A New Version of the Machine Translation

System LMT

M. C. McCORD
IBM Thomas J. Watson Research Center, NY, USA

Abstract

This paper describes a recent revision of the machine transla-
tion system LMT in which {a) source analysis is based on Slot
Grammar, and (b) there is a tarpe language-independent pottion
of the system, a kind of “X-to-Y translation shell,” making it
easier to handle new language pairs. Slot Grammar makes a
- systematic use of sfofs (essentially syntactic relations) obtained
from lexical entries for head words of phrases. No phrase
structure rules (augmented or plain} are used. [nstead, there are
slot filler rules and separalely stated ordering rudes for stots. A
great deal of the Slot Grammar svstem is in the shell. This
includes most of the ireatment of coordiration, which uses a
method of ‘factoring out’ unfilled sicts from elliptical coordi-
nated phrases. The parser (a bottom-up chart parser) employs a
parse evaluation scheme used for pruning away unlikely analy-
ses during parsing as well as for ranking final analyses. The
transfer step is designed so that all of the transfer rules except
those arising from lexical transfer entnes (which are database-
like} are in the shell. Syntactic generation uses a system of
transformations, written in a formalism involving an extension
of Prolog unification. The revision includes a new treatment of
transformation rule ordering. LMT is implemented entircly in
Prolog.

1. Qverview

LMT' began as an English-German MT system,
(McCord, 1986, 1988a: McCord and Wolff, 1988), in
which source analysis was based on Modular Logic
Grammar (McCord, 1982. 1985, 1987). Recently, LMT
has been revised in two ways:

. Source analysis is now based on Slot Grammar
(McCord 1980, 1989),

2. An effort has been made to maximize the language-
independent portion of the system, making a kind of
*X-to-Y translation shell’. and to prove the viability
of the shell by developing prototypé versions for
several language pairs.

Analysis with a Slot Grammar is based on a systematic
use of sfots {essentiaily syntactic relations, like subj and
obj), obtained from lexical eniries for head words of
phrases. No phrase structure rules (augmented or plain)
are used. Instead, there are siot filler rufes and separately
stated ordering rules for slots. There is a high degree of
lexicalism in Slot Grammar. making grammars simpler
and having also a simplifving effect on the rest of the MT

system, Also, the differences between source grammars

for various languages are reduced because of the modu-
lar treatment of ordering.

The original Slot Grammar system (McCord, 1980)
was developed in 1976-8 without consideration of logic
Correspondence: Michael C. McCord. (BM Thomas J. Watson

Research Center, P. O, Box 704. Yorkigwn Heights, NY 10598, USA.

programming (and was implemented in Lisp).? The
Moduar Logic Grammar system, used in the earlier
design of LMT, represents & combination of the original
Siot Grammar techniques with the (augmented) phrase
structure grammar fechniques common in logic pro-
gramming (Colmerauver, 1978), and employs top-down
parsing. Tn this combined approach, Slot Grammar
rules, expressed in terms of phrase structure rules and
Prolog clauses, are used systematically for postmodifica-
tion of open-class words; but elsewhere in the grammar
more standard phrase structure rules are used.

Recently {(McCord 1989) the original {‘pure’} Slot
Grammar. system was redone in a logic programming
framework, with several improvements, and the rest of
the LMT system was adapted to this method of source
analysis. As with the original Slot Grammar system, a
bottom-up chart parser is employed. Aside from greater
theoretical neatness, the motivation for this shift was to
deal better with multiple source languages.* This is
facilitated- because of the characteristics of Slot Gram-
mar mentioned above and because of 2 good fit with the
idea of the shell, as will be explained below.

The overall design of LMT has not changed in the
recent revisions in terms of the basic steps of translation.
The system is transfer-based and currently deals with
only one sentence {or input phrase) at a time. There are
five steps (passes) in translating a sentence:

1. Source/transfer lexical processing,

Source syntactic analysis (with Slot Grammar).
Transfer.

Target syntactic generation,

Target morphological generation.

P

Two themes run through the design of these five steps.

One theme is to do as much as possible by syntactic
means alone. This shows up most strongly in source
analysis, As mentioned, the slots forming the basis of
Slot Grammar analysis are syntactic slots; no semantic
slots (like agent or patient) are used in the system. On the
whole, words are considered to have different senses (for
source analysis) only when they have different morpho-
syntactic features or different siof frames. Very little use
is made of semantic features or semantic type-checking
in source analysis (although this is done in transfer).
Instead, there is a strong use of syntactic heuristics in
parsinig, to be described below.

The output of source analysis (and input to transfer) is
basically a syntax tree, It is a dependency tree, showing
the modifiers of each head word as slotffiller pairs in
surface order. (Each filler is again a dependency tree.)
On the other hand, the analysis tree shows deep gram-
matical relations through unification of logical variables

associated with slots and their filiers-—including remote
dependencies, logical relations in passive constructions,
and implicit subjects in non-fnite verb phrases. In partic-
ular, predicate/argument structure for open-class words is
shown. In fact, the system can produce [ogical forms in
the language LFL (McCord, 1987) from these syntax

trees, and the main step in doing so is to decide on scoping -

of (generalized) quantifiess (‘focalizers’).

It was decided to use the syntax trees instead of logical
forms for transfer because (a) there is useful information
in the syntax trees, such as morphosyntactic features and
surface order, {b} it is hard to decide scoping accurately
on a broad scaie, and (¢} the syntax trees do have much of
the content of logical form anyway, as indicated above.

The second theme in the five steps of translation is to
make as much as possible language-independent, i.e., to
put as much as possible in the sheli. Every one of the five
steps involves modules from the shell. This theme is
strongest in source analysis and transfer: Slot Grammar
is more special-purpose to natural language than many
grammatical formalisms. A lot is packed into the parser
module, which, however, is largely independent of
specific natural languages and so is part of the shell, For
example, the parser module contains most of the treat-
ment of coordination (which is basically a metagramma-
tical phenomenon), although this treatment depends on
some language-specific data given in the Slot Grammar
for a specific language.

All of the transfer system. except the transfer portion
of the lexicon is in the shell. The transfer tree has
basically the same shape as the source analysis tree, but
contains target-language words and features. It also
contains many of the markings necessary for target
surface structure, such as the correct target prepositions
for prepositional complements.

" The shell has facilitated the development of prototype

versions for other language pairs, in cooperation with
other groups and individuals in TBM, namely: English—-
Danish and Danish-English (Arendse Bernth and [BM
European Language Services), English—French (the KA-
LIPSOS team of the IBM Paris Scientific Center (Far-
gues et al., 1987), with work especially by Eric Bilange),
German-English (Ulnike Schwall, IBM Germany Scien-
tific Center}, and English-Spanish (Nelson Correa).

The remaining four sections of the paper deal with the
treatment of the first four steps of transiation in LMT
named above. Target morphological generation has
undergone little revision in the new version of LMT, and
is largely described in previous references cited,

2. Source/transfer lexical processing

In the current design of LMT, there is only one lexicon
for each language pair, the source/transfer lexicon. It is
indexed by citation forms of source language words, and
each eniry contains source elements and transfer ele-
menes. The source elemeints are readily separable (and
could form the basis of the lexicon for a differens target
language). but the transfer elements refer to information
in the various source elements for a source word.

