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A powerful grammar writing system has been developed. This grammar writing system is called GRADE
(GRAmmar DEscriber). GRADE allows a grammar writer to write grammars including analysis, transfer, and
generation with the same expression. GRADE has powerful grammar writing facility. GRADE allows a gram-
mar writer to control the process of a machine transtation. GRADE also has a function to use grammatical rules
written in a word dictionary. GRADE has been used for more than a year as the software for a machine transla-
tion project from Japanese into English. This was supported by the Japanese Government and was called the

Mu-project.
1. Introduction

A powerful grammar writing system has been
developed. This grammar writing system is called
GRADE (GRAmmar DEscriber). GRADE allows a
grammar writer to write grammars including analysis,
transfer, and generation with the same expression,
GRADE has powerful grammar writing facility,
GRADE allows a grammar writer to control the process
of a machine translation. GRADE also has a function
to use grammatical rules written in a word dictionary.

GRADE has been used for more than a year as the
software for a machine translation project from
Japanese into English and from English into Japanese.
This was supported by the Japanese Government and
was called the Mu-project [Nagao 83], [Nagao 84], [Tsu-
jii 84]. This study: ‘‘Research on the machine transla-
tion system (Japanese-English) of scientific and
technological documents®’ is being performed through
Special Coordination Funds for Promoting Science &
Technology of the Science and Technology Agency of
the Japanese Government.

2. Objectives

When we develop a machine translation system, the
intention of a grammar writer should be accurately
stated in the form of grammatical rules. Otherwise, a
good grammar system cannot be achieved. A program-
ming language to write a grammar, which is composed
of a grammar writing language, and a software system
to execute it, is necessary for the development of a
machine translation system [Boitet 82].

If a grammar writing language for a machine transla-
tion system is to have a powerful writing facility, it
must fulfill the following needs.
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OBJECTIVE-1: A grammar writing language must
be able to manipulate linguistic characteristics in
Japanese and other languages. The linguistic structure
of Japanese is very different from that of English, for in-
stance. Japanese does not severely restrict the word
order, and allows the omission of some syntactic com-
ponents. When a machine transiation system translates
sentences between Japanese and English, 'a grammar
writer must be able to express such characteristics.

OBJECTIVE-2: It is desirable that a grammar
writing language have the same framework to write
grammars in analysis, transfer, and generation phases.
It is not desirable for a grammar writer to learn several
different expressions for different stages of a machine
translation.

OBIECTIVE-3: There are many word specific
linguistic phenomena in a natural language. A grammar
writer must be able to add word specific rules to a
machine translation system one after ancther to deal
with word specific linguistic phenomena, and to im-
prove his machine translation system over a long
period. An improvement of this kind is mainly done in
the word dictionaries. Therefore, a grammar writing
language must be able to handle grammatical rules writ-
ten in word dictionaries.

OBJECTIVE-4: There is a natural sequence in a
translation process. For example, a parsing of simple
noun phrases is executed in advance of a parsing of
more complex noun phrases which contain sentential
forms. A provisional parsing of compound sentences is
executed before a parsing of complex sentences. When
an application sequence of grammatical rules is
specified explicitly, a grammar writing system can ex-
ecute the rules efficiently, because the system just needs
to test the applicability of a restricted number of gram-
matical rules. In this way, a grammar writing language
must be able to express different phases of a translation
process in the expression explicitly.

OBJECTIVE-5: A grammar writing language must
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be able to resolve symtactic and semantic ambiguities in
natural languages. But it must have some mechanisms
to avoid a combinatorial explosion.

Many grammar writing languages have been
developed for machine translation systems [Nakamura
85]; Augmented Transition Network (ATN) [Woods
70], which is an augmentation of the push-down
automaton; LINGOL [Pratt 73] and DCG [Pereira 80],
based on Augmented Context Free Grammar (ACFG);
SYSTEM-Q [Colmerauer 70] and ROBRA [Boitet 79],
based on tree-to-tree transformation. Since push-down
automaton and CFG formalism obviously cannot sup-
port our objectives 1-4, it is not easy to write a gram-
mar using ATN and ACFG. Tree-to-tree transforma-
tion formalisms basically can support our objectives
(especially objective 2). But SYSTEM-Q does not have
a function to express a sequence in a translation process
{objective 4). ROBRA does not allow writing rules in
word dictionaries {objective 3), and it does not have a
mechanism to explicitly avoid a combinatorial explo-
sion (objective 5). Then, we need a new formalism to
support all these objectives for practical machine
translation systems.

