[Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation
of Natural Languages, Colgate University, Hamilton, New York, August 14-16, 1985]

Lexicon-Driven Machine Translation

R. E. Cullingford, Georgia Institute of Technology, Atlanta, GA 30332 (*)
B. A. Onyshkevych, Princeton University, Princeton, NJ 08544

ABSTRACT

Machine Translation (MT) systems have historically relied upon explicit grammars in
order to analyze the source text and reproduce it in the target language. In this paper, we argue
for a style of MT in which the focus of processing is at the level of the /exicon, rather than the
grammar. This approach to translation allows an analyzer to map source sentences into an
interlingual form, which then can be mapped (perhaps after intermediate inferencing steps)
back into target sentence(s) which are paraphrase-equivalent to the original. Advantages of the
approach include: 1) the possibility for different paraphrases of the original; 2) the capability for
multi-sentence expression of the original when no single word (e.g., a verb) exists in the target
language which spans the same meaning complex as a word in the source; 3) a uniform
approach to word sense disambiguation and anaphoric reference resolution; and, most impor-
tantly, 4) the possibility for robust handling of ungrammatical and ellipsed source text.

1. 0 Introduction: Lexicon-Driven Machine Translation

Systems designed for the Machine Translation (MT) of texts between languages have
traditionally relied upon explicit grammars of both the source and target languages, in order to
analyze the source text and produce well-formed target-language sentences (cf., e.g., [Tuck84]).
Grammar-based systems have been reasonably successful at production-quality MT. The nature
of grammatically driven processing leads to certain problems, however.

First of all, an explicit grammar tends to make the system’s computation excessively fop-
down. Thus, it is usually not particularly robust under deviant (e.g., ungrammatical, telegraphic
or ellipsed) input. Moreover, explicit-grammar approaches tend to be overly concerned with
the form of the language, rather than its content. Issues of preservation of meaning between
source and target texts tend to get downgraded.

In this paper, we shall argue for an alternative style of MT in which the focus of process-
ing for both input and output texts is at the level of the lexicon, i.e., the words and phrases of a
language, rather than its grammar. No extensive experimentation in MT has been performed
within this paradigm (but see, for example, [Wile81, Lyti84]). We shall suggest, however, that
the approach very naturally allows for meaning-preserving MT, and provides solutions for
difficult problems such as word-sense disambiguation, anaphora resolution, the need for cir-
cumlocution when lexical equivalents of source words are not available, etc.

Language analysis, in particular, has a very strong bottom-up nature in the approach to be
described. Such analyzers [e.g., Ries75, Birn81, Cull84, Dyer84] tend to produce fragmented
meaning structures for ungrammatical or ellipsed inputs. Thus, there is the possibility for diag-
nosis of the fragments, in order to determine a reasonable reading of the input [e.g., Boot85a,
Boot85b].

We illustrate the approach with a toy MT system which translates Ukrainian texts into
English. The overall methodology for designing language interfaces in this paradigm is detailed
in [Cull85].

* The research described here was performed while this author was visiting the EE&CS Department, Princeton
University, Princeton NJJ08544.

75

2.0 Goals and Methodology

We wish to make it clear at the outset that the systems we have in mind are not “true”
MT systems, but ones which retell or paraphrase the source text in the target language. We
have not been concerned with modelling the professional translator’s expertise in preserving the
form, tone and rhetorical flourishes of the speaker, but rather with his basic bilingual,
meaning-preserving translation capabilities. We have argued elsewhere [Carb81] that even this
capability requires access to numerous, often culture-specific, knowledge structures (KSs)
representing what the translator knows about mundane reality, the plans and goals of motivated
people, special-purpose rules for specialized domains of knowledge, and the like. As was noted
long ago (BarH60], these structures, and their reflections in natural language, will need to be
modelled effectively before bilingual translation, and there fore true MT, will be possible.

Our methodology is derived from the so-called Conceptual Information Processing approach
to natural language processing (NLP), associated with the names of Charniak, Schank, Wilks
and Winograd, and their students. This methodology has been described in a number of places
[e.g., Wino72, Wilk73, Wilk75, Scha75, Hirs84, Cull85], and we only summarize it here.

We are assuming that an interlingua can be designed which models the conceptual level of
understanding that people possess independently of any natural language. We assume, also,
that this interlingua can be encoded in terms of a relatively small number of primitive meaning
units, and that the meanings of words in a language can be represented by structures drawn
from this interlingua. For effective use by an intelligent system, the primitive units for a
knowledge domain must be selected on the basis of coverage, economy and orthogonality of
inferencing. The meaning structures assigned to sentences are to be composed from the mean-
ings of the individual words in such a way as to provide unique and unambiguous representations
of paraphrase-equivalent sentences (in whatever language). The representation scheme is to be
continuous: small changes in sentence meaning should not cause large changes in the underlying
representation. That is, the scheme should support the evolution of a “semantic field” of words
having related meanings [cf., e.g., Mill76].

Some simple principles for deriving representations for sentences have been described in
[Cull85]. The representation scheme is based on notions of bottom-up design, the maximal
inference-free paraphrase, the model corpus, and continuous deformation of meaning structures.
We will illustrate the first two of these processes for the following simple English sentence:

(1)
Olivia punched Muhammed in the nose.

A meaning representation for a given sentence is normally derived from what is called a
maximal inference-free paraphrase (MIFP) of the sentence. In an MIFP, one tries to re-express
the sentence in the most verbose or circumlocuted form possible, expanding it in terms of
clauses (assertions) based on the primitive types of the knowledge domain. The conjunction of
the clauses is to be a restatement of the literal, “exact” meaning of the original sentence. (The
word “paraphrase” is used here with a stricter meaning than ordinarily.) What this means is that
none of the clauses should involve a substantive inference from the meaning of the sentence.
They should only re-express what seems to be contained in the words of the sentence them-
selves. This level of literal meaning is called surface semantics.

A “substantive inference” is an assertion drawn from the real-world context surrounding
the utterance, or an auxiliary concept formed from the hearer’s mental model or belief system.
“Surface semantic” inferences based on the ordinary meaning of words are, however, legitimate
parts of an MIFP. For example, if one hears:

Ronald took an aspirin from the bottle and ate it,
one is entitled to conclude on surface semantic grounds that “it” refers to “aspirin” rather than

“bottle”. This claim is based on the ordinary meaning of “eat”, which demands an ingestible
object; and aspirins are ingestible while bottles are not. On the other hand, concluding that

76

Ronald did this because he had a headache is a substantive inference. Real-world facts need to
be known in order to draw such a conclusion.

Having formed the MIFP, one selects the clause that expresses the “main” or most impor-
tant component of the event being described as the kernel of the representation. The other
clauses function as nuances serving to distinguish this particular event from others of the same
type. Obviously, the point of maximizing the number of nuances formed from a given sen-
tence is to maximize the total number of assertions that can be distinguished.

Thus, for Sentence 1, the clauses:

(la) The female person named Olivia propelled a hand into
p prop
physical contact with a nose.

(1b) This event was forceful.

(1c) The event transpired in the past.
(1d) The hand was in the form of a fist.
(1e) The hand was part of Olivia.

(1f) The nose was part of Muhammed.

(1g) Olivia was facing Muhammed, and was within arm’s
reach when this event took place.

all seem to be reasonable components of an exact paraphrase of (1). However, assertions such
as:

(2a) Olivia was mad at Muhammed.
(2b) Muhammed had done something to make Olivia punch him.
(2c) Both parties were wearing clothes when the event took place.

are clearly inferences from the described behavior, that is they are only plausibly true.

Of the parts of the exact paraphrase of Sentence (1), the first, (la), can be taken to be
basic for most purposes, since it is the one from which the most interesting consequences flow.
Looking at (la), one can begin to speculate on the likely reasons for such an episode, how
Muhammed might react, how relations between the two may change, etc.

The kernel assertion for Example 1, “Olivia propelled a hand into contact with a nose” can
be reasonably represented in terms of the (conceptual dependency) primitive propel, with an
underlying action in which an intentional or natural/mechanical actor applies a force to an
object, with the possibility of a physical state change to it and/or another object. The verb
“punch,” in this sense of the word, designates a human hand as the object to which the force is
applied, and clearly indicates that the hand came into contact with another object. (There are
other possibilities: the verbs “swing at” and “throw at” are neutral about contact.)

Working on the representation of (1) from the bottom up, we need representations [Note
1] for the entities “Olivia,” “Muhammed,” “fist” and “nose.” In a role-filler formalism [e.g.,
Char80], these would respectively be:

1 The primitive types used in this paper are drawn from the ERKS (Eclectic Representations for Knowledge
Structures) system, an amalgam of Conceptual Dependency, Preference Semantics and Commonsense Algo-
rithms used for illustrative purposes in [Cull85].

7

HUMO:
(person gender (fem) persname (Olivia))

HUMI:
(person gender (masc) persname (Muhammed))

BPO:
(bpart bptype (grasper))

BP1:
(bpart bptype (proboscis))

based on the primitive types person and b(ody)part. The symbols HUMO, etc., name the mean-
ing structures, allowing them to be reused. The (not entirely serious) choice of “grasper” and
“proboscis” for the bptype fields of BPl and BP2 was made to emphasize that the representation
should not contain words, only indicators of function or form which are true of many entities
simultaneously. Monkeys, elephants, men and robots, for example, all have functional grasping
parts.

One can now propose a simple representation for (la) as follows:

EVNTO:
(propel actor HUMO object BPO to (physcont part BP1))

In the role-frame of a propel, the (actor) path is expected to be animate and the (obj) path is
filled with a physical object. The filler of the (to) path in a propel-concept is required to be a
primitive type expressing a relationship of physical configuration (e.g., location, orientation or
contact) between two objects.