Some sample entries in an English-German lexicon
{not meant to give the full story for the words involved)
are as follows:

add <v{obj.pobj{to))
< tv{obj.iobj, hinzu:fueg).
eat < v{ob])
< tv{subj: ~ human,obj,fress)
< tv{obj,ess).
view < v{obj)
< n{nobj)
< tv{obj,be + tracht)
< in{nobj,ansicht.f.n}).

These entries are actually Prolog unit clauses for the infix
predicate <, which is also used to separate the elements
of the entry.

The entry for add has a source element (on the first
line} showing add as a verb with an object slot obj and a
to-PP complement siot pobj(to). The subject slot subj is
added by default to every verb. The next line has a
transfer element showing the separable-prefix verb hinzu-
Juegen as the target verb (tv), with slots obj and iobj
{indirect object} corresponding to the two slots in the
source element. The entry for ear illustrates the use of
semantic types in target selection, and will be discussed
in Section 4. The entry for view shows this word as both
a verb and a noun, with corresponding transfer elements,
The English nobj (noun object) slot is filled by an of-PP.
The corresponding German nobj-complement takes the
genitive case or von plus dative, depending on the noun
phrase. Note that there is target-language morphological
information in these transfer elements, For tnstance, in
the view entry, the German verb is shown to be an
inseparable-prefix verb, and the noun’s pender and
declension class are specified.

The ingredients of lexical entries most consequential
for the rest of the system are the slot lists shown in the
entries. The slots are all complement slots, and the ones
shown in source elements are important input to the Slot
Grammar., Adjunct slots depend only on the part of
speech of the word, and are declared in the grammar
itself, as we will see below.

There is a thorough treatment of multiwords in the
lexical format (and processing). Multiword entries are
altowed for all of the parts of speech. For example, take
care of can be handled as a multiword indexed under
take, and the associated morphology permits inflected
forms like rook care of. Also, prepositional object slots
can specify ‘multiprepositions’, allowing forms like pu:
up with, and particle slots can specify ‘multiparticles’,
allowing forms like take X inro consideration (where into
consideration is the multiparticle). Semantic type condi-
tions can be specified in lexical entries, but the discussion
of these is postponed to Section 4 below, because they
are used mainly in transfer.

The lexical processing step actually involves two sub-
steps, performed for each word in the input string:

1. Source/transfer morphologicat analysis,
2. Lexical compiling.

The first substep produces from the input word (possibly
inflected or derived), a derived lexical analysis for the
word, where Lhe elements show morphological structure
together with source or transfer elements of the type
already discussed. The second substep then translates the
derived lexical analysis elements into Prolog clauses

usable by source analysis and transfer. Both substeps
involve modules from the shell.

The morphological analyser consists of a general rule
interpreter (in the shell) and a coliection of language-
dependent, low-level morphological rules. Given a de-
rived {or inflected) input word, the analyser first sirips
off affixes until a base word is found in the lexicon, and
then the affixes operare on the lexical analysis of the base
{acting on both source elements and transfer elements),
producing finally a derived analysis for the input word.
In the process of aflix steipping, a state transition system
is used for constraints. For details, see McCord and
Wolff 1988.

After the (possibly derived) lexical analysis of a {pos-
sibly derived) word Word is obtained, the lexical com-
piler translates each source element of this analysis into
one or more clauses for the predicate

wordframe{Word,Sense,Features,SlotFrame).

Each such clause defines a weord analysis for Word,
consisting of the last three arguments.

The sense (Sense) of the word analysis is normalty the
citation form of Word, but can be a particular sense
name (ke givel) if such is specified in the source
element, or can show morphological structure in the case
of a derived word.

The feature structure (Features) of the word analysis is
a logic term (using standard positional notation, not
attribute/value notation) basically giving part-of-speech
and inflectional information for Word. The part of
speech is the principal functor. But Features can serve as
the feature structure for phrases obtained by miodifying
Word, so that in some cases Features has arguments that
have 1o do with the whole phrasal configuration. As an
example, the ailowable feature structures for verbs in the
English Slot Grammar ESG are

verb (inf(Full))

verh (prespart)

verb (pastpart)

verb (pastparta) .
verb (fin(Pers,Num, Tense,Cl))

Here Full is preinf or barg according as the infinitive is
premodified by o or not. The feature pastpart signals
the common past participle with a passivized frame, and
pastparta signals the active past participle used with the
perfect have. The last argument Ct of the finite verb
feature (fin) is used to express clause-level features such
independent/dependent.

The sior frame (SlotFrame) of the word analysis is the
list of complement slots in internal form. Each internal-
form slot is of the form slot(Slot,0b, X}, where Slot is the
slot name (like obj, appearing in the external lexical
analysis}, Ob indicates whether the slot is obligatory or
not. and X is the marker of the slot. When the siot is
filled by a phrase, the slot marker X becomes bound to
an identifier associated with the filler phrase, in a way to
be described below.

As an example of a word analysis, the folfowing is
produced for word adds from the v element for add
above:

wordframe(adds, add, verb(n(pers3,sg,pres,*)),
slot(subj,op.X) slot(obj,op,Y).slot{pobj(to).op,Z).nil).

The main part of the treatment of passive verb construc-
tions occurs during the formation of word analyses, A
passive form of a verb, such as an English past participie
or a Danish finite passive form, leads to one or more
word analyses in which the siot frame is altered to show
the appropriaie passive siots. For more details, see
(McCord, 1989), or for an earlier treatment, (McCord,
1982). The internal form of transfer elements is described
below in Section 4.

In the case of multiwords, the internal Prolog predi-
cate for source elements is slightly different from the
above, showing the boundaries of the multiword in the
input word string,

Putting both source elements and transfer elements in
the same lexicon is not crucial to the design of LMT; itis
mainly a matter of indexing. In fact, ESG is interfaced to
the monolingual English UDICT lexicon (Byrd, 1983,
1986, Byrd er al. 1986) (which has around 60,000
lemmas), and there is a separate (partially usable) inter-
face to a lexical data base system for the Collins
English~German dictionary, being developed by Neff e:
al., (198R), The UDICT system has its own morphology,
representation of features, and storage and access
method; the main point of the interface is to produce
word analyses in the form described above.

3. Source analysis with Slot Grammar

Analysis with Slot Grammar is word-oriented. Phrase
analyses for word strings are built up by beginning with
word analyses of the individual words (produced by
lexical processing) and growing larger phrases by attach-
ing modifier phrases on the left and the right. Such
attachment is controlled completely by slot filling for
slots associated (normally) with the original word analy-
ses.

The representation of a phrase analysis is slightly
more complex than that of a word analysis because, for
instance, it must show modifiers (daughters) of the
phrase. But parsing starts by forming for each word
analysis an initial phrase analysis having no modifiers
and having the word as head.