Keeping these points in mind, we developed a new
software system for machine translation, which is com-
posed of the language specification for grammar writing
and its executing system. We will call it GRADE (Gram-
mar Describer). GRADE can support all these objec-
tives as explained in the following sections.

3. [Expression of the data for processing

The form of data to express the structure of a
sentence during analysis, transfer, and generation pro-
cess has a strong effect on the framework of a grammar
writing language. GRADE uses an annotated tree struc-
ture to represent a sentential structure during transla-
tion process. Grammatical rules in GRADE are de-
scribed in the form of tree-to-tree transformation with
the annotation to each node.

The annotated iree in GRADE is a tree structure
whose nodes have lists of property names and their
values, Fig. 1 shows an example of the annotated tree.

The annotated tree can express a lot of information
such as syntactic category, number, semantic marker,
and other things, and there is no limitation in the
number of properties. The annotated tree can also uses
a flag in its node, which control the process of a transla-
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Fig. 1 An example of an annotated tree in GRADE.
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tion similar to a flag in a conventional programming
language. For example, in a grammar of generation, a
grammatical rule is applied to all nodes in the annotated
tree whose processings are not finished. In such a case, a
grammatical rule checks the DONE flag whether it is
processed or not, and seis T to the newly processed
Ones.

4. Rewriting Rule in GRADE

The basic component of a grammar writing language
is a rewriting rule. The rewriting rule in GRADE
transforms one annotated tree into another annotated
tree. Because the tree-to-tree transformation by this
rewriting rule is very powerful, it can be used in the
grammars of analysis, transfer and generation phases
of a machine translation, as stated in the objective 2.

A rewriting rule in GRADE consists of a declaration
part, in which attributes of a rewriting rule are defined,
and a transformation part, in which conditions and a
result of the rule application are written. An example of
the rewriting rule, CHECK__NOUNS, in GRADE is
shown in Fig. 2.

4.1 Declaration part

The declaration part has the following four com-
ponents: Directory entry part, Property definition part,

CHECK_WDUNS.rr;
directory_gniry:
owner{J NAKAKURA)Y
version{VOiLO2Z] &
last update(8474718); Beclaration
prop. def v part
JCAT:
Lypefud.
valug(ROUN VERE ADJ}:
wer_import:
BHONSNP;
var_init;
WBUKE;
matching_instructiion;
Tevel{3,10);
Teft_to_right:
bottom_to_top:
depth;
order{Z.noskip):
Lrae;
matchtag_condition;
$({X0 A1 BEN1 XZ EEK2 X3 EEKI X4 #2))
XO.KONSKP = ERONSNP VAL:

LSRR I A

L2= W' | NP

X3= N | WP'; Yransformation
= Nt | MR part

substiructusra_opefation:
17 X1, )_PASS="YES":
then BRceca)l-sg{CHECK_PATTERN
Tf X2 BEKZ A3 BKK3 X4 #2) 1i31):
else BR==call-gg{ FOUR_OR_MORE_ROUNS
E{ X1 BKK1 X2 BKKZ X3 BKK3 X& #2) 1ist):

end_1T:
OAUME <= BLIME.VAL;
creation;
§f X1.J)_PASS="YES*
then (X0 X1 BKK1 BA))
else
(X0 BA)}:
end_if;

end_rr . CHECK_NOUNS

Fig. 2 An example of a rewriting rule,
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Variable declaration part, and Matching instruction
part.

A directory entry part contains a name of a grammar
writer who wrote the rewriting rule, a version number
of the rewriting rule, and the last date of the revision. In
Fig." 2, the directory entry part shows that the rule
CHECK__NOIUNS was written by J. NAKAMURA on
84/4/19 and the version of this rule is VO1L02. This
part is not used at the execution time of the rewriting
rule. A grammar writer is able to see the information
written in this part by using the help facility of the
GRADE system, for example, when he finds something
wrong in the rewriting rule. This facility is necessary for
a machine translation system, when many grammar
writers cooperate to develop the system.

In a property definition part, a grammar writer
declares property names and their values. In Fig. 2,
J_CAT (Japanese Category Symbol} is used as a pro-
perty name and its value is one of NOUN, VERB, or
ADIJ. A grammar writer can remember what properties
he uses. This part is useful to check the consistency of
rewriting rules, when the grammar becomes very large.

