuples of S~trees <0y,...,u > to subsets of P,
for an n-ary rule scheme.

~ A is a function with twe arquments: a parameter value p and an n-tuple
of S5-trees <u1,...,un>: the result of the application of A is an S-tree.

P, I and A must be finitely characterizable.

In an ordinary M-rule <C,A», condition C decides whether or not the
rule is applicable to a particular tuple AL RAREYS e of S-trees, A rule
scheme <P,I,A> may be applicable in several ways and each parameter value
in I{<u1,...,un>) determines one way in which the rule scheme is
applicable.

EBach yule scheme <P,I,A> defines a set of M-rules {<CP,AP>I pe P},

where

Cp{<u1,...,un>) “gef. P € I[<u1,...,un>)

AP(<u1,...,un>) = A(p,<u1,...,un>).

def.

A rule <CP,AP> is called an instance of the rule scheme.

409

Rule schemes have to obey three conditions: CSt, CS2 and CS3.

CONDITION ¢Sl1. For sach rule scheme § = <P,I,3> there is an analytical

rule scheme S5' = <P,I',A'>, such that

~ I' is a function from S-trees to finite subsets of P.

- &' is a function with twe arguments: a parameter p € P and an S-tree;
the value of &' is an n—-tuple of S-trees.

- I' and A' can be expressed by means of effective procedures.

- Vul,...,un. v e LS:
p € I{<u1,...,un>) AV = A(p,<u1,...,un>) if and only if

pe I(v) A Wypeenru > = Al(p,vi-

CONDITION C52. Condition €2 must hold for all instances of the rule scheme.
CONDITION €S3. Condition €3 must hold for all instances of the rule scheme.

An analytical rule scheme <P,I',A'> defines a set of analytical

M~rules {<CP'),A£)> | p e ®}, where
r - [l
Cp(v) daf. p e L'(v}

n;)(v) =d4ef, ' {p,v).

From these definitions and Condition CS1 it follows immediately that each
instance <CP,AP> obeys Condition €l and that <c}_;,h£’> is its analytical
counterpart.

The conclusion can be that from an M-grammar with rule schemes a
compositional and an analytical M-grammar, as defined in Sections 2 and 3,
can be derived. The functions D-trees and D—treesan can be expressed in
terms of these derived M-grammars. The equivalence proof of Section 3
is valid for M-grammars with an infinite set of rules and therefore is

also valid for grammars with rule schemes.
The procedure M~PARSER of Section 4 has to he adjusted. For a gram-

war with a finite number of rule schemes Sj'. it becomes:

M-PARSER' (v} :
begin

SD 1= @

if ve B

then SD = (v}

else for each rule scheme 3,—'_ do

410

for each parameter value p ¢ Ii(v) go

begin
<u1,....un> = Ai(p,v):

for each tuple <d1,...,dn>e M-PARSER" (ul} ® ,.. X M=-PARSER' {un) do
8y =S, U {ip <dl,...,dn>]

end;

M-PARSER' := SD

The effectiveness of M-PARSER' can be established in & similar way as
was done for M-PARSER, taking into account that there is a finite number
of rule schemes Si and that Ii{v} is a finite set.

The correctness of M-PARSER' can be established in the same way as the
correctness of M-PARSER, if we realize that all parameter values p € Ii(v)

specify exactly the applicable instances of the rule schemes Si
The parser has been described in terms of rule schemes only. This is

no restriction, because an M-rule can always be considered as a special

case of a rule scheme, where the set P of parameter wvalues has only one

element.

Example
I will now describe an M-rule scheme for PTQ rule S54. The original rule

is:

is an expression of category T and u, is an expression of
L

RULE S4. If u1
is an expression of category t, where ul

category IV, then ulué
is the result of replacing the first basic verb in u, by its third
person singular present.

This rule cannot be representad by a single M-rule, because it does
not have a unigue inGerse rule, The point is that the first basic verb in
the IV might, in principle, be preceded by a verb that is already in third
person singular present form.