Specifically, a phrase structure is represented by a term

phrase{X Sense,Features,SlotFrame, Ext,Mods),
where the components are as follows:

The first component X is a logical variable called the
‘marker of the phrase. It is used as a kind of identifier
of the phrase, and plays a role in slot filling, to be
explained below.

The next three components Sense, Features, and Slot-
Frame have the same form as the three components of
a word analysis. In the initial phrase structure formed
from a word analysis, these three components are just
the word analysis. In the formation of larger (mo-
dified) phrases, they may be changed by unification,
and in some grammars they are changed only by
unification (this is currently the case in ESG); but the
grammar rules do allow feature structures to be
changed.

The component Ext is a list of extraposed slots (in
internal form), used for later filling by extraposed

phrases. In the initial phrase for a word analysis, this
component is nil,

The last component Mods represents the modifiers
{daughters} of the phrase, and is of the form
mods{LMods,RMods) where LMods and RMods are
the lists of left modifiers and right modifiers, respec-
tively. Each member of a modifier list (left or right) is
of the form Slot:Phrase where Slot is a slot {comple-
ment or adjunct), and Phrase is a phrase which fills
Slot according to the given Slot Grammar rules,
Modifier lists reflect surface order, and a given (ad-
junct} slot may appear more than once. In the initial
phrase formed from a word analysis, Mods is
mods{nil,nid}.

Markers of phrases and markers of slots are used
together with unification to show links of modification in
phrase structures. When z slot slot{Slet,0b,X) is filled,
the sfot marker X is bound to the term e(X0), where X0
is the marker of the filler phrase—except that when the
filler is a PP, X0 is taken to be the marker of the object of
the preposition. Whenever a phrase P fills an adjunet slot
for a phrase H, the markers of P and H are unified,
except when P is a noun phrase or a verb phrase.* Such
binding of markers is important for lexical control in
transfer, as we will see in Section 4, and is also important
for building logical forms.

In displaying parse trees, it is convenient to do the
following. The recursive problem is to display a pair
consisting of a slot and a phrase structure, {For a top-
level analysis, the slot is taken to be the symbol top.)
First we display the slot and feature structure on a line.
Then the left modifiers are recursively displayed, in-
dented. (Recall that each member of a modifier list is a
slot/phrase pair.} Then the sense predication of the
phrase (to be defined) is displayed on a line, Finally, the
right modifiers are recursively displayed, indented.

The sense predication of a phrase is a term whose
principal functor is the (head word} sense, and whose
arguments are as follows. The first argument is the
marker of the phrase. The remaining arguments are
obtained from the markers of the slots in the slot frame,
in order. Specifically, for each slot slot(Slot,Ob,X) in the
frame, if the slot is filled and X=¢e(X0), then the
argument is X0; otherwise the argument is an unbound
variable. In one view of logical form, the initial marker
argument in a verb sense predication is like an ‘event
vartable’, and for a noun, it is the main variable {or the
noun sense (corresponding to the entity referred to by
the NP), like X in man(X) or brother(X.Y).

We give an example of a parse tree, using this display
format. The example will be continued in Sections 4 and
5 below to illustrate transfer and syntactic generation as
well. The sentence is:

The user adds new lines to the file.

Recall that the word analysis for adds was given in the
preceding section. The English grammar ESG and the
parser produce the following single parse:

top verb(fin(pers3.sg,pres,X2))
subj noun{cn,sg,nwh)
ndet det(sg,def)
the(X3)

user{X3)
add(X1,X3,X4,X5)
obj noun{cn,pl,nwh}
nadj adj(X9,X10)
new(X4)
line(X4)
pobj({to) prep(to,X7,e(X35))
to(X6,X5)
objprep(X8) noun{cn,sg, X7)
ndet det(sg.def)
the(X5)
file(X5)

Note, for instance, that the phrase marker X3 for the
user is identified as the subject of adds (the second
argument of the add sense predication in the display).
The phrase marker X4 of new is unified with that of lines,
because nadj is an adjunct slot. The last argument X5 of
add (associated with its pobjito) slot) is unified directly
with the marker of the file since the PP to the file is a
complement.,

A more complex example is the following, For the
sentence

Who did the old man try 1o find and sit with?
a single parse results:

top verb(fin{pers3,sg,past,ind:q:wh))
obj noun(pron(wh),X5,wh}
who(X2)
dol(X1,X3,X4)
subj noun{cn,sg,nwh)
ndet det(sg,def)
the(X3)
nadj adj(X9,X10)
old{X3)
man(X3)
auxcmp(inf{bare)) verb(inf{bare))
try(X4,%3,X7)
infemp verb{inf{full})
preinf preinf
preinf(X7)
lconj verb(inf(full))
find(X7,X3,X2}
coord(and,find,sit)
rconj verb(inf(full))
5it(X7,X3)
vprepi3) prep(with,nwh,e(X2))
with{X7,X2)

Interesting linkings of markers: (1} The marker X2 for
who is unified with the object markers of find and with.
This results from the treatments of extraposition and
coordination in the system, discussed below. (2} The
marker X3 for man is unified with the subject marker of
dol, as well as the subject markers of try, find, and sir.
There is a treatment of implicit subjects in non-finite
verb phrases, described in (McCord, 1989).

The remainder of this section is divided into two
subsections, The Slot Grammar formalism and The par-
ser module. In writing a Slot Grammar for a language,
one should be generally aware of the representation of
phrase structures, because grarmmar rules can refer to the
components of phrases. However, there are speciat rule

formalisms that make this easy 10 do in an abbreviated
way.

3.1. The Slot Grammar formalisht

The main ingredients of a Slot Grammar are the follow-
ing:

I. A declaration of adjunet slors for each part of
speech.

Slot filler rules.

Slot ordering rules.

4, Obligatory slot rules.

w

In addition, there are certain language-specific data
{expressed mainly as unit clauses) for treating extraposi-
tion, co-ordination, and punctiation. Much of the treat-
ment of these constructions, however, is in the fanguage-
independent parser module,

Let us look briefly at the four main ingredients listed
above. There are special rule formalisms and rule com-
pilers for rules of types 2, 3, and 4. :

Adjunct slots are declared simply by unit clauses

adjuncts(POS,Adjuncts)

where POS is a part of speech (like verb) and Adjuncts is
the list of possible adjunct slots for all words (or phrases)
of that part of speech. (The part of speech of a phrase is
the principal functor of its feature structure.) Unlike a
complement slot, which may be obligatory and can be
filled at most once, an adjunct slot is optional and can be
filled any number of times,

Slor filler rules are the core of a Slot Grammar,
constituting the main rules for modification of one
phrase by another, More specifically, given a phrase P,
one chooses an available slot Slot for P, i.e. either an
unfilled {complement) slot in the slot frame or extra-
posed slot list of P, or an adjunct slot associated with its
part of speech. A phrase M adjacent to P will be a filler
of Slot (and a modifier of P) if there is a filler rule

Slot—Body

for which Body holds. The condition Body has the same
form as the body (antecedent) of a Prolog clause, but it
can contain special goals which refer to the components
of the higher phrase P or the modifier phrase M (which
are implicit in the use of the rule).