In a variable declaration part, a grammar writer
declares the names of global and local variables. In Fig.
2, this part shows that @ NONSNP is a global variable,
which should be declared in other rule that call this
rule, and @UME is a local variable, which is used in
this rule or rules called by this rule. A grammar writer
can use variables to control rule applications like
registars in Augmented Transition Network.

In a matching instruction part, a grammar writer
specifies the mode of application of the rewriting rule to
an annotated tree (See section 4.3).

4.2 Transformation part

The transformation part specifics the tree-to-tree
transformation in the rewriting rule, and has the follow-
ing three parts. (1) Matching condition part: where the
condition of a structure and the property values of an
annotated tree are described. (2) Substructure operation
part: which specifies operations for the annotated tree
that have been matched with the condition written in
the matching condition part. (3) Creation part: which
specifies the structure and the property values of the
tranformed annotated tree.

4.2.1 Matching condition part

The matching condition part specifies the condition
of the structure and the property values of the an-
notated tree, The matching condition part allows a
grammar writer to specify not only a specific structure
for the annotated tree, but also structures which may
repeat several times, structures which may be omitted,
and structures for which the order of sub-structures is
free. This -function is used to manipulate the linguistic
characteristics, especially in Japanese, which are dis-
cussed in objective 1.

For example, a structure, in which adjectives (ADJ)

matching_congition;
-y {ADIS R);
ADJ ... ADJ K ADJS: mny{%{ADJ)):
{a) The structurg. §n which adjectives (ADJ) repedt arbitrary
number ¢f times and then & noun (M) Tollows them in English

matching_corditicn
LTS L(V PRON ADVPART)
W [PROK) ADVFPART PRON: cpticnal:
(b} The structure 1n English 1ike a combination of & verb (V) and
en adverbial parvicte [ADVPARYTY 1n this sequence with or withoul
a proroun (PRON) 1n belween

maiching_condition;
(AL A2 A3 Y);
AL, A3: disorder;
AL: X{{ADVP1 KP1 GA)):
A2: L{(ADVPZ MP2 WO});
Ad: X{{ADVP3 MP3 N1)):

ADVP1 ADVPZ  ADVFY} ¥V -v=»
KP1  GA KWFZ W) WP3 NI

(c) A typical Japanese senteniia]l stiruciurea in which thres
adverbial phrases [ADVP), each composed of & foun phtése [NP) and
a case particle (GA, WO, or NI} preceed & vwerk (V) in no
particular order

matching_conditton;
(NP VP);
NP RUFSER = WP.KUMBER:

{6) the number ggreement betwsen & subjecl noun end & werb

Fig. 3 Examples of a matching condition part.

repeats an arbitrary number of times and is then follow-
ed by a noun (N} in English is written as the expression
in Fig. 3(a).

A structure in English like a combination of a verb
(V) and an adverbial particle (ADVPART) in this se-
quence with or without a pronoun (PRON) inbetween is
expressed as in Fig. 3(b).

A typical Japanese sentential structure in which three
adverbial phrases (ADVP), each composed of a noun
phrase (NP) and a case particle(GA, WO, or NI)
preceed a verb (V) in no particular order is written as
the expression in Fig. 3(c).

The matching condition part allows a grammar writer
to specify conditions about property names and proper-
ty values for the nodes of the annotated tree. A gram-
mar writer can compare not only a property value of a
node with a constant value, but also values between two
nodes in a tree, For example, the number agreement bet-
ween a subject noun and a verb is written as the expres-
sion in Fig. 3(d).

4.2.2 Substructure operation part

The substructure operation part specifies operations
on the annotated tree which have matched the matching
condition part. The substructure operation part allows
a grammar writer to set a property value to a node, and
1o assign a tree or a property value to a variable
declared in the variable declaration part. It also allows
him to call a subgrammar, a subgrammar network, a
dictionary rule, a built-in function, and a LISP func-
tion, which will be explained in secticn 5, 6, and 7. In
addition, a grammar writer can write a conditional
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substructure_operation;

7 NP NUMBER = °*SENGULAR®;
then DET.LEX <+ *A':
elte DET.LEX <= *WIL":
end_if;

Fig. 4 An exampic of a substructure operation part.

c

CREATION:
L((S NP ¥P)):

Fig. 5 An exampie of a creation part.