Of the nuance assertions, the first two, (1b) and (lc), clearly function to modify or com-
ment on the event expressed in the kernel assertion. Assertion (1b) allows us to distinguish
(1) from a sentence like “Olivia tapped Muhammed on the nose.” To avoid complexities with
representing relative time and physical quantities, one can simply incorporate (1b) and (lc) into
the representation as follows:

EVNTO:
(propel actor HUMO obj BPO to (physcont part BP1)
time (PAST) quantity (FORCEFUL))

The assertion “hand was in form of a fist,” (1d), is an example of an attributional concept,
one in which an intrinsic state or attribute of an object (such as color, weight, extent, etc.) is
described. The attribute partform (i.e., “form of a part”) is used to express the state of an object
that is “malleable” in some sense, that is, it can take on several forms. A version of an attribu-
tional concept expressing (1d) is:

STATEO:
(s-attr actor BPO attr (partform val (fist)))

The primitive type s-attr is used in STATEO to encode a stative attributional assertion about the
object in the (actor) path, along the attribute dimension in the (attr) path. The (attr val) filler
specifies the particular “value” of the attribute for this object. In STATEO, the filler “fist” is not
an English word, but represents a selection from the contrast-set for the partform role, when
expressed in conjunction with a particular object which is an intrinsic part of another, in this
case a hand. (Other choices might include “flat,” “cupped,” “pointing,” etc.) Note that this
nuance allows us to distinguish verbs such as “slap” and “poke” from “punch.”

78

Assertions (le) and (1f) are typical examples of physical configurational concepts.
Configurational concepts express a relationship between two or more entities. In this case, the
relation is “physically part of:” that is, one object is attached to another in such an integrated
way that a severe negative change in the physical state of health (for animate entities) or usabil-
ity (for artifactual objects) is likely to occur if the two are separated. A representation for (le)
is as follows:

STATEL:
(p-config conl BPO con2 HUMO conftel (partof))

Here, the confrel slot contains the particular conf(igurational) rel(ationship) encoded by the
form: “partof.” This nuance allows us to distinguish (1) from such statements as “Olivia hit
Muhammed with a rock.”

Example (1f) is the same type of configurational as the above. Example (1g) is a composi-
tion of physical configurationals.

Once the MIFP has been encoded in this way, one can form “the” representation of sen-
tence (1) in the following ERKS structure:

3)
Olivia punched Muhammed in the nose
(ms kernel EVNTO nuancel STATEO nuance2 STATEI nuance3 ...)

This is a form based on the special m(eaning) s(tructure) primitive, which is used in setting up
dictionary entries for words in the analyzer and generator to be described. Note that the organ-
ization allows a search process looking, for example, for a word sense to express a concept to
make increasingly fine-grained discriminations. First, one would look at the kernel form, then
at (nuancel), (nuance2), etc. One can easily order the nuances by counting up the number of
word senses that the associated form distinguishes from one another.

To make meaning structures such as (2) easier to understand, we normally use a “col-
lapsed” form based on the kernel structure. The collapsed form for (2) is:

“4)

(propel actor HUMO
obj (bpart bptype (hand) partform (fist) partof HUMO)
to (physcont part (bpart bptype (nose) partof HUM1)))

Here the stative parfof and partform conceptualizations have been “summarized” by making the
associated confiel and con? fillers into a role-filler pair associated with the respective conl/ filler.
For example, the filler:

(bpart bptype (nose) partof HUMT1)

is a shorthand for “the nose which is part of Muhammed,” i.e., (1f). The role partof doesn’t
belong to the role-frame of bpart.

3.0 A Lexicon-Directed Analyzer

The basic source of expectations for a surface-semantic analyzer comes from the words
themselves. Certain words can predict that other meaning units are likely to occur in the sen-
tence environment because of the semantic requirements of the meaning structure(s) they
build. In Sentence (1), for example, there are high-level predictions for an animate puncher
and a physical object being punched, both found in characteristic places in the sentence. What

79

is needed is a way of associating these predictions with the words in the system’s dictionary,
from which they can be summoned when the word is actually seen in the input stream.

A flexible and attractive means for. accomplishing this is to organize the analyzer as a pro-
duction system [e. g., Newe72, Rych76]. The surface-semantic analyzer under discussion uses a
system of productions, based on an extension of the notion of requests [Ries75], which
represent positional/semantic predictions about concepts in the input stream. The productions,
or test-action pairs, are maintained in a production memory. The test parts of the productions
monitor a working memory which holds the current state of the concepts for words analyzed up
to that point. The control of the system resides with a very simple interpreter. This repeatedly
selects the subset of productions which apply to the phrase or clause being currently considered,
and whose test conditions match the current state of working memory. Then, by a process of
conflict resolution, the interpreter selects one production out of the conflict set, and “fires” it.
The action portions of the productions generally add new concepts to the working memory,
expand the concepts into greater specificity, or merge available concepts to form larger ones
expressing the meaning of phrases or clauses. This cycle continues until no productions are
applicable to the working memory, at which point the working memory contains the interlingual
representation of the input concept.

3.1 Analyzing English

We will outline the production system cycle that analyzers of this type follow for Sentence
1. (See [Cull85] for an extensive discussion of this style of analysis.) Since the morphology of
English is relatively simple, we shall defer discussion of morphology until the next section,
which gives an example from Ukrainian.

The cycle begins with the dictionary look-up of words in the input stream. The look-up
first attempts to find the word in the dictionary as it appears; failing that, a morphological parser
attempts to strip the word to its root form, preceded by the morphemes. The dictionary look-
up also attempts to match the input stream against phrases, i.e., for idiomatic or “canned”
expressions.

The analyzer enters noun-group mode at the start of Sentence 1, because the sentence
begins with a personal name. The first item in the input stream, “Olivia,” is found in its root
form in the dictionary. (Actually, this process is managed with a “named-person” macro form.)
The production associated with “Olivia” creates a concept which is a representation of the word
-- such as HUMO above. The concept is placed on the concept list, or C-LIST, the working
memory of available concepts. The analyzer then exits noun-group mode, because of the pres-
ence of the past/perfective fragment produced by the root-stripper. If the next word on the
input stream had been “Johnson”, it would have been adjoined to “Olivia” (by productions) to
form a firstname-lastname concept. The end of the noun group would be signalled, in this case,
as soon as a non-name was encountered on the input stream. (Arrangements are easily made
for titles, appositives, and the like.)

The next item on the input stream is “punch” (we are ignoring morphology for the
present). The word’s concept (assuming, for the moment, that it isn’t ambiguous) is added to
the concept list, in the form:

©)
(propel actor (person)
obj (bpart bptype (hand))
to (physcont val (bpart partof (person))))

The word also adds a number of productions to the production memory: a production which
looks for a conceptual actor, and a set of productions which look for the object being punched,
and the part of the object where contact was made. These productions reside in the production
memory until their test parts fire. In the C-LIST, the concept for “Olivia” satisfies the semantic

80

test “couldbe-person” and the positional/syntactic test for “actor.” Thus, the production associ-
ated with the conceptual actor slot in Concept 5, above, is allowed to fire by the control and
conflict-resolution mechanism. The action part of the production removes the “Olivia” concept
from the concept list, and inserts it in the actor slot in the concept for “punch.” Since the test
parts of the other productions do not test true (i.e., they are only predictions at this point), the
control passes back to processing the input stream.

The next item on the input stream, “Muhammed”, is analogous to “Olivia”-- (see HUMI
above). A conceptual representation is added to the concept list, and end-of-noun-group is sig-
nalled by “in” from the input stream. The control selects a production from the production
memory which fills in the “person being punched” slot:

(6)

to (physcont val (bpart partof (person persname (Muhammed))))

The remaining production associated with “punch” looks for a prepositional construction
denoting proximity, governing a physical object constituent. The productions set up by “in” can
create any of a number of structures, including the locational or physical proximity relation
required by “punch.” Other constructions which “in” needs to handle include temporal location
(“in April”), a “member of”’ relation (“in the army”), etc. When any of these productions fire,
the rest of the production pool for “in” is removed from the production memory.

Having exhausted all productions testing true, control gets the next word: “the.” This word
adds a “definite concept” form to the concept-list, and adds a production which awaits a follow-
ing concept satisfying “couldbe-entity.” The next word is “nose.” It is placed on the C-LIST as a
“bodypart” type, then end-of-noun-group is signalled by the end-of-sentence marker, the period.
The conflict resolution scheme selects the most-recently-added production which tests true to
fire first. In this case, the production of “definite concept” set up by “the” fires, and marks the
“nose” concept as “definite reference”.

(bpart ref (def) bptype (nose) partof (nil))

Next, the “in” production for proximity to or location of a physical object tests true, and
fires, picking up the “definite nose” concept. This production creates a prepositional consti-
tuent. Now the remaining production associated with “punch” tests true, and the action picks
up the prepositional phrase, and merges “the nose” with the bpart concept from (6). The prepo-
sition is not needed, and is discarded by the production. The end of the input stream has been
reached, and all of the productions in the production memory are quiescent (test false); thus,
the resulting concept (see (4)) is returned as the conceptual representation of the input.

This extremely flexible scheme allows for the analysis of all of the forms related to Sen-
tence 1:

Muhammed was punched in the nose by Olivia.
Muhammed was punched.

In the nose Olivia punched Muhammed.
Muhammed Olivia punched in. the nose.
Punch!

The basic process needs to be modified only slightly in order to handle imbedded uses of
“punch:

Olivia wants to punch Muhammed
Olivia likes Ronald’s punching Muhammed

Muhammed’s having been punched was pleasing to Olivia

Finally, the all-or-nothing test-and-firing nature of requests is easily modified to allow for a
notion of “best fit,” as in the Preference Semantics [Wilk73, Daws85]. Thus, we get the effect

81

of grammatical analysis without the need for an explicit grammar. Since we are concerned with
the meanings of words anyway, we imbed the grammatical processing (which is often idiosyn-
cratic to the words) in the lexicon itself.

3.2 Analyzing Ukrainian

How does all of this apply to the analysis of other languages? Since all known languages
build upon lexical units, it makes sense to consider lexicon-driven analysis of languages other
than English. It turns out that the approach works very naturally for languages as different
from English as Chinese [Stut76] and, as we shall see, Ukrainian, a Slavic language.