An example of a filler rule for the subject slot in
English might be

subj— f{noun(* nom,Pers, Num)) &
hi(verb(fin(Pers, Num,*,*))).

Here the special goal f(F) (or hf(F)) requires that F is the
feature structure of the fitler phrase (or the higher
phrase),

Most special goals arise from selector predicates for
the phrase data structure. For instance the special goals
f(F) and hf(F) arise from the predicate f(P,F} which
selects the features F of a phrase P, and which is defined
simptly by the unit clause

[(phrase(*,* F,* * *), F),

For each such selector predicate pred(P,..), one gets a
pair of special goals pred(. ..) and hpred(. . .) referring to

the (implicit) filler phrasc and higher phrase, respec-
tively,

The rule compiler converis a filler rule to a Prolog
clanse it which the filler phrase and the higher phrase are
mentioned explicitly. The predefined special goals are
compiled specially, and all other goals in the body of the
rule are compiled to themselves, For details of the ruke
compiler, see (McCord 1989).

There are two types of sfot ordering rules, (1) Aead/slo;
ordering rules, expressing ordering of slots (their fillets
actually) with respect to the head word, and (2) sfor/slot
ordering rules, expressing ordering of stots with respect
to other slots. '

Head/slot ordering rules are of either of the forms:

islot(Slot) + Body.
rslot(Slot) < Body.

These rules say respectively that Slot is a left slot (or right
slor), under the conditions of Body. The condition Body
(which may be omitted, with the arrow) may, like the
body of a filler rule, contain special goals referring to the
modifier phrase or the higher phrase. For example, the
tule

rslot{sub)) « hf(verb(fin(*,**ind:q:"))) &
' hsense(Verb) & finaux(Verb).

for English says that subj can be a right slot in a question
sentence (feaiure q) if the verb is a finite auxiliary.

A slot/slot ordering rule is of the form:
L5lot « RSlot « Body

where the Body may be omitted. This means that every
filler for LSlot must precede every different filler for
RSlot under the conditions of Body. Again, the body can
contain special goals referring to the higher phrase or to
the filler phrases for LSlot or RSlot.

Examples of slot/slot ordering rufes are the following
ones, expressing relative ordering of the direct and
indirect objects of verbs:

iobj « obj « lf{noun(*.**)).
obj«iohj « rf(prep(*.*,*)).

Special goal predicates prefixed with 1 {r) refer 1o the slot
on the left {right} of the operator «. These rules say that
the indirect object precedes or follows the direct object
according as the indirect object is a noun phrase or a
prepositional phrase.

A phrase that is to be an allowable top-level analysis
must be safisfied in the sense that all of its obligatory
slots are filled. Also, for a phrase to become a modifier of
another phrase, all of its obligatory slots, after possible
extraposition of one of its slots, must be filled.

A complement slot may be specified in the lexicon to
be obligatory, in which case its internal form will be
slot{Slot,ob, X} (the second argument is op otherwise).
The default is that slots are optional,

One may also specify obligatoriness of slots by general
rules in the grammar. Such rufes are of either of the
forms:

obl{Slot) — Body.
obl(Slot,Slotl) « Body.

The first rule says that Slot is obligatory under the
conditions of Body, and the second says that Slot must
be filled if Slot! is filled and Body holds. The body again
can contain special goals, Examples:

obl(subj) « hf(verb(fin(* ***))).
obl(objprep).
obl(obj,iobj) « f{rnoun{** *)).

The last rule says that the direct object must be filled if
the indirect object is filled by a noun phrase. '

As indicated above, the treatment of left extraposition
'is divided between the (language-dependent) grammar
and the {language-independent) parser module. There
are two ingredients in the grammar dealing with extrapo-
sition.

1. 'One declares that certain siots allow extraposition of
other slots out of their fillers, by writing certain unit
clauges that mention these slots. The parser module
takes care of storing extraposed slots in the extra-
posed slot list component of the phrase structure.

* 2. The slot on the left-hand side of a filler rule is
normally just a slot name, but it can have the
following special form, which indicates that the rule
is an extraposed siot filler rule:

ext{Slot,Level).

Here Slot is a slot name and Level is ext if Slot is actually
extraposed (iaken from the extraposed slot list), or norm
if Slot is a normal siot {taken simply from the slot
frame). The latter case is needed for examples like the
relative clause whe Mary saw, where who fills a normal
object siot. Exiraposed filler rules are currently used in
ESG to handle wh-phrases and relative pronouns in wh-
questions and relative clauses.

Most of the treatment of coordination is in the parser
moduie. In a grammar, however, there are two ingredi-
ents dealing with coordination. First, there is a specifica-
tion of coordinating coniunctions as well as associated
preconjunctions, like borhr and either, given in unit
clauses. (These are not listed in the lexicon because of
their spectal nature.) Secondly, there is a specification of
the coordination of feature structures through clauses
for the predicate

coordfeas(Conj,LFeas,RFeas,Feas).

This says that when a phrase having features LFeas is
conjoined by Conj with a phrase having features RFeas,
then the result has features Feas. The default is that all
three feature structures are the same, but vanations are
allowed, for instance in dealing with agreement features
in noun phrases.

3.2. The parser module

The parser is a botiom-up, left-to-right chart parser.

Partial analyses are stored as Prolog unit clauses:
result([.B,RB,Evai, State,Phrase)

where the arguments are as follows. The last argument is
a phrase structure analysing a portion of the input
string, and LB and RB are its left and right boundaries,

represented as integers. Eval is the parse evaluation,
which will be discussed below, State is used for recording
what kind of modifiers (left, right, or extraposed) Phrase
has received. In buitding up phrases, we choose first to
attach normal (non-cxtraposed) left modifiers, then nor-
mal right modifiers, and finally extraposed left modifiers.
Specifically, State is 0 if the phrase has no right or
extraposed modifiers, but may have left modifiers; State
is 1 if the phrase has some right modifiers, but no
extraposed modifiers; and State is 2 if the phrase has
some extraposed modifiers.

[n the following, a result (or partial analysis) is a
quintuple of terms

{(LB,RB,Eval State Phrase)

appearing as the argument list of a result clause.

In the left-to-right parsing, when a new word is
encountered, the system looks at each word analysts of
the word and does the following.> The initial phrase for
the word analysis (as described at the beginning of
Section 3) is constructed, and then the mitial result is
formed and stored for this phrase and the word’s
position. This result has state 0, and the initial parse
evaluation argument is formed, as described below. The
new result is then combined, if possible, with every
adjacent result to the left, and any combination results
are stored and further combined recutsively,

After processing all words in the input, the final parses
are those satisfied phrases in results that span the whole
input,

Combining of two adjacent resuits to give a new result
involves (1) modifying the phrase of one by the phrase of
the other, (2) computing the new parse evaluation from
the old ones, as discussed below, (3) setting the new state
according to the meaning of ‘state’ given above, and (4)
setting the new phrase boundaries appropriately. Step
(1) is non-deterministic; the modification could be in
either direction, and in general one phrase can modify
another in more than one way because of multiple
choices of available slots.