ABCD.rr;
matehing_fnstruciion;
Tevel[£,100)
teft_to_right;
botiom_to_tep:
depth:
erder(2.noskip);
tree;
matching_condition;
Z((A #FL B C D #2));
crestion;
%((E #1 (A B C D) #2):
end_rr . ABLD;

Fig. 6 An example of a rewriting rule.

Al
A2 B: 1
B2 CZ D2

{a) An input tree

Al
E1 B1 €1 D1
A2
B2 €2 D2
(b} Intermidiste tree changed by the transformation part
£2
IL
E1 61 (1 D1
A2

82 L2 D2

{¢) Fina) tree changed by the rewriiing srule

Fig. 7 An example of an application of a wansformation part.

operation by using the IF-THEN-ELSE form, t¢ con-
trol the translation process. For example, an operation
to set ‘A’ to the lexical unit of the determiner node
(DET, LEX), if the number of the NP node is
SINGULAR, is expressed as in Fig, 4,

4.2.3 Creation part

The structure and the property values of the
transformed annotated tree is written in the creation
part. The transformed tree is described by node names
such as NP and VP which are used in the matching con-
dition part or the substructure operation part. A crea-
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tion part to create a tree whose top node is S and which
has an NP subtree and a VP subtree is written as shown
in Fig. 5.

4.3 Matching instruction part

There can be a case that a grammar writer needs to
apply a transformation to all subtrees in a sentential
structure, For example, when a grammar writer want to
decide determiners of all noun phrases in a sentence, he
needs not only a rule to choose a determiner of one
noun phrase, but also an algorithm to traverse all sub-
trees in a sentential structure. The rule for one noun
phrase is written in the transformation part of a
rewriting rule, and the order of traversal in a tree is
specified in a matching instruction part,

Consider that the rewriting rule shown in Fig. 6 is ap-
plied to the tree in Fig. 7(a). The transformation part of
this rule makes a new node E over a tree whose top node
is A and whose subtrees are B, C, and D, This transfor-
mation is applied to all subtrees in the tree, because the
level of traversing is indicated by LEVEL (0,100) in the
matching instruction part of the rewriting rule. The in-
put tree is traversed from left to right and from bottom
to top in a depth-first order. This order of traversal is
specified by the keywords, LEFT__TO__RIGHT, BOT-
TOM_TOC__TOP, and DEPTH. Therefore the tree in
Fig. 7(a) is first transformed into a tree in Fig. 7(b),
because the subtree whose top node is A2 is an input
tree to the transformation part and is transformed into
a tree whose top node is E1. Then the tree in Fig. 7(b} is
changed for a tree in Fig. 7(c), becuase the subtree
whose top node is Al is transformed in this time.

There are eight types of traverse pathes, which are the
combinations of {left-to-right or right-to-left}, {bot-
tom-to-top or top-to-bottom), and {depth-first or
breadth-first). A grammar writer is able to choose one
of the eight types to control the order of his rule applica-
tion.

5. Control of the grammatical rnle applications

A grammar writing language must be able to describe
the detailed phases of a translation process in the expres-
sion explicitly {objective 4). GRADE allows a grammar
writer to divide a whole grammar into several parts.
Each part of the grammar is called a subgrammar, A
subgrammar may correspond to & grammatical unit
such as the parsing of a simple noun phrase and the pars-
ing of a compound sentence, A whole grammar is then
described by a network of subgrammars. This network
is called a subgrammar network. A subgrammar net-
work allows a grammar writer to control the process of
a translation in detail. When a subgrammar network in
the analysis phase consists of a subgrammar for a noun-
phrase (SG1) and a subgrammar for a verb-phrase
(5G2) in this sequence, the executor of GRADE first ap-
plies SG1 to an input sentence, then applies SG2 to the
result of an application of SG1. This control struc-
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ture makes it possible to use ‘‘a procedural approach”
{Tsujii 84] for resolving the ambiguities (objective 3)
and selecting the most preferable reading of a sentence.

5.1 Subgrammar

A subgrammar consists of a set of rewriting rules. It
is important to decide the order of rule application in a
set of rewriting rules.