The reason that Ukrainian was selected as the source language is the extensive morpho-
logical information conveyed by the heavy inflection of verbs, nouns, adjectives and pronouns.
Therefore instead of relying on word order, as in analytic languages like English, synthetic
languages like Ukrainian rely on the morphological information for specifying syntactic struc-
ture. The morphology of English is very limited, hence can be handled in a simpler fashion
than the extensive inflectional system of a synthetic language.

As it turned out, the bulk of the work involved in setting up the existing analysis scheme
to handle Ukrainian involved establishing a morphological parsing scheme for the inflected parts
of speech. In a language like Ukrainian the morphology can be quite extensive -- verbs, in par-
ticular, can have up to five or six morphemes, such as tensing or conjugation information.
Nouns, verbs, and pronouns are declined, with seven cases in the singular and plural.

The Ukrainian analysis scheme uses exactly the same production-system control mechan-
ism as the English version, only it augments the dictionary look-up procedure with extensive
morphological processing. After the morphemes are stripped off an inflected form, they are
inserted into the input stream (as in the English case) preceding the root form which replaces
the inflected input form. The morphemes have definitions very similar to the definitions of any
lexical item. The morphemes modify the conceptual structure built by the root form, filling the
appropriate slots in its role-filler case frame. This information is then available for checking
agreement, syntactic role, etc.

As the Ukrainian language uses the Cyrillic alphabet, it is necessary to have a systematic
way of transliterating from the Ukrainian Cyrillic to a form usable on the machine. Direct use
of the transliteration standard, the Library of Congress system, would complicate the morpho-
logical system substantially. The reason for this is that there are a number of single-letter
phonemes in Ukrainian which need to be represented by diphthongs in the Library of Congress
transliteration system. In the experimental system to be described, we decided to set up a
single-character transliteration standard.

The importance of the preservation of the unity of certain phonemes in the transliteration
method becomes apparent in the root stripper, when checking for or undoing the effects of cer-
tain sound shifts. As an example, certain vowel shifts occur in the context of the velars, some
of which need to be represented by a diphthong in the Library of Congress system. In the
scheme used here, the unity of the phonemes is preserved in the transliteration system.

Additionally, because the s and s sounds, as an example, often function similarly in
phonetic shifts, and since they “alternate” (i.e. one can become the other and v.v. in certain
intervocalic positions), it is convenient to represent them similarly. However, a representation
like sh would be troublesome because % is phonetically irrelevant to alveolopalatal sounds like
sh and undergoes sound shifts of its own. For a complete listing of the transliteration system
we adopted, see Appendix A.

We will now briefly describe the syntax and morphology of Ukrainian, to clarify the basis
of the problem example. In Ukrainian, nouns are declined, with seven cases in the singular
and plural. The inflections on any one noun may be only one level deep, so a noun may be
stripped to its root form. The dictionary entry for the word is based on the root form, i.e. the
Nominative singular form. Each noun has a gender entered as part of the definition. Note that

82

morphological gender is the same as syntactic gender, but is often not the same as semantic
gender.

In many of the declensions, there are instances where up to six cases can have the same
form. Hence, the root stripper has to return all of the possibilities. This phenomenon forces a
certain representational system upon the case slot in the representation of a noun. For exam-
ple, the full representation for a personal name like “UriY” declined as “UriA”, e.g. in the geni-
tive and accusative singular would be:

(person persname (UriY)
gender (masc)
sex (male)
case (cases casegen (sing) caseacc (sing)))

Here, the gender rtole gives the semantic gender, and the sex role gives the
morphological/syntactic gender. A similar representation is used for pronouns, and adjectives
as well, with the modification that gender agreement is included with the case.

In addition to just removing the inflectional suffix, the noun root stripper has to undo the
effects of any of a number of sound shifts. Such shifts include consonant gemination, palatiza-
tion, fronting, raising, and so on due to gain or loss of stress, change in juxtaposition, becom-
ing syllabically medial instead of terminal or v.v. etc. The contexts for these changes vary in
precision; sometimes relevant letters for a sound shift rule may be two letters removed from
the mutator.

Despite all these complications, Ukrainian noun stripping is a relatively simple one-phase
process. The noun stripper returns a string of one or more morpheme fragments, followed by
the root form of the noun. These morphemes are inserted into the input stream.

The morphological parsing of verbs is a considerably more difficult task than that of
nouns. The main reason for this is that a verb may have many levels of prefixes and suffixes,
whereas nouns can only have one suffix. This necessitates a significantly different approach for
the root stripper.

The verb morphology subfields are: tense, aspect, mood, form, number, gender, person,
transitivity. Although many of these subfields are not really related to the tfime of the utter-
ance, it was convenient to store the information in these slots. Accordingly, the root stripper
reflects the different nature of verb morphology and calls a series of routines, each of which
searches for a particular affix or group of affixes, and which may prepend a morphological frag-
ment to the fragment list if new information is inferred, as well as remove the affix. The basis
of this stripping is the removal of the affixes from inflected forms, from either end, from outer-
most to innermost, followed by an attempt to recreate the root form. The order of the calls to
these routines is critical.

The morphemes are inserted into the input stream, and the productions associated with
them insert them into the appropriate time slots of the root-form case frame. The formulation
of these slots is illustrated in an example below.

Initially, we attempted a strict feature matrix approach -- features flagged + or -, resulting
in unique identification of the forms. This was adequate for binary features (e.g., + or - singu-
lar) but failed for most features, like person, time, etc. The working approach uses a number
of slots, each taking zero or one fillers. Two fillers per slot are not allowed. This is not neces-
sarily the case in other inflected languages. In French, for instance, “aime” can be first or third
person, but not second person, so the slot person would have to be treated like noun casing
(below).

The productions associated with verbs in Ukrainian have a number of syntactic conditions
which must be met in the test portion of the productions; these tests are generally agreement
relations.

83

In English, subject-verb agreement does not extend beyond “he runs” vs. “they run”. In
Ukrainian, there is number and gender agreement, as well as case agreement (most verbs take a
nominative subject). So in order for a conceptual actor slot to be filled, at least these checks
need to be made:

1. case (usually nominative)

2. gender

3. number

4. semantics (whether actor “couldbe” of the semantic type specified)

Every argument or adjunct of a verb has a specific case which it must take: Due to the
casing, many prepositional phrases in a language like English become unnecessary, as they can
be replaced by a single cased noun: ‘to Mary’ -> dative , ‘of the President’ -> genitive, The
test portion of a production which wants to fill any nominal argument slot of a verb checks the
case slot (as described above) for the potential filler to be the case required by the definition.

The following sentence will serve as an illustration of the process of root-stripping input
forms, picking up morphological fragments, and the agreement/case checks. The English gloss
is “Ivan hit his horse with a stick™:

(7
konA vdaryv ivan patykom.

Although “horse” is the first item in the sentence, this is still an active (vs. passive) sentence,
because of the case marking.

The first word is read in from the input stream, and sent to the root-stripper, the morpho-
logical parser. The string returned is:

sgen§ sacc$ kin

The returned string is pushed back onto the input stream, and each component is marked as
having already been stripped. The production associated with the Genitive-singular particle,
sgen$, tests for a following nominal concept. The Accusative-singular particle does the same.
Neither of the test parts fire until the nominal concept built by the root form is available. The
production associated with the noun, as in the English example above, only places the noun
concept on the C-LIST. At this point the case fragment productions fire, and the action portion
of the productions create a subfield of the case slot for the appropriate case, and fill the slots
with the appropriate number -- singular in this situation.

The verb ‘vdaryv’ is the next item on the input stream. The morphological parser returns
perf$ past$ sing$ masc$

(No information about “person” is available in this tense.) The productions for these fragments
are similar to the noun fragments -- they await a following verb-concept on the C-list. Once
the verb root form, “vdar”, is reached, and the productions associated with it are placed in the
active request pools, the (language-independent) conflict-resolution scheme considers one pro-
duction test at a time. The first to be considered is the production which places the conceptual
representation of “hit” on the C-LIST. Now the morphology fragment tests can fire, placing
each of the fragments into the appropriate subfield of the time slot in the representation of the
verb. The perf$ fragment fills the aspect slot, past$ the tense slot, sing$ the number slot, and
masc$ the gender slot.

The next productions considered are the ones which attempt to find the conceptual argu-
ments for the case frame built by the verb root. As always, the test portion of the production
which fills the conceptual actor slot considers the available concepts on the C-LIST, in order of
their nearness to the verb-concept. When it looks at these concepts, it first checks that the
nominal concept is in the Nominative case -- that is to say, the “casenom” subfield has either

84

“sing” or “plur” as a filler. If so, then it takes that number filler, and checks that it agrees with
the number of the verb (the filler of the “number” subfield of the time slot). Once these tests
have been passed, the next condition considered is gender agreement -- the syntactic gender of
the noun definition associated with the concept on the C-list must match the filler of the
“gender” subfield of the verb time slot. The last test is the same semantic test as the English
example, viz., is the proposed conceptual actor a “person”?

An important difference between Ukrainian and English is that there need not be any
grammatical checks on word order in Ukrainian. For example, since “Olivia hit Muhammed”
differs in meaning from “Muhammed hit Olivia,” the production which fills the actor slot must
find a noun preceding the verb (in the active voice), and the object must follow the verb. In
Ukrainian the word order is not as important, since the object could easily precede the verb and
actor (as in our example), since it is marked as Accusative, and the actor as Nominative.

At this point in the analysis of Sentence 7, the nominal concept available on the C-LIST
is the concept for “horse,” which is in the Accusative case. Thus, the actor slot-filling produc-
tion fails on the first test, the case test. The production associated with the “object being hit”
slot only needs to test that the concept on the list is Accusative. Since the “horse” concept is
marked Accusative, and the semantics check out properly, the concept is removed from the C-
LIST and inserted in the appropriate slot. The remaining productions associated with the verb
which are in the pool do not find any concept at this point (i.e., they are predictions.)

The next item in the input stream is the actor “ivan”, which gets marked Nominative in
the manner described above. The concept is put on the C-LIST, where the “actor” production
of the verb is able to test it. Since “ivan” is in the Nominative case, and all the other checks
described above test positively, the concept is moved to the “actor” slot of the verb.