When a phrase M is to modify a phrase P, giving a
new phrase P1, the steps are as follows:

1. Choose an available slot Slot for P (as defined in
Section 3.1 above}.

2. Apply a filler rule (in compiled form) for Slot, M,
and P.

3. Check ordering constraints, for normal slot filling
{not done for extraposed flling).

4, Apply extraposition from M if possible (not done
for extraposed filling).

5. Check that M is satisfied (modulo slots extraposed
from it).

6. Bind markers (as described above).

Of course the new phrase Pl is obtained then from P by
adding the new modifier M, possible new extraposed
slots, and possibly a new feature structure,

As mentioned above, most of the treatment of coordi-
nation is in the parser module. The system analyses
coordinated phrases of the following form (with some
variations):

LM Preconj LC Conj RC RM

where the substrings indicated are as follows. Conj is a
coordinating conjunction or a punctuation symbol (ke
a comma} used in the capacity of a coordinating con-
junction, Preconj is an optional associated preconjuac-
tion. LC and RC arc the left and right conjuncts,
respectively, Each of these conjuncts consists of a single
phrase, although it need not be satisfied. LM and RM
are the (optional} left and right common modifiers,
respectively (each of these may be represented by several
phrases). Examples are:

The man sees and probably hears the car,
n -
LM LC Conj RC RM
Johnsees and Mary hears the car.
LC Conj RC RM

The syntax tree produced by ESG for the last sentence is:

top verb(fin(X2,X3,X4,X35)
lconj verb(fin{pers3,sg,pres,X7))
subj noun{prop,sg,nwh)
john(X8)
see(X 1,XR8,X6)
coord(and,see, hear)
rconj verb{fin(pers3,sg,pres, X 10)}
subj noun(prop,sg,nwh)
mary{X11}
hear{X1.X11,X6)
objemp noun(cn,sg,X9)
ndet det(sg.def)
the(X6)
car(X6)

Note that the car, with marker X6, is shown as the
common object of sees and hears.

The head of the coordinated phrase is basicaily the
conjunction, but is actually a compound term showing
also the heads of the conjuncts. The feature structure of
the coordinated phrase is obtained from the feature
structures of the conjuncts by using coordfeas, given in
the grammar (mentioned above). The two conjunct
phrases fill the slots lconj and rcon;.

The interesting part of building the coordinated
phrase is the definition of its available slots (besides lconj
and rconj), which can be filled by the left and right
common modifiers. Of course the adjunct slots are
determined from the coordinated feature struciure,
which has been described.

The coordinated siot frame is obtained by a process of
‘factoring out’ common (or closely sitilar) unfilled
complement slots from the frames of the two conjuncts,
This method was outlined in (McCord, 1980) and was
implemented in the revised Slot Grammar system
(McCord, 1989). In the above example, the objemp slot
{which can be filled by a noun phrase or a rhai-clause) is
common to the frames of see and hear and is factored
©UlL, 10 become a slot for the coordinated phrase.

Before doing the factoring, the extraposed slot list of
¢ach conjunct is pooled together with its normal slot

frame, This is appropriate because of exafnples like that
of Woods (1973): :

John drove his car through and completely demol.
ished a plate glass window.
Here the objprep slot of the preposition through is
extraposed to the level of drove in the left conjunct drove
his car through. In the ‘factoring’, this objprep is con-
sidered a common slot with the obj slot (not extraposed)
for the right conjunct completely demolished. The preced-
ing example also illustrates that in the process of factor-
ing out slots, we must be ready to consider (unfilled)
slots LSlot and RSlot of the conjuncts to produce a
common slot even when LSlot and RSlot are not exactly
the same (as in the case of objprep and obj in the
example). What we need is a kind of ‘g.c.d’ of the two
slots. We assume a predicate

coordsiot(LSlot,RSlot,Slol)

which can produce from LSlot and RSlot the ‘g.c.d’ slot
Stot which is the factored out version.

With this said, we can state when the system succeeds
in producing a factored-out frame Frame from the
frames (including any extraposed slots) LFrame and
RFrame of the left and right conjuncts:

1. Whenever an unfilled slot LSlot of LFrame can be
paired by coordslot with an unfilled siot RSlot of
RFrame, their markers are unified, and their Ob
components are suitably combined. The resulting
{factored out) slot is made a member of Frame.

2. Any unfilled slot of LFrame or RFrame that is not
paired as in (1) must be optional (where we consider
verb subjects obligatory).

We have discussed the main ideas in forming coordi-
nated phrase structures, For more details, including the
way coordination fits into the overall workings of the
parser, see {McCord, 1989). The main idea of the latter
though is just that the combining of two results, as
described above, can involve coordination of phrases as
well as ordinary modification.

The parser module contains a treatment of various
kinds of constructions involving tokens that are not
words. These include brackets and separators. Brackets
are paired symbols like parentheses, braces, square
brackets, dashes, and quotes that can surround word
strings. Brackets also occur very frequently in source text
for text formatting languages, for example in font-
change commands and special symbols for the other
types of brackets just mentioned. Separators are symbols
like commas and hyphens that can lie between a phrase
and one of its modifiers. The use of such tokens has a
basically metagrammatical nature, like coordination, so
it is reasonable for the treatment to be in the parser
module. However, some relevant language-specific data
(in the form of unit clauses) are put in the grammar. For
details, see (McCord, 1989).

The parser module includes a parse evaluation scheme
used for pruning away unlikely analyses during parsing
as well as for ranking final analyses. The parse evaluator
expresses (weighted) preferences for close attachment.

for complement modification over adjunct modification,
and for paralielism in coordination. The results of
evaluation for complement preferefice and close attach-
ment combined (not counting parallelism) have some
similarity to the resuits of the preference methods of
(Wilks ez ai., 1985). Parse space pruning may be turned
on or off optionaily, When it is on, it is fairly common to
get only one parse which is correct modulo attachment
of postmodifying adjuncts. When it is off, one gets all the
parses allowed by the grammar, but they are ranked as
to preference. The parse evaluator is based on a pactial
order betterthan defined on the parse space, i.c. on the
set of all results. If, during parsing, results Rt and R2 are
found such that R1 is betterthan R2 (and pruning is
turned on), then R2 will be discarded.

In additon, arn equivalence relation similarfeas is
defined on the parse space, expressing broad similarity of
feature structure in results. Results can be related by
betterthan only when they are in the same equivalence
class, so that parse pruning is done independently in
each eguivaience class. Within an equivalence class,
betterthan is a total order, based on numerical scoring.
The component of the numerical scoring function that
controls for close attachment is Heidorn’s (1982) parsing
mettic {in its simplest form). The components dealing
with complement preference and parallelistn dominate
over the close attachment component,

The relations betterthan and similarfeas on resulis are
defined basically in terms of the parse evaluation compo-
nent of a result, mentioned above. This component is a
term of the form:

evai(FeatureScheme,Score),

The fearure scheme is a term that encodes a cerfain
abstraction from the features involved in the phrase of
the resuit, and the score is a real number representing a
score for how well the phrase satisfies the preferences
described above (a lower score is.a better score). Qur two
relations on results are then defined as follows:

(LBL.RB],eval(F1,51),5¢t1,Phl) similarfeas
{LB2,RB2,eval{(F2,82).812,Ph2)} if and onlv if
LBl=LB2Z, RBt=RB2, and FI=F2.