One way is for the system to put the same priority on
all rewriting rules, and make all possible tree structures
which satisfy the constrains of each rewriting rule in-
dependently, like context free rules. This is a suitable op-
tion for linguistic research, but not useful for a machine
translation system, because it usually makes so many
translations that the system and users, especially post-
editors cannot manage them,

The other way is for the system to put a pricrity order-
ing in rule applications, make only one possible tree
structure at one time, and generates other possible tree
structures by using a backtracking method, if
necessary. This option allows a grammar writer to use
hettristic knowledge concerning preference of rewriting
rules. When a grammar writer develops a machine
translation system, he must use much heuristic
knowledge to output a transiation which expresses the
first reading of the source sentence.

Therefore, rewriting rules in a subgrammar of
GRADE have a priority ordering in their application.
In other word, the n-th rewriting rule in a subgrammar
is tried before the (n+ 1)-th rule.

A grammar writer can specify four types of applica-
tion sequence of rewriting rules in a subgrammar. Let
us assume the situation that a set of rewriting rules in
the subgrammar is composed of RR1, RR2,-:-, and
RRn, that RRI1,- -, and RRi-1 cannot be applied to an
input tree, and that RRi can be applied to it.

When a grammar writer specifies the first type, which
is called ORDER (1), the effect of the subgrammar ex-
ecution is the application of RRi to the input tree.

When a grammar writer specifies the second type,
which is called ORDER (2), the executor of GRADE
tries to apply RRi+ 1, - -, RRna to the result of the ap-
plication of RRi. So, ORDER (2) means that rewriting
rules in the subgrammar are sequentially applied to an
input tree.

The third and fourth type, which are called ORDER
(3) and ORDER (4), are the iteration type of ORDER
(1) and ORDER (2) respectively. So, the executor of
GRADE tries to apply rewriting rules until no rewriting
rule is applicable to the annotated tree.

Fig. 8 shows an example of a subgrammar. When this
subgrammar is applied to an annotated tree, the ex-
ecutor of GRADE first tries to apply the rewriting rule
CANDIDATE _OF_NOUNS__1 to the input tree, If
the application of this rule succeeds, the input tree is
transformed to the result of the application of the
rewriting rule CANDIDATE__OF_NOUNS__1.
Otherwise, the input tree is not modified. In either case,

SEARCH_CAKDIDATE OF_NOUNS . g3
xatching_fastruction:
order(3):
rr_in_sg:
CAKDIDATE_OF _MOUNS_%:
UP_NP_TO_PRP:
CAKDEDATE_OF_NOUMS_2:
end_sg.SEARCH_CAKDIDATE_DF_NOUNS:

Definition of
8 subgramsmac

CANDIDATE_OF_WOUNS_Y.re:
matching_condigion:
A((RP H));
WP .3 _DEEP_CASE="PARAELEMENT":
substruclyre_operstion:
Bhcnca1l-sgnCUT_WOURS X(F) 113t }:
creation;
T{OA):
end_rr . CAKDIDAYE_OF _NOUNS_1:
CANDIDATE_OF_ROUNS_2.rr:
matching_condition:
(X V1 F YR
((X.)_CAT=*5") end [X.J_PARA:-"T"))
or
(X $5¥55"ROGT" )
X I_PASS_3=~"YES';
substructure_cperation;
BA<=call-5gn[CUT_MOUNS L(YL # ¥2) Vst )i
creation;
T{(K A}
K. J_PASS_3«w"YES'
end_re CANDIDATE_OF_WOUKS_2;
UP_NP_TO_PNP.Tr;
matching _insiruction;
order(2, skip);
matthing_condition;
(X # ¥)):
X, J_CAT="KP";
N.J_PARA="T:
.3 _CAT= "N |"KP";
creation;
XA ® YY)
N.J_LEX<=Y.J LEX;
13 _SEM<Y . J_SEM;
X, I _Nc=¥ J_N;
end_rr UP_NP_TO_FNP; L

Rewriting rules
in the tubgrémmar

Fig. 8 An example of a subgrammar and rewriting rules.

the executor of GRADE next tries to apply the rewriting
rule UP_NP_TO_PNP to the input tree. The
executor continues such a process until the applica-
tion of .the last rewriting rule CAN-
DIDATE__OF__NOUNS__2 is finished,

5.2 Subgrammar Network

A subgrammar network describes the application se-
quence of subgrammars, The specification of a subgram-
mar network consists of the following five parts: (1)
Directory entry part, (2) Property definition part, (3)
Variable declaration part, (4) Entry part, and (5} Net-
work part. A directory entry part, and a property defini-
tion part are the same as the ones in a rewriting rule.
They are used as the defauit declaration in rewriting
tules which are called by the subgrammar network. A
variable declaration part is also the same as the onein a
rewriting rule. Variables are used to control the transi-
tion of the subgrammar network. Variables are also
referred to in a link specification part, which will be
described later. An entry part indicates a start node of
the network. A network is a body of the subgrammar
network.