The “stick” concept is associated with the remaining word on the input stream, and is
treated like the “horse” above, except for the case being marked (by the stripped-off fragments)
as Instrumental. The resulting concept is returned:

(®)
(propel actor
(person persname (ivan) gender (masc)
case (cases caseacc (sing) casenom (sing)))
obj
(artifact case (cases caseinst (sing)) artifname (stick))
to
(physcont val (animal animname (horse) case (cases caseacc (sing))))
time
(times time2 (:perf) time6 (:sing) time9 (:masc) timel (:past))

As we saw, the bulk of the modifications required for changing this system from one
language to another involved the morphology. Since the analyzer being described is a lexically
driven system, there need be no explicit syntactic rules. Ukrainian word definitions alone took
care of the syntactic differences. While our consideration of Ukrainian sentence structure is not
yet complete, all grammatical sentence constructions considered so far can be captured in the
definition of the root verb or auxiliary verb: for example, predicate nominatives, passives, etc.
Other analyzer systems are syntax-based, and would need to have the whole syntax module
rewritten for each new language. With a lexicon-driven system, the surface morphological rou-
tines need to be changed, the definitions accommodated appropriately.

In the Ukrainian analysis system, the definitions for the morphological fragments (or the
agreement check) account for constructions such as negative genitives, implicit subjects, pos-
sessive constructions, intransitivization, etc.

85

3.3 Pronominal Reference

In the remainder of this paper, we'll be concerned with the translation of the following
short passage:

(9.1) UriY Cumakuvav vozom.
Uri used to bring back salt from some salt flats in a cart,
then sell the salt.
(9.2) vin skotyvsA z mosta.
(One day) the cart rolled off a bridge
(9.3) rika zmyla viz.
The river washed the cart away.

This passage illustrates the analysis of pronouns and ambiguous words, as well as various gen-
eration problems to be described later.

The dereferencing of pronouns is a complex problem which puts the premises of our lexi-
cal approach to analysis to test. The discussion below uses the Ukrainian sentences of Passage
9 for illustration. However, exactly the same process applies to the analysis of English pronouns.

A pronoun may be thought of as an ambiguous concept consisting of all the co-referent
concepts previously seen which “match up” with it in semantic terms. As an example, consider
Sentence 9.2. The possible referents of “vin” are either “UriY” or “viz” (the cart), since gender
agreement is based not on semantic gender, but on grammatical gender -- “viz” is masculine,
and takes the pronoun “vin” (he). In this case, “vin” must resolve to “viz” because of the
semantic requirements of “skotytysA” (rolled off). However, if Sentence 9.2 had the sense “He
retired after 30 years,” the pronoun “vin” would have “UriY” as the antecedent. That is, no
purely syntactic process can guarantee that the correct anaphoric reference will be located.

The production associated with the definition of “vin” calls a function which finds the pos-
sible referents for the pronoun by applying a certain predicate function. In this case the predi-
cate selects the concepts which satisfy the requirement “masculine grammatical gender”. The
reference function applies the predicate to concepts on a context list, called the NLP-context.
In the simplest case, this list holds the concept names for all the “substantive” concepts that the
analyzer has formed. The “substantive” concepts include the noun-group constituents, as well
as clause and sentence-level concepts. How far back to look in the NLP-context during
referent search is, of course, problematical.

When the list of possible referents is returned to the production for “vin,” the pronoun’s
concept is replaced with the concept of the antecedent if there is only one possible referent, or
with a vel (Latin for “non-exclusive or”) of the possible referents if there are more than one.
For the example of (9.2), the resulting concept would be:

(vel v1 (person persname (UriY) gender (masc) sex (male))
v2 (veh vtype (cart)))

The casing information of the antecedents is irrelevant to the pronoun, so that is dropped.
The pronoun has case information of its own, in this case Nominative-singular, which is used
to mark all of the disjuncts of the vel. When the pronoun is disambiguated by the verb, the vel
is replaced with the concept of the one referent selected by the verb productions from the vel.

After the morphology fragments are picked up by the verb, it is in the position to pick up
the actor concept. Both of the disjuncts of the vel satisfy agreement and case requirements --
the disambiguation of the vel is up to the semantic restriction. The verb “skotytysA” (roll off)
requires a wheeled vehicle or cylindrical object as actor in the reflexive. So the production
picks up the vel, compresses it into the “veh” concept only, and fills the actor slot of the verb
with the result.

86

If the size of the disjunction is greater than one after the agreement checks and the verb
selectional restrictions, the whole disjunction is used to fill the slot.

3.4 Prepositional Constructions

This section will present an approach to the meaning of prepositions, and how other words
can take advantage of these meanings. As an example, we shall continue with the analysis of
9.2).

The prepositional phrase “iz mosta” has the meaning “from (off) the bridge.” However,
the preposition “iz” can take any of a number of meanings: “from” and “(together) with,” among
others. These two uses, however, take different case for the following noun phrase. Thus, the
productions can select between these two based on the case information associated with the
noun phrase concept.

3

However, case alone is not able to distinguish among other meanings of the preposition.
For instance, both the “(together) with” and “at the time of” usages of the preposition “iz”
require arguments in the instrumental case. The semantic restrictions for the temporal reading
require a time phrase such as “New Year’s” or “Tuesday.” So in order to assert the “at the time
of” meaning of the preposition, the preposition’s productions must pick up a “time” concept as

the argument.

In English, the first means of selecting the appropriate reading of the preposition does not
apply. So the selection is achieved by the semantics alone. As an example, consider the read-
ings of the preposition “in” in English:

(10) Olivia was in the house
(11) Olivia was in the army
(12) Olivia graduated in 1984

It seems clear that prepositional phrases such as “in the house,” “in the army” and “in 1984~
have different readings. For example, “in the house” contributes a meaning fragment that says
something like: “if someone (an event, for example) is looking for a particular kind of loca-
tional relationship, this phrase can build one.”

The word “mosta” (bridge) is marked as genitive case, so the meaning of the preposition
is chosen to be “from.” The conceptual definition of the verb “roll off” seeks a “from topof”
argument; the prepositional construction indicates that it is a “locational relation”, so the prepo-
sitional phrase’s argument is the “from” location. The argument of the prepositional phrase is
inserted into the “from topof” slot in the final concept:

(13)
(ptrans obj

(veh case (cases casenom (:snom)) vtype (cart))

from (topof part

(struc case (cases casegen (:sgen) caseacc (:sacc))
structype (bridge)))
time
(times time2 (:perf) time6 (:sing) time9 (:masc)
time7 (:intrans) timel (:past))

)

The primitive element ptrans is the conceptual dependency actional rendering events in which
an animate actor (here unmentioned) causes a physical transfer of the location of a movable
object.

87

3.5 Word Meaning Disambiguation

The selection of the intended meanings of words in context is a key problem for any
language analyzer. The best-known case of the meaning selection problem is wordsense disambi-
guation, the process of choosing the correct underlying representation for a word having several
senses. A wordsense disambiguation scheme, therefore, will require a model of context con-
sisting of both the meanings of surrounding words and higher level expectations.

In order for this selection process to proceed, an analyzer needs a means of making the
alternative meaning structures of a word explicitly accessible. This is the motivation for the vel
construction introduced in Section 3.3. Nominal words normally rely on requests of other
words to compress the ambiguous structure down to a single meaning; the discussion of the
pronouns illustrated the mechanism. Ambiguous nouns, such as “ball” in English, are disambi-
guated in a similar manner.

Verbs, on the other hand, establish a set of productions to disambiguate themselves. Sen-
tence 9.3, for example, has the verb “zmyty.” The reading of the verb in this sentence is “to
wash away.” Other readings include the sense “to wash off (something):”

(14a) rika zmyla berih. (“The river washed away its shore™)
(14b) UriY zmyv ruky (“Uriy washed off his hands”)
(14c¢) rika zmyla Yomu ruky (“The river rinsed Uriy’s hands”)

When the verb concept is initially placed on the C-list, it sets up a vel, or disjunction of
the different readings. The productions attempt to find surrounding constituents which allow a
decision to be made. The first production looks for an animate entity in the actor spot. If it
finds it, it asserts that the (14b) sense of “zmyty” may be the preferred reading. We say “may
be” because the consideration process for the productions gives all the requests a chance to
perform a disambiguation. When all of the productions have had a chance to fire, the system
packages up the result: a single concept if the word has been completely disambiguated, or
another vel, if only a partial disambiguation is possible.

Note that what this requires is a means for saving and restoring the state of the analysis
process just before a production is considered and just after it fires. Since the state of the work-
ing memory is completely described by the C-list, it suffices to remember the state of the C-list
as a production pool starts, then remember the revisions to the C-list (i.e., the compressed vel
subconcepts) caused by a production's firing. Before each production is considered, the
analyzer restores the C-list to the saved state. The simplicity of the production system mode!
makes the management of processes such as staged disambiguation very easy.

Returning to the “zmyty” example, one can see that the presence of a “natural force” (the
river) available on the C-list to fill the actor slot will allow either the (14a) or the (14c) read-
ings. However, the (14c) reading requires an indirect object (The gloss should be “The river
washed the hands for Uriy”). The (14a) production finds the natural force subject, and the
“physical object” direct object it needs to be asserted. Thus, this reading of the verb is asserted,
the vel is compressed to the meaning selected, and the analysis is able to be completed, result-
ing in the disambiguated concept:

(15)
(ptrans

actor (movingwater case (cases casenom (:snom)) mwtype (river))
obj (veh case (cases caseacc (:sacc) casenom (:snom)) vtype (cart))

time (times time6 (:sing) time9 (:fem) timel (:past))

)

88

4.0 Surface Semantic Machine Translation

In the rest of this paper, we are going to discuss a simplistic model of MT in which the
source analysis and target generation are done on the basis of surface semantics, i.e., literal
word meanings, alone. Of course, we know perfectly well that access to detailed world
knowledge is necessary in order to perform much of the inferencing that is needed to produce
full understanding, and therefore high-quality MT. There is an important class of simpler infer-
ences, however, which can be supported directly at the surface semantic level. These include
word meaning selection, many kinds of anaphoric reference resolution, and a process which we
will call “distributed target realization.”