The M-rule scheme for 54 is the triple <P,,1,,A;>, where P, is the set
of all possible paths in S-trees. A path is a sequence of branches from the
top to a sub-tree. As each branch can be represented by a positive integer
(n represents the branch to the n-th daughter), a path can be represented
by a sequence of positive integers il...in. 5o P4 is the set of all such

sequences. We define:

411

il...im < ji"'jn if Ik (1 = k £ n): i1 = jipt-ofik = jk'
Ieer < Jpeq-
I4i<u1,u2>) Sdef. {p i u, = 1A u, = v[] A u,.p

is the first basic verb in uz}.

For a given pair <u1,u2> there is at most one such path p, which
jllustrates that from a purely generative point of view a rule scheme is
not needed.

A4(<u‘,u2>} =def. t[ul,ué] where ué is the result of replacing
in u, the basic verb u,.p by its third person
singular present.

The inverse rule scheme is <P4,13,Aa>.

() =q0p. P [v=¢tlTL 1, Iv[1] A v.2.p is a verb in third
person singular present form a'TQPi < p such
that v.2.p; is a basic verb},

The defipnition of Ia shows that if, for instance, v.2 contains exactly two

verbs, both in third person singular present form, two instances of the

inverse rule scheme are applicable,

A&(v} = <v,1, vi>,

def. 2

where vé is the result of replacing in v.2 the

verb v.2.p by its basic form.

6., SYNTACTIC VARIABLES

An important feature of Montague grammar is the use of syntactic
variables. The PTDQ grammar for instance, contains an infinite number of
varlablies heo, hel, hez, etc. as basic expressions.3 It also contains rules
that eliminate a variable by substituting a term for it. PTQ rule 53 is
such a 'variable-removing' rule; more precisely, it 1ls a rule scheme, with
instances for each variable. The problem with rule schemes like 83 is that
they assign an infinite number of derivation trees to each sentence, most
of them only differing in the choice of their variables.

If we assume that there is a systematic correspondence between

412

syntactic variables and variables of the logic, as expressed by Janssen's
Variable Principle (JANSSEN, 1950), we are ;ble to partition the infinite
set of derivation trees of a sentence into a finite rumber of equivalence
classes, The members of an equivalence class of derivation trees differ
only in the choice of their variables and, therefore, correspond with
logical expressions that are logically equivalent. From this point of view
only one 'canonical' derivation tree of each equivalence class is of
interest, I will define this canonical derivation tree as follows.

First the level of a node in a D-tree is defined as the lenagth of the
path {the namber of branches) from the top node to that node.

A variable-removing node in a D—tree is a node corresponding with a
rule that eliminates some variable hek. Acoording to the Variable Principle
the corresponding translation rule into the logic binds the corresponding
logical variable.

A canonical D~tree is a D-tree where a variable-removing node at level
N removes the variable heN.4

Figure 4 shows one of the D-trees assigned by the rules of PIQ to the
sentence *John loves every woman'. Figure 5 shows the corresponding cano-—
nical D-tree, At the nodes of these D-trees the index of the corresponding
PIO rules and the removed variables are indicated (index 2? stands for the

first sub-rule of 52, where syntactic operation Fy places ‘every' before
a CNj.

14,h235‘*-ﬁh“hﬁhﬁh
T[J'o?z'nJ/’/ /4 ,hi\
4
/ \
CHfwoman] T[he3J 5

™l love] T Ehe7]

Figure 4

413

14,he

/

[John]

4 he
o \
2® 4
cnl] T[h/] \5
woman e
0 /////, \\\\\\

Tv[lovel The,]
Figure 5

I will assume here, without proof, that each of the above-mentioned
equivalence classes of D-trees contains one canonical D-tree. In that case
a parser only needs to generate canonical D-trees. The assumption is only
correct if each variable-removing rule is an instance of a rule scheme
with instances for each variable. Let <P,I',A'> be the analytical versiocon
of such a rule scheme (each instance is a 'variable-introducing' rule).