The network part specifies the network structure of
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subgrammars, and consists of node specifications and
link specifications. The node specification has a label
and a subgrammar or a subgrammar network name,
which is called when the node gets control of the pro-
cessing. The link specification defines the tramsition
among nodes in a subgrammar network. The link
specification checks the value of a variable which is set
in a rewriting rule, and decides the label of the node
which will be processed next.

Fig. 9 shows an example of a subgrammar network.
When the executor of GRADE applies this subgrammar
network to an input tree, the executor checks the
variable declaration part, then puts a new variable
@PRE-FLAG in a stack, and sets T to @PRE-FLAG
as an initial value. After that, the executor checks the en-
try part and finds the label of the start node START in
the network. Then the executor searches the node
START and applies the subgrammar PRE-STEP-1 to
the input tree. After the application, the executor ap-
plies the subgrammar PRE-STEP-2 (node name:
LOOP) and PRE-STEP-3 (node name: A) to the an-
notated tree in this sequence. Next, the executor applies
the subgrammar PRE-END-CHECK (node name: B)
to the tree. Rewriting rules in PRE-END-CHECK ex-
amine the tree and set T or NIL to the variable @PRE-
FLAG. The executor checks the link specification part,
which is started by IF, and examines the value of the
variable @ PRE-FLAG. The node in the network which
will be activated next is the node LOOP if @PRE-
FLAG is not NIL, otherwise, the node LAST. Thus,
while @PRE-FLAG is not NIL, the executor repeats
the applications of three subgrammars, PRE-STEP-2,
PRE-STEP-3, and PRE-END-CHECK to the an-
notated tree. When @PRE-FLAG becomes NIL, the
subgrammar PRE-STEP-4 in the node LAST is applied
to the tree, and the application of this subgrammar net-
work PRE is terminated.

The analysis grammar for Japanese abstract in Mu-
project uses 85 subgrammar networks, 444 subgram-
mars, and 1723 rewriting rules.

6, Handling the grammatical rule in the word dic-
tionaries

As discussed in objective 3, a grammar writer often
needs to write a specific rule for each word. GRADE
allows a grammar writer to write word specific gram-
matrical ruies as a subgrammar in an entry of word dic-
tionaries of a machine translation system. A subgram-
mar written in a dictionary entry is called a dictionary
rule. The dictionary rule is specific to a particular word
in the dictionary.

When CALL-DIC operation in the substructure
operation part is executed, the dictionary rule is re-
trieved with an entry word and a rule identifier as keys,
and is applied to the annotated tree which is specified by
a grammar writer, Fig, 10 shows an example of a
rewriting rule which calls a dictionary rule. In this case,
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PRE, Sgn;
directory_entry:
owner{J.NAKAKURA); version(VO2L056); Tast update(83/12/25):
var-fnit
BPRE-FLAG init(T):
entry:
START:;
network:
STARY: PRE-STEP-1.sg:
LOOP : PRE-STEP-2.59:
Az PRE-5TEP-3.s9:
e: PRE-END-CHECK.%g:
1T GPRE-FLAG: thenh goto LOOP; else goto LAST;
LAST: PRE-STEP-~d.3q;
exit:
end_sgn PRE;

Fig. 9 An example of a subgrammar network.

CASE_FRAKE.rr:
var_inft; 85;
maiching_condition;
%(NF1 V KPZ PP):
substructure _coperation:
05 <v ca1)-die (V. LEX ARALYSIS Z{NPL V NP2 FP)):
creation;
%(05);
end_rr . CASE_FRAME:

Fig. 10 An example of a rewriting rule which calls a dictionary
rule.

a dictionary rule which is written in an entry of a verb as
indicated by V. LEX (the value of the lexical unit of the
verb), and whose name is ANALYSIS, is applied to the
sequence of NP1, V, NP2, and PP (noun phrase 1, verb
phrase, noun phrase 2, and prepositional phrase). Then
the result of the application of the dictionary rule is
assigned to the variable @8,