A block diagram of a surface semantic MT system is shown in Figure 1. As can be seen,
a conceptual analyzer of the kind discussed in the last section creates a meaning structure for
each of the input sentences, and passes it on to a module called a surface-semantic annotator.
This slightly modifies the concept in order to allow for certain differences in the modes of
expression available in the source and target languages, then hands it to a conceptual generator
for expression in the target language.

4.1 Surface Semantic Generation

Conceptual generation is the process which performs the inverse mapping from a meaning
structure into a NL string. This process has several distinctive features. First of all, the system
begins with a concept to be expressed, and possibly an indication of a sub-concept to be “said”
first. The system is not told anything about the words or syntactic constructions to be used.
This is in contrast with other models of generation [e.g., Simm72, Swar79, Wien80] in which
the program's input is a syntactic phrase structure of some sort, including some or all of the
words to be used.

Secondly, the generation process need not in any way be the processing inverse of the
analysis process, as. for example, some purely grammatical approaches would claim. The sys-
tem to be described starts (as people usually seem to) with a complete, well-formed “thought”
to be “said.” Thus, the generation process is fop-down, in a way that analysis never can be. As
we have seen, analysis has a very strong bottom-up flavor of recognition, as the listener
attempts to match the fragments of meaning from the words that are being heard against his
conceptual expectations. A corollary of these two ideas is that literally everything (words, syn-
tax, focus, connectives, etc.) that a generator of this kind chooses, in order to express the con-
cept, will be motivated by conceptual features of the given concept, its conversational context, or
the goal-following activities of the overall system. In many cases, therefore, the generator algo-
rithm to be described will not be able to “say” the most fluent-sounding thing, because a con-
ceptual reason for choosing the fluent construction is not apparent. This is the price one pays
for a radically conceptual-level approach.

The generator to be described has data and control structures which are reminiscent of the
analysis module discussed earlier. Just as in the analyzer, there is no explicit grammar; “syntax”
is stored with the individual words of the lexicon. The generator’s primary data structure is a
short-term memory, called the C-LIST, consisting of concepts intermingled with words and
morphological fragments. The basic control structure of the generator accesses the C-LIST in
an iterative process of looking up word(s) to express the meaning of a concept that is currently
the focus of attention (at the “front” or “top” of the C-LIST); and second, of inserting leftover
subconcepts in appropriate places around the chosen word(s) on the C-LIST [Note 2]. The
subconcepts may be accompanied by “function” words, such as prepositions or conjunctions,
which serve to mark the conceptual case in the parent concept from which the subconcept
came. From time to time during the basic iteration, “demon” subprocesses may intervene to
prescribe a more economical means of expressing a concept than a dictionary entry may allow.

2 The elegant lookup-then-insert iteration to be described was originally developed by Mallory Selfridge,
working with the author in the Intelligent Systems Design group at The University of Connecticut

89

Initially, the C-LIST contains a single conceptual form to be expressed. The overall gen-
eration cycle can be described by the following rules:

1) Ifthe front of the C-LIST is empty, then there is nothing to generate; return.

2) If there is a word or fragment on the front of the C-LIST, then after some preprocessing
“say” the word by saving it on a special list to be returned as the generator’s result.

3) If there is a concept at the front of the C-LIST, check if any of the “demon” processes
want to do anything to it. The demons, called sketchifiers, are described in [Cull85]. If a
demon fires, go to 1) and start over.

4) When none of the demons fires, remove the concept from the front of the C-LIST, and
try to find a word in the dictionary to express the concept. The dictionary entries are
based on wordsenses, associations between words and conceptual forms. The conceptual
form of an entry which matches a C-LIST item is a template for the item: a pattern con-
taining roles and fillers which must be present in the item if the dictionary entry is to be
used.

5) If the current concept is completely “spanned” by an entry, i.e., the template is “equal” to
the entry, then replace it on the C-LIST by the word(s) of the entry [Note 3j. Otherwise,
insert the fillers not matched into the C-LIST using the positional constraints stored with
the wordsense found.

It is worth noting that Rule 3, above, usually embodies a decision not to say something
that the dictionary would normally want to say. Thus, the model of generation we're presenting
can be thought of as an “exhaustive” algorithm (Rules 1, 2, 4 and 5) being restrained by rules of

type 3.

4.2 Dictionary Entries for English

To outline how a lexicon-driven generator for English works, consider the dictionary
entries needed to generate the passive form of example sentence (1) “Olivia punched
Muhammed in the nose,” from a concept, e.g. c55, produced by the analyzer [Note 4] . In
ERKS format, this would be:

c55:
(propel actor c27
obj (bpart bptype (hand) partof ¢27)
to (physcont val (bpart bytype (nose)
partof (person persname (Muhammed) gender (masc))))
time (times timel (:past))
mode (modes model (:t)))
c27:

(person gender (fem) persname (Olivia))

3 The pattern-matching operation implied here is implemented by a general-purpose knowledge base
manager described in [Cull83]

4 We are currently investigating the extension of the generator algorithm to heavily inflected languages such
as Ukrainian

90

focus path:
(to val partof)

The first thing to note is that the generator, if it is working in the same language as the
analyzer, can use many of the same wordsenses as the analyzer did in order to arrive at c55 in
the first place. Thus, for example, both the analyzer and generator definitions for “punch” can
be based on wordsense wsPUNCHI as shown in Figure 2. The wordsense entry provides a
structure-frame (associated with “ws-structure”) from which to obtain instances of the concept
associated with the sense such as: a set of constraints on fillers proposed for the slots of the con-
cept; a specification (not needed here) of any irregular forms of the root word; and a focus field
to give the generator a sentential focus, a subconcept to “say first” if the concept supplied
doesn’t contain one. (The sentential focus in our example concept is on “Muhammed.”) The
generator matches C-LIST items against the “ws-structure” form, and if the entry is selected,
uses the “surface-form”.

The function gdictdef in Figure 2 adds the additional information necessary to make the
wordsense wsPUNCH]1 available to the generator. This function supplies the specification of
syntax for sequencing words. These specifications are sensitive to the “focus” property provided
with the input concept, and all use the positioning predicates pr (precedes) and fo (follows).
The dictionary definition for main verbs, such as “punch”, contains pairs consisting of a path to
a focussed-on subconcept, and a set of positional specifications for leftover fillers. At [I] in
Figure 2, for example, are the specifications to be used when the conceptual (actor) path is to
be the sentential focus. The specification is an association list (alist) consisting of a path into
the C-LIST item, and a set of predicates for placing the filler found at the end of the path on
the C-LIST. At [2], for instance, is the alist for the conceptual (actor) filler:

((actor)
(pr)(pr (to val partof)) (pr (to val)))

What this says to do is: if the (actor) path in the C-LIST item matching the template is
nonempty, then position it on the C-LIST preceding the word (“punch”) spanning the item,
preceding the filler of the (fo val partof) path, and preceding the filler of the (to val path). Simi-
larly, the filler of (to val partof) is to follow the word “punch,” follow the filler of (actor), and pre-
cede filler of (to val). The specification for the (to val) filler is:

((to val)
(fo)(fo (actor))(fo (to val partof))(fo in))

This indicates that the (to val) filler is to follow the word, the (actor) filler, and the (fo val par-
tof) filler. It is also to follow the function word “in,” which is simply inserted as a lexical entry
on the C-LIST. Thus, the entry specifies the standard ordering of constituents for the active
voice of the verb “punch.”

The second association of focus and specification in a dictionary entry is assumed by the
generator to correspond to the passive voice. At 3] in Figure 2, we see that the passive voice
goes with the sentential focus on the (fo val partof) filler. If ¢55 were expressed using the pas-
sive, the dictionary would specify an ordering of constituents on the C-LIST as follows:

(to val partof) “punch” “in” (to val) “by” (actor)

To handle “Olivia” and ‘““Muhammed,” one has the generator’s analog of the analyzer’s
named-person macro viz.. WsNAMED-PERSONI, as shown in Figure 3. The motivation is
exactly the same: to he able to generate all the thousands of names that there are with a single,
concise definition.

Figure 3 contains several new things. First of all, the word in the wordsense is “nil,” the
“empty” lexeme. It will have no direct realization in the sentence; it merely serves as a pivot to

91

position the naming information. In the call to gdictdef, the empty path () indicates that there
is no focus, as is typical of nominal concepts. The syntactic predicates position the persname
filler preceding the empty lexeme, with the surname filler following it.

We also have shown some “semantic predicates” (sempreds), arbitrary Lisp code (how-
ever, without side-effects!) making special checks on the given item which are hard to encode
with simply the structural information in the template. (Any matching process, for NLP or
anything else, needs a structured way to “escape to Lisp” to look for things that are difficult to
represent.) The predicates here use filledp to demand that at least one of the name slots in the
input be filled. (Entries without such a sempred would allow the realization of unnamed per-
sons, such as “a man,” “he,” etc.)

The dictionary entry for “nose” is contained in the following function call:
(gdictdef wsNOSE1)

Since there are no imbedded concepts to be expressed (at least in the simple cases), one just
needs to declare the wordsense defined earlier.

The generator’s dictionary lookup routines are responsible for selecting the word or words
that span as much of the current concept as possible. Sometimes information in the concept
does not map into a complete word, but is expressed by morphological changes in a root form,
or by the addition of auxiliary items. Examples in English are the “s” fragment indicating pos-
session, and the “to” that signals the infinitive form in the phrase “to graduate is my heart’s
desire.”

When the concept sent to the dictionary contains temporal or modal information, a sur-
face verb kernel must be built to express the fime and mode slots of the concept, and the verb
form must be made to agree in person and number with the focus of the sentence. Temporal
and modal information is like sentential focus information in that it is not an integral part of
the meaning of the concept but expresses auxiliary information. The time information
expresses the temporal relationship of the action or state to the time of the speech act (“now”),
and possibly to the time of some other event. (Our scheme for representing time is based
loosely on the theory discussed in [Bruc72].) Modal information expresses the ability, intent,
obligation, etc. of the speaker and/or hearer to participate in the expressed action or state. This
processing is handled in our generator by the verb kernel routines (see [Cull85]).