We will replace I' by a function I", which has a second argument, N.
Now, I"({v,N}) does not giwve all parameter values for v, but only those that
are relevant for the rule instances that introduce variable heN. For
analytical rule schemes that do not introduce a variable, I"(v,N) is equal
to the original I'(v).

If the parser tries to construct a new node of the derivation tree
at level N1 by applying rule scheme <P,I',A'> it has to call I"(V,Nl). This
can be achieved by giving the new parsing procedure, M-PARSER", the level N
as a second argument, If the parsing process is started by calling

M-PARSER" (v,0), only cancnical derivation trees are generated.

M-PARSER" (v,N}:

begin
SD = f;
if ve B

then SD = {v}

else for each rule scheme S; do

i
for each parameter value p € II(V,N) do
begin
<u1,...,un> 1= Ai{p,v):

for each tuple <dl,....dh> I3 H~PARSER"(u1,N+1)X ...)(M—PARSER“(un,N+1)

414

8o 8, =S v {:Lp pCITRRRYL I
end;

— "o

M-FARSER" : SD

end

The complete parser becomes:

PARSER" (s) :
begin SD =@

for gach v ¢ CF-PARSER(s) do
SD =8, v M-PARSER" (v,0};
PARSER" := SD

end

The effectivity of M-PARSER" follows immediately frém the effectivity
of M-PARSER', and the fact that Ii(v,N) delivers a finite set of parameter
values.

However, M-PARSER' and M-PARSER" are only effective if a measure can
be defined such that each rule satisfies Condition C2. The number of nodes
is not an adequate measure here, hecause rules that substitute a single
term ('John' for example) for a variable, like PTQ rule 514(i), would not
increase the number of nodes. Therefore, we choose the number of ‘'non-
variable' nodes as the measure, This still precludes rules like PIQ rule
{scheme) $14(ii), which only substitutes a variable for another variable,
These rules are superfluous from a semantic point of view. They seem to
have been included by Meontague in order to make 514 a total rule. This
wmeasure also precludes the 'vacuous' applications of S14 that arise when
a term is substituted for a variable that is not present in the expression.
FRIEDMAN & WARREN (1978) already noticed that these applications of the

rule lead to incorrect translations into the legic.

Example

Ag an example of a rule scheme involving syntactic variables I will
give the M-grammar formulation of PTQ rule scheme S3. The original PTQ
rmle is:

RULE 53, If ul is an expression of category CN and u, is an expression of

category t, then "ay such that ué" is an expression of category

CN, wheres ué comes from u, by replacing each occurrence of hen or

415

himn by he, she, it or him, her, it, respectively, according as
the first basic expression of category CN in u, is of masc., fem.

or peuter gender,

The M-rule scheme for 83 is <P3,IB,A >, where

P, = {<g,Q,n> | g ¢ {masc., fem., neuter},
Q is a set of paths,
n is a variable index}.

Each parameter value is a triple consisting of a gender, a set of paths
and a variable index. (It is not absolutely necessary to include the gender
in the parameter, but it facilitates the formulation of the rule scheme.)

13(<ulou2>J “def. {<g,Qn> | n 2 0, g is the gender of the first
terminal CH in u,,
o=1{p] u,.p=he V u,.p=him }}.

So for a given pair <u1,u2> there is a parameter value <g,Q,n>*> Ffor each
variable index n, where @ is the set of all paths from the top of u, to
variables with this index. Obviocusly, I3(<u1,u2>) is an infinite set, which
contains an infinite number of triples of the form <g.@,n>, where n is the
index of a variable not occurring in Uy, and §# is the empty set.

Ay (<g,Q/n>, <u, ,u2>) = 3ef.
CN[ul, such that, ué]. where “é is the result

of replacing in u, for each p; € Q the variable
at u,.py by the pronoun of the appropriate

case and gender.