7. Resolving of Ambig;lilies

A grammar writing language must be able to resolve
the syntactic and semantic ambiguities in natural
languages (objective 5). GRADE allows a grammar
writer to collect all the result of possible tree-to-tree
transformations by a subgrammar (not a whole
grammar), when he encounters the ambiguities. This
function can be used to localize non-deterministic pro-
cessings for handling the ambiguities, and to avoid a
combinatorial explosion,

For instance, let us assume that a grammar writer
writes a subgrammar which contains two rewriting rules
to analyze the case frame of a verb, that a rewriting rule
is the rule to construct VP (verb phrase) from V and NP
(a verb and a noun phrase), and that the other is the rule
to construct VP {verb phrase} from V, NP and PP (a
verb, a noun phrase, and a prepositional phrase). When
he specifies nondeterministic-paralleled mode to the
subgrammar, the executor of GRADE applies both
rewriting rules to an input tree, constructs two
transformed trees, and merges them into a new tree
whose top node has a special property PARA. The top
node of this structure is called a para special node,
whose subtrees are the transformed trees by the
rewriting rules. Fig. 11 shows an example of this mode
and a para node.
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FARA
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¥ NP FF 56
vP PP VP
v kP V¥ kP PP

Fig. 11 An example of a para special node,

substructure_operation:
€% <= ca)-¢ic{V.LEX CASE-FRAME X{N WP PP));
8X <= call-built{mep=sg T(OX) tres EVALUATE-CASE-FRANE):
8% <= cali-built{sort L(¥X) tree SCORE):
01 <= catl-built{CUT L{8X) tres 1);
8 <= catl-buiit{injection X(#X)} tree 1);

Fig. 12 An example of built-in functions.

A grammar writer can select the most appropriate
subtree from the subtrees under a para special node. A
grammar writer is able to use built-in functions, MAP-
S§G, MAP-SGN, SORT, CUT, and INJECTION ia the
substructure operation part to choose the most ap-
propriate one. Fig. 12 shows an example to use these
built-in functions.

In this substructure operation part, the executor of
GRADE applies to the tree the dictionary rule written in
2 word entry which is the value of V. LEX (lexical unit
of verb), and sets the result to the variable @X. When
the nondeterministic-paralleled mode is used in the dic-
tionary rule, the value of @X is the tree whose root
node is a para special node. After that, the executor
calls built-in function MAP-SG to apply the subgram-
mar EVALUATE-CASE-FRAME to each subtree of
the value of @X, and sets the result to @X again. The
subgrammar EVALUATE-CASE-FRAME computes
the evaluation score and sets the score to the value of
the property SCORE in the root node of the subtrees.
Next, the executor calls built-in function SORT, CUT
and INJECTION to get the subtree whose score is the
highest one among the subtrees under the para special
node. This tree is then set to @X as the most ap-
propriate result of the dictionary rule.

The para special node is treated the same as the other
nodes in the current implementation of GRADE. A
gramrar writer can use the para node as he wants, and
can select a subtree under a para node at later gram-
matical rule applications.

8. System configuration and the environment

The system configuration of GRADE is shown in Fig.
13. Grammatical rules written in GRADE are first
transiated into internal forms, which are expressed by s-
expressions in LISP and are designed to be interpreted
by LISP programs easily and effectively. This transla-
tion is performed by GRADE translaior. Then the inter-
nal forms are applied to an input tree by GRADE ex-
ecutor,

GRADE system is written in UTILISP (University of
Tokyo Inieractive LISP) which is implemented on a

Dictichary Grammar

GRADE
trenslator

Dictionnry Gremmar

tule {Internal Torm)
P
input GAADE output
sententisl tres exceyter | soenlential trae

Fig. 13 The system configuration of GRADE.