A generator of English also needs to be able to create “advanced” syntactic constructions
such as infinitives, gerunds, coordinated forms, etc. Most often, the availability of these reali-
zations is signalled by characteristic redundancies in the concept to be “said” or in its surround-
ing context. Creating these forms is the responsibility of demon processes called sketchifiers.
Discussion of these complex processes is beyond the scope of this paper (but see [Cull85]).

4.3 Annotating Surface Semantic Forms for Output

The conceptual representation of the source input meaning still has some traces of the
source language -- in Ukrainian, for example, the tensing/casing information. These fields
must be adjusted for the generator as the intermediate step between analysis and generation in
the translation process.

The casing information is never used directly by the target language, since the case of
each nominal position is specified by the generator word definitions, if needed. The seven
cases in Ukrainian, for instance, are discarded by the intermediate process, the Annotator, since
the generator knows what cases are needed in what positions in English (for pronoun casing).
For the reverse translation process, i.e. from English to Ukrainian, the definitions of the verbs
would have the case for each argument explicitly made available to the generator.

Other intermediate annotations need to be performed on the verb tensing information.
Many of the slots of the Ukrainian tensing information are superfluous or unnecessary for

92

English generation. The person and number fields can be extracted from the “subject” position
information. The gender agreement slot is also not necessary for English generation; in a
language like French, the gender for agreement would be extracted from the subject. When
there is no explicit subject in the source language, as is often the case with first and second per-
son conjugation, and the target language needed gender for agreement, the annotator would
have to mark the “implicit subject” with the gender of the agreement slot from the source
language, if it were available.

In our Ukrainian-to-English example the annotator discards most of the tensing informa-
tion, leaving only time and aspect. Since the tenses do not match exactly, the annotator adjusts
the Ukrainian tenses to the most nearly equivalent English ones.

One of the strengths of an intermediate-language approach to MT is that the analyser is
not target-language specific, and that the generator does not know about the source language.
Thus if we were to expand our system to handle Ukrainian to French translation, and the
French generator were available, the analyzer would not be changed at all, only the minimal
intermediate annotator would need to be added.

4.4 Distributed Target Realization

The lexically-driven nature of the analyzer and generator suggest interesting advantages
over syntactic (e.g., transfer) schemes. Among these is the possibility for handling of a distri-
buted target instance -- a one-word concept in the source language can be translated into a
multi-word or multi-clause realization just as easily and naturally as into a single-word realiza-
tion. The fact that there is a meta-representation, which gets created by the analyzer, allows a
number of more complex constructions to be analyzed.

An example of such a situation is demonstrated by Sentence 9.3, from our example pas-
sage:

(9.3) UriY Cumakuvav vozom.

The English translation of this sentence would be: “UriY (repeatedly) brought salt back from
the salt flats in his cart, and sold it.” A simple version of the conceptual form corresponding to
the verb “Cumak” (which does not contain the content implied by “repeatedly”) is:

(sequel
conl (ptrans actor (hianimate)
obj (hianimate)
from (locrel)
to (inside part (geofeat geoname (nil)
geotype (saltflats)))
inst ($drive actor (hianimate) veh (veh))
time (times) mode (modes))
con? (atrans actor (hianimate)
obj (ingobj phase (granular) ingtype (salt))
to (poss part (hianimate)))
con3 (ptrans actor (hianimate)
obj (ingobj ingtype (salt))
inst ($drive actor (hianimate) veh (veh))
to (locrel)
from (inside part (geofeat geoname (nil)
geotype (saltflats))))
cond (dual conl (atrans actor (hianimate)
obj (ingobj ingtype (salt))
from (poss val (hianimate))

93

)

con?2 (atrans actor (hianimate)
obj (money)
to (poss val (hianimate)))
)
)

This conceptual representation of the verb captures much of the nature of the verb; e.g. the
“$drive” fillers of the “inst” slots represent a script for the activity of “driving”, that is a whole
sequence of events which is captured by the one verb. Many of the slots of the representation
refer to the same concept. For example, the actor of the “driving down to the salt flats” (conl)
is the same as the actor of the “driving back from the salt flats” (con3). These equivalences can
be specified in the definition explicitly, so that instead of having a copy of the same concept in
the multiple slots, the same actual concept appears in as many places in the concept as neces-
sary.
Sentence 9.3 is analyzed into the following concept:

(16)
(sequel conl
(ptrans actor (person persname (UriY) gender (masc)
case (cases caseacc (:sacc) casenom (:snom)))
obj c54
from (locrel)
to (inside part (geofeat geoname (nil) geotype (saltflats)))
inst ($drive actor c¢54
veh (veh case (cases caseinst (:sinst)) vtype (cart)))
time
(times time2 (:imprf) timel (:past) time6 (:sing) time9 (:masc))
mode (modes model (:t)))
con2 *
(atrans. actor c54
obj (ingobj phase (granular) ingtype (salt))
to (poss part c54))
con3
(ptrans actor c54 obj c54
inst ($drive actor c¢54 veh ¢120)
to c69 from c70)
cond
(dual conl (atrans actor c54 obj (ingobj ingtype (salt))
from (poss val c¢54))
con?2 (atrans actor c54 obj (money) to (poss val c54)))
)
Here any concepts specified merely as 'c##' are subsequent references to concepts already
expanded in full. For instance, the actors of all the sub-concepts are the same concept -- c¢54.

As we see the power of a lexically-driven analysis is such that there is minimal language-
specific information encoded, yet the range of analyzable sentences includes many examples of
very troublesome syntactic constructions and lexical meaning.

5.0 An Example

In this section, we give an annotated run of our toy MT system working on the short pas-
sage discussed in the last section. We threw the system together out of existing tools, so it is
miles away from any sort of “production” capability. Indeed, as will be seen, there are some
problems with the translation produced. The system does serve to illustrate the major points
we have been making, however.

94

The MT system is a collection of Franz Lisp programs running under BSD Unix 4.2 on a
Pyramid 90x minicomputer [Note 5]. APE is the analysis module; GEN is the generator. The
system picks source sentences out of a file one at a time, analyzes them, annotates the resulting
concept, then generates an English realization of the annotated concept. This is an actual tran-
script of the running program, heavily edited for readability. Lines beginning with “;” are com-
ments.

TOOL-> (perklasty soucel)

Tue Jun 25 13:42:53 1985
Translating file: sourcel

Sentence: (UriY Cumakuvav vozom)

; the analyzer begins on the “noun group” implied by “UriY:” the root word
; preceded by its affixes
Entering ng mode

APE: new word is sacc$

APE: considering topreq pool: ap2 (ar3) sacc
Executed ar3

Available: nil

APE: new word is snom$

APE: considering toprq pool: ap$ (ar5) snom$
Executed ar5

Available: nil

APE: new word is UriY

APE: considering toprq pool: ap6 (ar&) UriY
Executed ar7

Acailable: (c54)

C54: (person persname (UriY) gender (masc))

; one of the “Cumak” afixes forces the system out of noun-group mode
Leaving ng mode

APE: new word is imperf$

APE: considering gapreq pool: ap5 (ar6) snom
Executed ar6
Available: (c54)

APE: considering gapreq pool: ap3 (ar4) sacc$
Executed ar4
Available: (c54)
; after the affixes modify the base concept, we have:
C54: (person persname (UriY) gender (masc)
Case (cases caseacc (:sacc) casenom (:snom)))

; this adds the completed concept to the NLP context

5. These programs are collectively called the NLP Toolkit. They are available for teaching purposes in concert with
[Cull85].

95

APE: considering shipreq pool: ap!l (arl ar2) NGP
APE: shipping noun group result: c54

Executed ar2

Available: (c54)

; now the system activates the verb-affix lexemes

; ¢61 is the imperfective fragment

APE: considering peekreq pool: ap8 (ar11) imperf$
Executed arll

Available: (c61 c54)

APE: new word is past$

APE: considering topreq pool: ap12 (ar16) past$
Executed arl6

Available: (c61 c54)

APE: new word is sing$

APE: considering topreq pool: ap14 (ar18) sing$
Executed arl8

Available: (c61 c54)

APE: new word is masc$

APE: considering topreq pool: ap16 (ar20) masc$
Executed ar20

Available: (c61 c54)

APE: new word is Cumak

APE: considering topreq pool: ap18 (ar22) Cumak
Executed ar22>

Available: (c65 c61 c54)

; ¢65 has the structure shown in the last section...

; now the fragments mark "Cumak"'s sequel-concept
APE: considering gapreq pool: ap17 (ar21) masc$
Executed ar21

Available: (c65 c61 c54)

APE: considering gapreq pool: ap15 (ar19) sing$
Executed arl9
Available: (c65 c61 c54)

APE: considering gapreq pool: ap13 (ar17) past$
Executed arl7
Available: (c65 c61 c54)

APE: considering gapreq pool: ap9 (ar13) imperf$
Executed arl3

Available: (c65 c54)

APE: considering gapreq pool: ap20 (ar24) Cumak

; one of "Cumak"'s requests picks up a conceptual actor

APE: considering gapreq pool: ap19 (ar23) Cumak
Executed ar23

96

Available: (c65)

; now the "noun group" for "a cart"
Entering ng mode

APE: new word is sinst$

APE: new word is viz

APE: considering topreq pool: ap24 (ar29) viz
Executed ar29

Available: (c120 c65)

Leaving ng mode

; "pr" is "period." the sentence terminating punctuation lexeme
APE: new word is pr

APE: considering gapreq pool: ap23 (ar28) sinst$
Executed ar28
Available: (c120 c65)

: "a cart" goes into NLP context

APE: considering shipreq pool: ap21 (ar20 ar26) NGP
APE: shipping noun group result: c120

Executed ar26

Available: (c120 c65)

: then Cumak gets its instrumental vehicle

APE: considering gapreq pool: ap20 (ar24) Cumak
Executed ar24

Available: (c65)

: after a bit more, the result
APE: sentence:
(UriY Cumakuvav vozom pr)
result:(c65)
c65:
(sequel conl
(ptrans actor (person persname (UriY) gender (masc)
case (cases caseacc (:sacc) casenom (:snom)))
obj ¢54 from (locrel)
to (inside part (group typmem (geofeat geotype (saltflat))))
inst ($drive actor c54
veh (veh case (cases caseinst (:sinst)) vtype (cart)))
time
(times time2 (:imperf) timel (:past) time6 (:sing) time9 (:masc))
mode (modes model (:t)))
con2
(atrans actor c54 obj (ingobj phase (granular) ingtype (salt))
to (poss part c54))
con 3
(ptrans actor c¢54 obj ¢54 inst ($drive actor c54 veh ¢120)
to c69 from c70)
con 4

97

(dual conl
(atrans actor c54 obj (ingobj phase (granular) ingtype (salt))
from (poss val c54))
con2
(atrans actor (nil) obj (money) to (poss val c54)))
compnum

4)

Now the annotator gets in to make the concept ready for realization in English. First, it maps
the tensing information and clears the Ukrainian surface cases. Then, as a translator would
have to, it sees that there is no lexical equivalent in English to the complex "Cumakuvaty" con-
cept. It looks for an economical realization using two or more verbs. The result of this will be
a concept expressing "bring back then sell."