The inverse rule scheme is <PB’15’A')’ where

I3(v) =4z, (<g,Qwn> | v = cN[ON[], such that, t[J1 A g is the
gender of first terminal CN in v.! A
v. 3 does not contain variables with index n A
Q is a subset of the set of paths to
pronouns with gender g in v.3}.
AL(<9:Q.n>,v) =5 ¢ <u,,u,>, where u; = v.1 and u, is the result
of replacing in v.2 for all p; € Q the
pronoun v.z.pi by the variable he or himn

according to the case of the pronoun.

416

Ié(v} is an infinite set. The subset of parameter values relevant for the

rule instances that introduce variable heN ox himN is defined as:

Iy(v,N) =g {<g.Qn> | <g,0.n> € Ij(v) A n=N}

7. CONCLUDING REMARKS

The netion 'M-grammar' as described in this paper meets the standard
I formulated in the introduction: it is a wvariant of Montague grammar for
which effective parsers can be designed, and which maintains the systematic
relation between the syntactic rules and the translation rules into the
logic.

As an exercise in the new formalism, the complete grammar of PTQ has
been rewritten in the form of an M-grammar and the corresponding parser
has been programmed.

It may be interesting to compare the parser described here with
Friedman and Warren's parsing method for Montague grammars (FRIEDMAN &
WARREN, 1978), though this comparison is made difficult because of an
important difference between their approach and mine. F. & W.'s parser is
more or less tuned to PTQ, while my goal was primarily to define a ¢lass
of grammars for which the same kind of parsing algorithm can be used.

F. & W, describe the implementation of the individual PTQ rules in detail,
whereas I confine myself to the global algorithmic structure of the program.
A major problem with F, & W.'s parser - based upon an Augmented Transition
Network representation - is that it is difficult to establish its correct-
ness. Especially after reading the passage in F. & W.'s paper (pp.366-368)
about the way in which false parsers are avoided in the case of terms
nested in other terms, one is left with the uneasy feeling that other
complicated cases might have been overlooked. -

In the case of M—grammars the parser can be derived systematically
from the analytical version of the grammar, which can be proved to be
equivalent to the original compositional version. The equivalence of the
compositional and the analytical version of each individual rule must be
checked, hut one does not hawve to bother about the interaction with other
rules. Therefore, it is pogsible to have confidence in the correctness of
the parser, The price paid for this is that there is some redundancy in
the grammar and accordingly in the parsex. If there are M-rules that are

in fact context-free {as is the case for several PTQ rules), they are

417

duplicated in the context-free grammar.
Another comparison that can be made is with Petrick's recognition

procedure for Transformational Grammar (PETRICK, 1963). In order to make
effective recognition and parsing possible, Petrick imposes two conditions

on TG:
t. & recoverability condition on transformations, comparable with but weaker

than my Condition C1!;
2. a condition on the depth of S-embedding in the deep structure.

The second condition has the same objective as my condition C2: to
guarantee that the parsing procedure comes to an end after a finite number
of steps. However, Petrick's second condition is not a restriction on the
individual rules, but on the whole collection of rules.

Chviously, reguiring that transformations make the syntactic trees
bigger, according to some measure, would be unacceptable in TG. Transfor-
mations usually have a kind of paraphrasing character and may even involve
deletions. In Montague grammar, the rules are basically compositional,
they build a new expression from parts that are intuitively smaller. Condi-
tion C2 requires exXpressions that are intuitively smaller to be smaller
in a technical sense as well., Though I follow Partee's suggestion to apply
Montague rules to labelled trees instead of strings, I do not support her
proposal to incorporate transformation rules in Montague grammar, 1t seems
worth while to investigate first what is possible within the more restric-

tive framework of compositional rules.