IERDY.Pr:
dirsctory_entty:
owner{J. WAKRRURA): verslon[VOILDY): Tast_update(R3/03/06):
" matching_itastroction;
Tevel{4.100): order{Z,skip}; tree:
mateching_condition;
L{(RP F1 N #°});
N.E_KUKBER_TYPE = "R1';
creatfon:
L{{RF ART 2 R #2)):
ART.E_LEX «=» 'nil1";
ART E_SUBCAY <= “ZERD':
end_rr 2ER01;

(&) A grenmetice} rule written 1in GRADE

(e re_ZEROY

{{"owner = J.KAKAMURA®
*version = yeI1L01"
"last_update = BASOISO6T)

trappilier

[ndY ((ART nd%)) ndY ({nDD1) (NP) {N) (#1) (£2])}
{E_CAT {0 . 206) tbd (2 . skip) para nll)
(matcher
{1cont aDOG {('nop KP KP 811)))
{1tont WP
({1anyihings #1)
{tnop ¥ N
(1prop-theck
({ueq {pvar N E_NUMBER_TVPE)
. (pvalue ((R1})IN)}
(tnep £2 nil n11))))
nil
{creation
{construcl
{prop-set
((uset ART E_LEK (pvalue (ni1))}
{usel ART E_SUBCAT {pvalpe [{ZEROQ})})
{uset ART E_CAT (pvalue {(ART}}}}))
fconsipatt (KP ART F1 N #23)))))

{b) An Anternel form of the rewriting rule

Fig. 14 An example of a rewriting rule and its internal form.

FACOM M382 with an additional function for handl-
ing Chinese characters. The system is also useable on
Lisp Machine Symbolics 3600. The program size of
GRADE system is about 10,000 lines,

8.1 GRADE translator

GRADE translator has three phases, which are lex-
ical analysis, syntactic analysis, and internal form
generation.

The lexical analysis routine reads grammatical rules
from a file and makes tokens. And it collects the tokens
into GRADE sentences, which are separated by **;”,
Then it executes a simple syntactic analysis of the
sentences by using an operator precedence method,

The syntactic analysis and internal form generation
routine work after the lexical analysis phase. One func-
tion of these routines is to find the relation between a
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tree structure and conditions of properties, which is
written in the matching condition part implicitly for the
readability of grammatical rules, and to decide the tim-
ing of property checking during pattern matching, In
the rewriting rule shown in Fig. 14(a), the property con-
dition of N node [N.E_NUMBER_TYPE="RI’;] is
written independently of the tree structure [2%((NP #1 N
#2));]. The syntactic analysis routine determines that
the property condition check will be done after the pat-
tern matching of N node, and the internal form genera-
tion routine makes the s-expression shown in Fig. 14(b)
[(lnop N N ('propcheck ({(uegq (pvar N
E_NUMBER__TYPE) (pvalue (R1)))))). This internal
form means that if there is a tree .and the value of the
property E__CAT (English Category Symbol) in the
root node is N, assign it to the variable N, get the value
of the property E___NUMBER_TYPE of the tree
assigned to N, and compare the value with R1, whether
equal or not. When the internal form is interpreted, it
does not need to be tested by the program with the tim-
ing of property condition checking.

3.2 GRADE executor

The internal forms of grammatical rules are applied
to an input tree, which is an output of the mor-
phological analysis program, This rule application is
performed by GRADE executor. The result of rule ap-
plications is sent to the morphological generation pro-
eram.

The GRADE executor consists of three parts:
subgrammar network and subgrammar application
routine, rewriting rule application routine, and iree
~ transformation routine.

The subgrammar network and subgrammar applica-
tion routine is a toplevel function. It receives an input
tree structure, calls the rewriting rule application
routine by interpreting the internal forms of subgram-
mar network and subgrammar, and outputs the
transformed tree structure. It uses a backtracking
mechanism to support the para special node explained
in section 4.

The rewriting rule application routine traverses an in-
put tree in accordance with the specification written in a
matching instruction part, and calls the tree transforma-
tion routine.

The tree transformation routine consists of a pattern
matcher, a program to execute a substructure operation
part, and a program to make a transformed tree. This
routine changes an annotated tree by interpreting the
transformation part in a rewriting rule.

). NAKAMURA, J. Tsean and M. NAGAO

" 9, Conclusion

The grammar writing system GRADE is discussed in
this paper. GRADE has the following features. (1)
Rewriting rule is an expression in the form of tree-to-
tree transformation with annotation to each node. (2)
Rewriting rule has a powerful capability to handle
sophisticated linguistic phenomena. (3) Grammar can
be divided into several parts and can be linked together
as a subgrammar network. (4) Subgrammar can be writ-
ten in the dictionary entries to express word specific
linguistic phenomena. (5) Special nodes are provided in
a tree for embedding ambiguities.

GRADE has been used for more than a year as the
software of the national machine translation project bet-
ween Japanese and English. The effectiveness of
GRADE has been demonstrated in this project.
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