Mapping tensing info in: c65
Clearing surface cases in: c65
Seeking realization of conrel: c65

; the resultant concept
c102: (sequel conl c103 con2 c134 compnum (2))

; this is "bring back"
cl03:
(sequel conl
(ptrans actor (person persname (UriY) gender (masc)) obj ¢54 from (locrel)
to (inside part (group typmem (geofeat geotype (saltflat))))
inst ($drive actor c54 veh (veh vtype (cart)))
time (times time2 (:prog) timel (:past) time6 (:sing) time9 (:masc))
mode (modes model (:t)))
con2
(atrans actor ¢54 obj (ingobj phase (granular) ingtype (salt))
to (poss part c54))
con3
(ptrans actor c54 obj ¢54 inst ($drive actor ¢54 veh ¢120)
to c69 from c70)
compnum (3))

; this is "sell"
cl34:
(dual conl (atrans actor c¢54 obj (ingobj phase (granular) ingtype (salt))
from (poss val c54))
con?2 (atrans actor (nil) obj (money) to (poss val c54)))
compnum (2))

; now the generator gets in with the above concept

GEN: top of c-list
(sequel.....)

98

; no sentential focus has been specified for the concept, so the generator
; picks a default
get-D focus: assuming default focus conl for c141

; the dictionary is probed

DICT to match: (sequel....)

; and returns the entry corresponding to "then"
DICT result: Dw191 (nil)

: it inserts the "bring back" concept preceding "then" on the C-list

inserting (nil c142 (c141 con2)) at:

((fo c141) (fo (funcword then)) (fo (c141 conl)) (pr (c141 con3))
(pr(c141 cond)) (pr(c141 con?)) (pr(cl141 con6)))

; and "sell" following

inserting (nil c155 (c141 conl)) at:

((fo c141) (pr(c141 con2)) (pr(c141 con3)) (pr(cl41 con4))
(pr(c141 conb)) (pr (c141 conb)))

; "bring back" reaches the front
GEN: top of c-list
(sequel con3 (ptrans actor (person persname (UriY) gender (masc)) obj c144....))

: a sketchifier notices that a vehicular-instrument phrase is available...
VEHINST: pushing vehicle c158

; the result of the dictionary look up...

; the Ukrainian imperfective has been mapped into the English progressive, the
; nearest available realization...

DICT result: Dw190 (was bringing back)

; the leftover subconcepts are inserted...

inserting (nil c162 (c155 conl to part)) at:

((fo c155) (fo (c155 conl actor)) (fo (c155 con2 obj))
(fo (c155 conl from)) (fo (funcword from)))

inserting (nil c160 (c155 conl from)) at:
((fo c155) (fo (c155 conl actor)) (fo (c155 con2 obj))
(fo (funcword to)) (pr (c155 conl to part)))

inserting (nil c166 (c155 con2 obj)) at:
((fo c155) (fo (c155 conl actor)) (pr (c155 conl to part))
(pr (c155 conl from)))

inserting (nil c144 (c155 conl actor)) at:
! (prcl55) (pr(cl155 conl from)) (pr(c155 conl to part))
(pr (c155 con2 obj)))

: as a result, Uri gets to the front...
GEN: top of c-list

(person persnarne (UriY) gender (masc))

: the entity-reference demon notices this named-definite concept, and adds it
to the NLP-context

99

entref: def-izing unique entity c187
entref updating nlp context with c187

: the Name sketchifier extracts the entity's name...
Name Maker: examining (person ref ¢190 persname c188 gender c189)

; and the first words of the sentence "appear”
utterance is (UriY)
utterance is (UriY was bringing back)

; now the salt gets to the front...
GEN: top of c-list
(ingobj phase (granular) ingtype (salt))

; the entity-reference demon notes the phase, and arranges a mass-noun determiner
entref: indef-izing mass noun c191
entref updating nlp context with c191

DICT to match: (ingobj ref (lindef) phase (granular) ingtype (salt))
DICT result: Dw189 (salt)

GEN: using
(salt)

inserting (nil ¢194 (c191 ref)) at:
((pr c191))

; the mass-noun determiner is realized
GEN: top of c-list
('indef)

DICT to match: (!indef)
DICT result: Dw148 (some)

GEN: using
(some)

: more words are "said"

utterance is (UriY was bringing back some)
utterance is (UriY was bringing back some salt)
utterance is (UriY was bringing back some salt to)

; the origin/destination of the "bring back" (which cannot be expressed in Ukrainian)
; reaches the front

GEN: top of c-list

(locrel)

DICT to match: (locrel)
DICT result: DwW206 (somewhere)

GEN: using
(somewhere)

utterance is (UrlY was bringing back some salt to somewhere)

100

utterance is (UriY was bringing back some salt to somewhere from)

: "salt flats" is conceptually a physical group whose "typical member" is
: an individual flat

GEN: top of c-list

(group typmem (geofeat geotype (saltflat)))

: the group gets the default determiner: plural indefinite
entref: indefizing group: c195
entref updating nlp context with c195

: and the generic "group" entry (which pluralizes the typmem subconcept)
. is looked up

DICT to match: (group ref (!indef) typmem (geofeat geotype (saltflat)))
DICT result: Dwl40 (nil)

({(nil c196 (c195 typmem)) (pr c195) (fo (¢c195 grpnum))))

GEN: using
(nil)

: the pluralized typmem gets inserted...
inserting (nil ¢196 (c195 typmem)) at:
;(pr c195) (fo (c195 grpnum)))

GEN: top of c-list

: geofeat ref (!indef) compnum (plural) geotype (saltflat))
entref updating nlp context with c196

: and looked up...

DICT to match: (geofeat ref (!indef) compnum (plural) geotype (saltflat))
DICT result: Dw188 (salt flats)
(((nil c198 (c196 ref)) (pr c196) (pr (c196 geoname))))

GEN: using
(salt flats)

: "some" gets produced again, this time as the standard English plural-indefinite
: determiner

GEN: top of c-list

(!indef)

DICT to match: (!indef)

DICT result: Dwl48 (some)

GEN: using
(some)

: more words

utterance is (UriY was bringing back some salt to somewhere from some)

utterance is (UriY was bringing back some salt to somewhere from some salt flats)
uup ranee is (UrlY was bringing back some salt to somewhere from some salt flats)
utterance is (UriY was bringing back some salt to somewhere from some salt flats in)

: now the cart-instrument gets to the front from where vehinst pushed it, a while

101

; back
GEN: top of c-list
(veh vtype (cart))

; vanilla determiner

entref indef-izing entity as default c200
entref updating nlp context with c200

DICT to match: (veh ref (indef) vtype (cart))
DICT result: DwI87 (cart)

(((nil 202 (c200 ref)) (pr c200)))

GEN: using
(cart)

inserting (nil ¢202 (c200 ref)) at:
((prc200))

GEN: top of c-list
(indef)

DICT to match: (indef)
DICT result: Dw150 (a)

GEN: using
(a)

; "then" is the realization of the original sequel
utterance is (UriY was bringing back some salt to somewhere from some salt flats in a
cart then)

- here is "sell"
; note the absence of tame/mode information; this should have been mapped from
; the "bring back" concept, we don't understand how to do this exactly.
GEN: top of c-list
(dual conl

(atrans actor (person persname (UriY) gender (masc))

obj (ingobj phase (granular) ingtype (salt)) from (poss val c144))
con2 (atrans actor (nil) obj (money) to (poss val c144)))

; as a result, we get back the root form, instead of the past-progressive
DICT to match: (dual...)
DICT result: Dw315 (sell)

GEN: using
(sell)

; the actor and object of "sell" get positioned
inserting (nil ¢147 (c142 conl obj)) at:
((fo c142) (pr(c142 con2 actor)))

inserting (nil c144 (c142 conl actor)) at:
((pr c142) (pr (c142 con20bj)))

GEN: top of c-list

102

(person persname (UriY) gender (masc))

; the recently mentioned animate actor is found in the NLP-context
; the demon sees that the pronoun can be used without confusion
entref: pron-izing recently seen c203

entref updating nlp context with c206

DICT to match: (person gender (masc) case (subj) ref (pron))
DICT result: Dw231 (he)

GEN: using
(he)

utterance is (UriY was bringing back some salt to somewhere from some salt flats in
a cart then he sell)

GEN: top of c-list
(ingobj phase (granular) ingtype (salt))

; the demon selects a definite determiner for "salt" here, rather than "it,"
; because of a possible confusion with the prior "cart"

entref: def-izing old entity c209

entref updating nlp context with c209

DICT to match: (ingobj ref (def) phase (granular) ingtype (salt))
DICT result: Dw189 (salt)

GEN: using
(salt)

GEN: top of c-list
(def)

DICT to match: (def)
DICT result: Dw149 (the)

GEN: using
(the)

; the output for the first Ukrainian sentence:
UriY was bringing back some salt to somewhere from some salt flats in a cart
then he sell the salt.