ACKNOWLEDGEMENTS. I wish to thank W.J.H.J, Bronnenberg, H.C. Bunt,
Scha and editor T.M.V. Janssen for their comments on

J.HB.G. Rous, R.J.H.
an earlier version of this paper, J.H.G. Rous programmed the PTQ parser.

i. A context-free grammar is called loop-free if derivations of the form
A=A are not possible.

2. If the rules are total, i.e. applicable to all expressions of the
required syntactic categories, the translation inte the logic can be
defined in an elegant way, i.e. as a homomorphism between algebras. This
makes it possible to prove that an interpretation of the logic (again
a homomorphism into an algebra) induces an interpretation of the natural

418

language. Therefore, it may be interesting to note that total rules

can always be derived from the partial rﬁles of M-grammar in a trivial

way, by redefining the set of syntactic categories:

- Introduce a category P(uk) for each S-tree . S—trae w is the one
and only S-tree of category P(uk}.

- Replace each rule Ri by an infinite number of new rules, as follows:
if Ci(<u!,....un>) holds, then
(Ai,P[ul),...,P{un)'<9(ui)""'p{un)>' Plu }>
is a new, total, rula, where
Piolu), e la) (Bpree e) Paap Ay (Supeeec)

On the basis of these rules a many-sorted algebra of derivation trees

can be defined, with a sort for each category P(ui) and operations

Ai,P(ul);---,P(un)’ The translation into the logical lanquage can then
be defined as a homomorphism from this algebra into an algebra of

logical expressions.
If total rules are preferred for other reasons (cf., JANSSEN, 1978},
M-grammar allows them, of course, as special cases of partial rules.

3. The introduction of an infinite set of variables is not in conflict
with the condition that the set of pussible S-trees must be defined by
means of a context-free grammar, with a finite set of terminals, The
variables are basic expressions, but not necessarily terminals, They may
be compound S-trees, defined with the help of context-free rules,

4. I assume here, for the sake of simplicity, that all variables hawve the

same syntactic category (as in PTQ).

REFERENCES

BERONNENBERG, W.J.H.C., BUNT, H.C., LANDSBERGEN, S.P.J., SCHA, R.J.H.,

SCHOENMAXERS, W.J. &'E.P.C. VAN UTTEREN, 1980, 'The gquestion-answering
system PHLIQA 1*, in: L. Bolc {ed.), Natural Language Question-
Angwering Systems, Carl Hanser Verlag, Minchen & Wien, 1980,
pp.217-305.

FRIEDMAN, J. & D.S. WARREN, 1978, 'A parsing method for Montague grammaxs',
Linguistics and Philosophy, 2.

JANSSEN, T.M.V., 1980, 'On problems concerning the guantification rules in
Montague grammar', in: G, Rohrer (ed.), Time, PTense and Quanti-
flers, Max Niemeyer Verlag, Tabingen, 1980, pp. 113-134.

419

JANSSEN, T.M.V., 1978, *Compositiocnality and the form of the rules in
Montague grammar, in: J. Groenendiik & M. Stokhof (eds},
Amsterdam papers in formal grammar YI, Proceedings of the
saecond Amsterdam collogquium on Montague grammar and related
topics, hmsterdam papers in formal grammar 2, Centrale Inter-
facultelt Univ. of Amsterdam, 1978, pp.211-234,

MOKTAGUE, R., 1970, 'Universal grammar', reprinted in: R.H. Thomason (ed.),
Formal Philosophy, Yale University Press, MNew Baven, 1974,
PP 222~246.

MONTAGUE, R., 1973, 'The proper treatment of quantification in ordinary
English’, reprinted in: R.H. Thomason (ed.), Formal Philosophy,
Yale University Press, New Haven, 1974, pp.247-270.

PARTEE, B.H., 1973, 'Some transformational exteéensions of Montague grammar’,
reprinted in: B.H. Partee (ed.}, Montague Grammar, Academic
Press, New York, 1976, pp.51-76.

PETRICK, 5.R., 1965, A recognition procedure for transformational grammars,
Ph.D. Thesis, MIT, Cambridge, Mass.