(LB1,RBI eval(F1,51).5t1,Ph1) betterthan
(LB2,RB2,eval(F2,52),812,Ph2) if and only if
LB1=LR2, RB1=RB2, FI=F2, and $1<§2.

The system actually has different options for defining the
feature scheme of a result. The default method is tha(the
feature scheme is the term

head(F,LF)

where I and J are the boundaries of the head word and F
is obtained from the feature structure Feas as follows: In
most cases, F is the principal functor of Feas, but if Feas
15 verb(Infl) then F is the principal functor of Infl, Se,
when the feature scheme is computed in this default way,
pruning is done within classes of resuits having the same
boundaries, the same head word, and (roughly) the same
part of speech,

The numerical scoring function is a weighted sum with
terms dealing (as indicated above} with close attach-
ment, complement preference, and paralielism. The term

controlling for close attachment is, as mentioned, Hei-
dorn’s metric, (This term is between 0 and 1.) The term
controiling for complement preference is basically just a
count of the number of adjunct slots in the phrase
structure (on all levels). However, one can declare any
adjunct to have another contribution to the score than
its count of 1. Thus an adjunct declared to have contri-
bution 0 is valued like a complement, There are actually
three {weighted) terms dealing with parallelism in coor-
dination. These measure similarity of feature structures,
simifarity of slot frames, and similarity of modifier
configurations for the two conjuncts. For details, see
(McCord, 1989).

4. Transfer

Transfer is facilitated by marker binding, which shows
links between words and their complements, as well as
links between two phrases in adjunct modification, as
described in the preceding section.

The links associated with complementation are especi-
ally important, Given a source word W, 2 filled comple-
ment slot of W is of the form slot(Slot,Ob,e(X)), where
the logical variable X is the marker of the filler phrase.
This link offers communication in two directions, from
complement to head word and vice versa:

1. The nature of the complement phrases can affect the
choice of the translation of the head word W.

A given transfer element can name the target slots
associated with the complements of the target head
word. These can be difierent from the corresponding
source slots, especially when prepositional compie-
ments are involved.

[]

Note that the complements of a word may not be focated
ot the same level as the word tself (they may not be
found among the modifier lists of the phrase for which
the word is head) because of extraposition and coordina-
tion. Nevertheless, marker binding shows such connec-
tions.

To make the above communication possible, there is a
simple preparatory step for transfer, in which the mark-
ers of noun phrases and verb phrases in the source
analysis tree become (through unification) augmented
markers, which are of the form .

X:Sense:Features

where X is an unbound variable, Sense is the head word
sense of the phrase, and Features is the feature structure.
We call X the augmented marker variable.

Augmented markers allow communication in direc-
tion {1) above, ir that a word can easily ‘look at’ the
sense and features of a complement. And communica-
tion in direction (2} is possible through binding the
augmented marker variable to a target siot.

Communication in both directions is implemented
through references to augmented markers in the internal
forms of lexical transfer elements. Such internal forms
are (possibly conditional) clauses for the predicate

twordframe(POS,SourceWord, Args, TargetWord),

(We give a slightly simplified description, omitting one
argument.) POS is the part of speech which the source

word is considered to have, and the source word itseif is
given in the same form as the Sense argument of a
wordframe clause (usually a citation form). The target
word is given in citation form, although it can be a
compound word, The argument Acgs is a list of aug-
mented markers, corresponding to the complements of
the word.

As an example, suppose we have the English—German
entry for eat given in Section 2:

eat < v{obj) < tv(subj: ~ human,obj,{ress)
< tv{obj,ess).

The idea of the two transfer ¢lements is that ear trans-
lates ipto fressen if the subject is not marked Auman, else
it translates into essen. In addition, the target slots are
named, Then for an input word eats these three lexical
‘analysis elements give rise to the following three inter-
nal-form clauses, respectively;

wordframe(eats, eat, verb(fin(pers3,sg.pres,*)),

. slot(subi,op,X).slot{obj,op, Y }.nil).

twordframe({verb, eat, (subj:S:*).(obj:*:*}.nil, fress)

' «— ~isa(S,human),

twordframe(verb, eat, (subj:*:*).(obj:*:*).nil, ess).
Suppose we are translating the sentence The man eats the
apple, and man is marked human in its lexical entry,
Lexical compiling creates a clause:

isa(man,human).

Source analysis, and the formation of augmented mark-
ers mentioned above, create the bindings

X =¢(X0:man:noun{...))
Y =¢(Y0:appie:noun(. . .))

of the markers of the subj and obj slots of ears. The
transfer algorithm {as we will see below), in dealing with
the transfer of eats, calls twordframe with its third
argument equal to the list of terms U where e(U) is a
marker of a slot of eais (in order); i.¢. the third argument
given to twordframe is '

(XO:man:noun...)).(Y(:apple:noun(. .))nil.

Application of the first clause for twordframe binds 8 to
man, so the antecedent of this clause fails. But then the
second clause succeeds, and this produces the essen
translation and also creates the bindings X0=subj and
YO=o0bj. These variables are directly available in the
phrase structures of the man and rhe apple, and in their
translations. Hence the translated NPs can be assigned
the subj and obj slots and the correct target cases.

In peneral, transfer elements can indicate any Boolean
combination of tests on a complement, and the lexical
compiler converts these into a corresponding com-
bination of Prolog goals. Each test in the original
combination can be indicated by a simple semantic type
(like Auman), which is converted into an isa goal for the
sense of the complement, but the test can also involve the
feature structure of the complement.

The main, recursive procedure

tran(SourceSlotFiller, MotherFeatures,
TargeiSlotFilier)

for transfer takes a source slot/filler pair and the target
features corresponding to the mother of this pair, and
produces a target slot/filler pair. Target phrase struc-
tures, instead of being represented as phrase data struc-
tures, are represented in a somewhat simpler form:

syn{HeadWord,Features, LeftModifiers,
RightModifiers),

The members of the modifier lists are pairs Slot:Filler,
where Filler is either another syn structure or a term
representing a word. These syn structures are referred to
directly in the rules of syntactic generation.

The steps (basically) in the definition of tran are the
following four:

1. Find the target slot TSlot. For this, one can refer to
the source slot Slot and the augmented marker
variable, TSlot is taken to be Slot if Slot is an
adjunct; else TSlot is the augmented marker variable
if this is bound {by a transfer element), else TSlot is
‘zero’ if Slot is a PP complement slot; eise TSlot is
Slot.

2. Find the features of the target phrase. In doing this
one can refer 1o the source features, the source slot,
the target slot, and the mother target features.

3. Find the target head word by a procedure

tranword(TargetFeas,SourceWord,
X.SourceFrame, TargetWord).

Here the term X is the augmented marker of the
source phrase.

4. Recursively call {ran on the medifier slot/filler pairs,
using the current target features as the middle
argument.

All of the rules for steps (1), (2) and (4}, and the top-level
rules for step (3), are in the shell. There are some non-
trivial things to do in step (2) {feature transfer), getting
features in a form suitable for generation and managing
the communication up and down the tree through the
‘mother features’ argument, The language-independent
top level of word transfer (tranword) is also non-trivial,
involving rules for handling passives, subject verb agree-
ment, etc. .

The basis of the procedure tranword is of course to
call the language-specific lexical transfer predicate
twordframe described above (this is done for all but
exceptional tokens).

In the preceding section, the source analysis tree for
the sentence

The user adds new lines to the file.

was displayed. Recall also the English-German entry for
add, discussed in Section 2:

add < v{obj.pobj{to})
< tv{obj.iobj,hinzu:fueg).

In the English-German version of LMT, the transfer step
produces the following tree:

top verb(ind:top,fin(pers3-sg,pres,X2):X3,nil)
subj noun{cn,nom.pers3-sg-X1:persi-sg-m, X4}
ndet det{nom,pers3-sg-m,X4)
d

benutzer/a
hinzu:fueg
obj noun{cn,acc,pers3-pl-X5:pers3-pl-f, X 6:a)
nadj adj(X7,acc,pers3-pl-f,X6:a)
neu
zeile/l
zero prep(zero,mi)

iobj noungen,dat,pers3-sg-X8:pers3-sg-f,X9)
ndet det(dat,pers3-sg-f,X9)
d
dateifm

Because of the basic compositionality of the transfer
algorithm, this tree is isomorphic to the source tree.
However, it has the appropriate target language words
in citation form (the German nouns are marked with
their declension classes), and the correct target features,
Netice that the correct target slots are assigned to the
compitements of the iarget verb, as dictated by the tv
element above, such as the iobj slot for der Datei (the
translation of o the file).

Restructuring the tree to get an appropriate German
surface tree is the job of the syntactic generation step,
which is discussed next.

5. Syntactic generation

Syntactic generation applies a sysiem of tree transfor-
mations to the transfer tree in order to get a target tree in
the correct target surface form. (Actually, transfor-
mations apply to slot/filler pairs.) The algorithm for
applying the transformations, as well as some supporting
procedures for writing transformations, are langhage-
independent, but the transformations themselves can
depend both on the source and target languages. How-
ever, it is possible to share transformations for different
language pairs.

There is a special formalism which allows one to write
transformations using an extension of Prolog unification
involving sublist variables. A rule compiler converts
transformation rules to Prolog clauses (McCord 1986,
19884).

The external form of a transformation is:

Name -
A—-—-B
« Condition.

Here Name is the name of the transformation, and A
and B are slot/tree pairs, where the tree is a syn structure,
as described in the preceding section. The modifier lists
in the syn structure can contain sublist variables, which
are represented in the form %X. The Condition is a
Prolog goal, and it can be omitted if desired.

A transformation rule is compiled into a Prolog clause
of the form:

transform(Name,A1,Bl)+—
ASplit & Condition & BSplit.

Here the original term A involving per cent variables has
been re-expressed as an ordinary term A and a conjunc-
tion ASplit of calls to cone, which concatenates lists.
Similarly, B is re-expressed as Bl and BSpiit. For

efficiency, the Condition is inserted between ASplit and
BSptit, because Condition normally contains constraints
whose arguments become known immediately after exe-
cution of ASplit.

As an example, in English-German translation, a
simplified version of a dative movement transformation
can be written as follows:

dative—
S:syn(V,verb, LM, % RM1.(obj:Obj) (iobi:10b)). RM2)
——

S:syn(V,verb, LM, % RM1 (i0bj:10bj).(0bj:Obj). RM2).

This rule interchanges the direct and indirect objects. It
is compiled into the transform rule:

transform{dative, S:syn(V,verb,L. M,RMO0),
S:syn(V,verb,LM,RM4)) «
conc(RM3, (obj:Obj).(1obj:I0bj). RM2, RM0) &
conc(RM3, (iobj:YObj).{obj:Obj). RM2, RM4),

Note that conc is used both for splitting apart lists (non-
deterministically) and for putting lists together.

Transformations are specified in two ordered lists. The
members of the lists are the transformation names,
appeaning as first arguments of transform. The first list,
of b-transforms, consists of transformations that can
apply only to non-coordinated phrases (‘b’ suggests
‘basic’). The second list, of e-transforms, consists of
transformations that can apply to any phrases (possibly
coordinated) (‘c’ suggests ‘coordinated”). Generally,
there are many more b-transforms than c-transforms,

The algorithm for restructuring a slot/filler pair S:P by
the application of transformations is as follows:

1. Recursively restructure all the modifiers of P, and let
Pl be the phrase resulting from P by replacing its
modifiers with their restructured versions.

2. If P! is not coordinated, run through the b-trans-
form list, applying each transformation if possible,
only once (by calling transform), starting with S:P{
as input and getting final result S2:P2.

3, Run through the b-transform list, applying each
transformation if possible, only once, starting with
$2:P2 as input. The final result is the restructured
version of S:P.

For more discussion of transformations, see (McCord,
1986, 19884). The basic techniques are similar to those in
this earlier versiocn of LMT, but new ingredients are (1)
the separation of transformations into b-transforms and
c-transforms, and (2) the treatment of ordering. In the
earlier version, Prolog clause ordering was used, and a
given transformation could apply more than once on a
given level. Also in the new version it is quile convenient
to be able to refer to slots as well as features.

Let us finish by illustrating what happens with the
example sentence The user adds new lines to the file
discussed in the last two sections. The changes needed in
the transfer tree (displayed in the preceding section) are
(1) to get rid of the zero remnant of the source preposi-
tion (this is to be ignored because the PP is a comple-
ment), (2} to interchange the obj and iobj complements,
and (3} toc move the separable prefix hinzu to the end.

These changes are performed, respectively, by three

transformations pzero, dative, and sepprefix. These are
in the b-transform hist, ordered as just indicated, The
transformation pzero is trivial, replacing the zero PP by
its one right modifier. This prepares the way for dative,
already described above, which interchanges the obj and
iobj modifiers.

Finally, sepprefix operates. This is defined by:

sepprefix— :
S:syn{Pre:Verb,verb(ind: T,M},LMods,RMods)
—
S:syn{Verb,verb(ind: T,I,M)},LMods,
%RMods).Pre. RMods2)
« visplit (RMods,RMods1,RMods2).

The reference to ind requires that the verb phrase be
independent. The separable prefix Pre is moved toward
the end, but may not go all the way. The purpose of
vfsplit is to place Pre so that it does not hop over final
‘heavy’ modifiers (see discussion in (McCord 1986,
1988a)). Tt is important in general that sepprefix is
ordered after dative, because if the indirect object has a
heavy final modifier, this should nor impede the move-
ment of the prefix toward the end.

The result of the operation of restructuring is the tree:

top verb(ind:top.fin(pers3-sg,pres, X2):X3,top)
subj noun{cn,nom,pers3-sg-X1:pers3-sg-m,X4)
ndet det{nom,pers3-sg-XL:pers3-sg-m,X4)
d
benutzer/a
fueg
iobj noun{en,dat,pers3-sg-X 5:pers3-sg-1,X6)
ndet det{dat,pers3-sg-f,X6)
d
datei/m
obj noun{en,ace,pers3-pl-X7:pers3-pl-f, X &:a)
nadj adj(X9,acc,pers3-pl-f, X8:a)
neu
zeilefl
hinzu

Then the morphological generation step produces the
final result:

Der Benuizer fuegt der Datei neue Zeilen hinzu.

Notes

1. The abbreviation is for ‘Logic-based (or Logic-program-
ming-based) Machine Translation.” The system is written
entirely in Prolog.

2. Background influence on this work consisted mainly of
the following two lines of work: {(a2) Systemic Grammar,
especially the work of Richard Hudson (1971, 1976) (scc
also McCord, 1975, 1977), and (#) the work of George
Heidorn (1972, 1975) based on the augmented phrase
structure grammar formalism now cajled PLNLP. It is
interesting that Hudson’s 1970 system specified linear
ordering relationships (in terms of grammatical relations)
independently of immediatc dominance relationships.
Hudson's sysiems were not formulated in a computational
framework. Heidorn’s system had the similarity with Slot
Grafnmar of being dependency-oriented and using gram-
matical relations, but the augmented phrase structure
grammar basis makes for several differences. in the cur-

rent scene, Slot Grammar is probably closest in spiri{ to -
grammatical systems based on unification of feature struc-
tures, such as FUG, 1.FG, and HPSG (see (Shicber, 1986),
for an overview, also cf. Dependency Unification Gram-
mar {Hellwig, 1986, 1988})); but there are differences that
will become evident in the following. Also, the original
19768 Slot Grammar work was done independently of
any work of this type.

3. Execution speed was not particularly a consideration. The
efficiency of the English Modular Logic Grammar {with
top-down parsing through Prolog execution) and the
efficiency of the English Slot Grammar (with bottom-up
chart parser) seem to bec about the same.

4. The unification of markerts in these cases is inappropriate
for the needs of LMT and for other rcasons. Details wiil
not be given here. .

5. We describe here the normal parsing process, neglecting at
first the treatment of constructions like coordination.

6. References

Byrd, R. J. ([983). ‘Word Formation in Natural Language
Processing Systems’, Proceedings of IJCAI-VIH, T04-6.

(1986). *Dictionary Systems for Office Practice’, IBM
Research Report RC 11872, T. J. Watson Research Center,
Yorktown Heights, New York.

—— 1. L. Klavans, M. Aronoff, and F. Anshen (1986).
‘Computer Methods for Morphological Analysis,” Proceed-
ings of the Association for Computational Linguistics, 120-7.

Colmerauer, A. (1978). ‘Melamorphosis Grammars,” in L.
Bole (ed.), Natural Language Communication with Com-
puters. Springer-Verlag.

Fargues, J., Bérard-Dugourd, A., Landau, M. C., Nogier, J.
F., and Catach, L. (1987). *KALIPSOS Project: Conceptual
Semantics and Linguistics,” Proc. of the Conf. on Artificiad
Intelligence and Natural Language Technology, IBM Eurc-
pean Language Services, Copenhagen.

Heidorn, G. E. (1972). ‘Natural Language Inputs to a Simula-
tion Programming System’, Technical Report NPS-
SSHD72101 A, Naval Postgraduate School, Monterey, Cali-
fornia.

—— {1975). “‘Augmented Phrase Structure Grammars’, In B.
L. Nash-Webber and R. C. Schank (eds.), Theoretical Issues
in Natwural Language Processing, 2-5, Association for Com-
putational Linguistics.

—— (1982). ‘Experience with an Easily Computed Metric for
Ranking Alternative Parses’, Proceedings of Annual ACL
Meeting, 1882, 82-4.

Hellwig, P. {1986). ‘Dependency Unification Grammar,’ Pro-
ceedings of the {Ith Inmternational Conférence on Compuita-
rional Linguistics, 1986, Bonn, 195-8.

—— {1988). *Chart Parsing According to the Slot and Filler
Principle’, Proceedings of the 12th Internutional Conference
on Computational Linguistics, 1988, 242-44. Budapest.

Hudson, R. A. (1971). English Complex Sentences, North-
Holland, Amsterdam.

—— (1976). Arguments for a Non-Transformational Grammar,
University of Chicago Press, Chicago.

McCord, M. C. (1975). *On the Form of a Systemic Grammar®,
Journal of Linguistics, 11, 195-212.

—— {1977}. ‘Procedural Systemic Grarmnmars,” rrernational
Journal of Man-Machine Studies, 9, 255-86.

(1980). ‘Slot Grammars’, Computational Linguistics, 6,
31--43.

——-— (1982). ‘Using Slots and Modifiers in Logic Grammars
for Nawural Language’, Artificial Intelligence 18, 327-67.

——— (1985). ‘Moduiar Logic Grammars', Proceedings 23rd

Annual Meeting of the Association for Computational Lin-
guistics, 104-17, Chicago.

—— (1986). *Design of a Prolog-based Machine Translation
System.” Proceedings of the Third International Logic Pro-
granmming Conference, 350-74, Springer-Verlag, Berlin.

—— (1987). ‘Natural Language Processing in Prolog’, in
Walker et al. (1987).

—— (1988a). “Design of LMT; A Prolog-based Machine
Translation System’, Computational Linguistics, 15, 33-52.
—— (19885). ‘A Muiti-Target Machine Translation System’,
Proceedings of the International Conference on Fifth Genera-
tion Computer Systems 1988,1141-9, Instituie for New Gen-

eration Computer Technology, Tokyo, Japan.

—— (1989). ‘A New Version of Slot Grammar', Research
Report RC 14506, 1IBM Rescarch Division, Yorktown
Heipghts, NY 10598.

——— and Wolff, S. (1988). ‘The Lexicon and Morphology for
LMT, a Prolog-based MT system’, Research Report RC
13403, 18M Research Division, Yorktown Heights, N'Y 10598.

Neff, M. 5., Byrd, R. J., and Rizk, O. A. (1988}, ‘Creating and
Querying Lexical Data Bases’, Proceedings of the Second
Conference on Appiied Natural Language Processing. Austin,
Texas.

Shieber, 5. M. (1986). dn fnrroduction to Unification-Based
Approaches 1o Grammar, CSLI Lecture Notes No. 4, Center
for the Study of Language and Information, Stanford, CA.

Walker, A. (ed.), McCord, M., Sowa, J. F., and Wilson, W. G.
(1987) Knowledge Systems and Prolog: A Logical Approach
to Expert Systems and Natural Language Processing. Addi-
son-Wesley, Reuding, Mass.

Wilks, Y., Huang, X-M., and Fass, D. {1985). ‘Syntax, Prefer-
ence and Right-Attachomen!’, Proceeding 9th International
Joint Conference on Artificial Intelligence, 779-84, Los An-
geles, '

Woods, W. A. (1973). *An Experimental Parsing System for
Transition Network Grammars’, in R. Rustin (ed.), Natural
Language Processing, 111-54. Algorithmics Press, New
York.