Sentence 9.2 contains a. pronoun with two possible referents as far as surface agreement is con-
cerned: "UriY" and "cart." An ambiguous concept is placed in the C-list, and "rolled off" selects
the appropriate surface-semantic referent.

: the second sentence
Sentence: (vin skotyvsA z mosta pr)

: analysis proceeds as above: when the root form of the pronoun "he"

103

; is processed, the system creates a vel of the possible referents.

; the pronoun lexeme sets the surface case of each subcon to singular
; nominative, its form for this sentence...

APE: new word is _vin

APE: considering topreq pool: ap31 (ar39) vin

APE: referents for surface-masculine pronoun: (c120 c54)
Executed ar39
Available: (c254)
c254:
(vel vl (veh case (cases casenom (:snom)) vtype (cart))
v2 (person case (cases casenom (:snom)) persname (Uriy) gender (masc)))

; the NLP-context update fails because an unambiguous referent for "he"
; isn't yet available
APE: considering shipreq pool: ap33 (ar41) NGP

; after the affixes of "skot" have been read, the root word gets in...

APE: new word is skot

APE: considering topreq pool: ap46 (ar54) skot

Executed ar54

Available: (c281 ¢275 ¢254)

c2Sl:

(ptrans obj (veh) from (topof) time (times timel (:pres)) mode (modes model (:t)))

APE: considering gapreq pool: ap48 (ar56) skot

; after the skot-affixes have fired, marking the concept appropriately,

; one of "skot"'s productions selects the vehicle sense of "he"

; to fill the conceptual object with the appropriate surface-semantic filler
APE: considering gapreq pool: ap47 (ar55) skot

VEL: disambiguated c254 as ¢c262
(veh case (cases casenom (:snom)) vtype (cart);)

Executed ar55
Available: (c281)

; the reflexive form of "it" gets in...

APE: new word is iz

APE: considering topreq pool: ap49 (ar57) iz
Executed ar57

Available: (c294 c281)
APE: considering gapreq pool: ap48 (ar56) skot

APE: considering gapreq pool: ap45 (ar53) self$

—

APE: considering gapreq pool: ap50 (ar58) iz
Entering ng mode

; The argument of the preposition takes genitive case.

104

; The fragment "fo" is inserted into the input stream whenever
; a genitive fragment is stripped off: this fragment

: attempts to create a "possessive" construction

; if the genitive noun is not picked up by a preposition or the

; verb, and there is a following available nominal.

APE: new word is fo

APE: considering topreq pool: ap52 (ar61) fo

Executed ar61

Available: (c299 ¢294 c281)

APE: considering peekreq pool: ap53 (ar62) fo
APE: new word is sgen$

APE: considering peekreq pool: ap53 (ar62) fo
APE: considering topreq pool: ap54 (ar63) sgen$
Executed ar63

Available: (299 ¢294 ¢281)

APE: considering peekreq pool: ap53 (ar62) fo
APE: new word is sacc$

APE: considering peekreq pool: ap53 (ar62) fo
APE: considering topreq pool: ap56 (ar65) sacc$
Executed ar65

Available: (299 ¢294 ¢281)

APE: considering peekreq pool: ap53 (ar62) fo
APE; new word is mist

APE: considering peekreq pool: ap53 (ar62) fo
APE: considering topreq pool: ap58 (ar67) mist
Executed ar67

Available: (¢302 c299 c294 c281)

APE: considering peekreq pool: ap53 (ar62) fo
Executed ar62

Available: (c302 ¢294 c281)

Leaving ng mode

APE: new word is pr
APE: considering gapreq pool: ap57 (ar66) sacc$

Executed ar66
Available: (c302 c294 c281)

105

APE: considering gapreq pool: ap55 (ar64) sgen$

Executed ar64
Available: (c302 c294 c281)

; as there is no following nominal, and the genitive-case noun "mosta"
; s picked up by the preposition, "fo"'s production never fires.
APE: considering gapreq pool: ap59 (ar68) fo

APE: considering shipreq pool: ap51 (ar59 ar60) NGP
APE: shipping noun group result: c302

; the result for the second sentence

APE: sentence:
(vin skotyvsA z mosta pr)
result:(c281)
c281:
(ptrans obj (veh case (cases casenom (:snom)) vtype (cart))
from (topof part (struc case (cases casegen (:sgen) caseacc (:sacc))
structype (bridge)))
time (times time2 (:perf) time6 (:sing) time9 (:masc) time7 (:intrans)
timel (:past))
mode (modes model (:t)))

; the annotator does its work
Mapping tensing info in: c281

Clearing surface cases in: c281

; the result:

(ptrans obj (veh vtype (cart))
from (topof part (struc structype (bridge)))
time (times time6 (:sing) time9 (:masc) time7 (:intrans) timel (:past))
mode (modes model (:t)))

; the generator is called to express this concept
GEN: top of c-list
(ptrans...)

; because no sentential focus is set, the generator selects the passive realization
; of "roll off." Note that the conceptual actor is empty. We know that the likely
; actor is "gravity," but we can't conclude this on surface-semantic grounds

; alone! There really should be an annotation rule for sentential focus; indeed.
; the analyzer should record the constituent that was "said" first.

GEN: using

(was rolled off)

; the NLP-context mechanism is not managed correctly here! Indeed, it was not
: really designed to support cross-lingual referent search. As a result, the

; entity reference demon selects "it" to realize "cart," even though there

: is a prior host of it-concepts (salt, saltflats, somewhere) that could be

; confused with it...

106

GEN: top of c-list
(veh vtype (cart))

entref: it-izing recently seen ¢325
entref updating nlp context with ¢328
DICT to match: (entity ref (pron))
DICT result: Dw204 (it)

GEN: using
(it)

utterance is (it was rolled off)

GEN: top of c-list
(struc structype (bridge))

entref indef-izing entity as default ¢330

entref updating nlp context with ¢330

DICT to match: (struc ref (indef) structype (bridge)) -
DICT result: Dw359 (bridge)

GEN: using
(bridge)

; the result is not fluent, but reasonably understandable...
It was rolled off a bridge.

The third sentence contains an example of an ambiguous verb-concept. The productions of the
verb will compress the vel to the appropriate sub-concept when they see "the cart." Interestingly,
when the pronoun "he" is used here, we have a surface-semantically ambiguous concept: "the
river washed the cart away" vs. "the river washed Uriy off." The analyzer will produce a vel of
these concepts as its result, relying on diagnostic processes from general world knowledge and
current context (viz., bridges often cross rivers, things falling off bridges land on/in the thing
crossed, etc.) to select the likeliest meaning. Lots of deep problems here!

Sentence: (rika zmyla viz pr)

; processing proceeds normally until the root-form of "zmyla" gets in...
APE: considering topreq pool: ap72 (ar84) zmy

Executed ar84

Available: (357 ¢349)

;"a river"”

c349:

(movingwater case (cases casenom (:snom)) mwtype (river))

; the vel of "wash away" and "wash off"
c357:
(vel vl (ptrans actor (animate) obj (pobj) time (times timel (:pres))
mode (modes model (:t)))
v2 (propel obj (ingobj-f ingtype (water)) to (physcont-f)

107

time (times timel (:pres)) mode (modes model (:t))))

; eventually the root word "cart" gets in...

APE: new word is viz

APE: considering topreq pool: ap79 (ar94) viz
Executed ar94

Available: (c383 ¢357 c349)

c383:

(veh vtype (cart))

; and a production of "zmy" make the appropriate selection: "wash away"
APE: considering velreq pool: ap73 (ar85 ar86 ar87) zmy

VEL: possible disambiguation: ¢357 as ¢373

Executed ar87
Available: (c357 c349)

VEL: disambiguated c357 as ¢373
(ptrans obj (veh case (cases caseacc (:sacc) casenom (:snom)) vtype (cart))
time (times timel (:pres)) mode (modes model (:t)))

; the result:

APE: sentence:

(rika zmyla viz pr)

result:(c373)

c373:

(ptrans actor (movingwater case (cases casenom (:snom)) mwtype (river))
obj (veh case (cases caseacc (:sacc) casenom (:snom)) vtype (cart))
time (times time6 (:sing) time9 (:fem) timel (:past))
mode (modes model (:t)))

;after annotation, the generator is called
GEN: top of c-list
(ptrans...)

GEN: using
(washed away)

GEN: top of c-list
(movingwater mwtype (river))
GEN: using

(river)

GEN: top of c-list
(indef)

GEN: using

(a)

; surface semantics is insufficient to infer "the river" which must be
; under "a bridge"!!!

utterance is (a river)

utterance is (a river washed away)

108

GEN: top of c-list
(veh vtype (cart))

; can't use "it" because of "river"
entref: def-izing old entity c407
entref updating nlp context with c407

GEN: using
(cart)

GEN: top of c-list
(def)

GEN: using

(the)

; and the result

A river washed away the cart.
t

TOOL->

6.0 Conclusions

We have argued that lexicon-directed MT is a viable alternative to standard explicit-
grammar approaches. As our simplistic experimental system suggests, many difficult problems
in meaning-preserving translation are very naturally approached in this style of
analysis/generation. Since the interface does create/map out of interlingua] forms, it can easily
be adapted to work with an expert reasoning/database system containing models of world
knowledge and MT expertise, which will be needed for the fully automatic high-quality MT
sytems that we really would like to build.

REFERENCES

[BarH60]
Bar-Hillel, Y., “The Present Status of Automatic Translation of Languages.” In F. L. Alt (ed.),
Advances in Computers (Vol. I). Academic Press, New York, 1960.

[Boot85a]

Booth S.L., Cullingford, R.E., & White, N.H., “DESI, A Robust Natural Language Interface to
a Decision Support System,” Proc. IEEE/ACM Conf. on Software Tools, Sheraton Center Hotel,
NYC, NY. April 1985.

[Boot85b]

Booth, S.L., & Cullingford, R.E., “How to Make a Natural Language Interface Robust,”
Proc.1985 IEEE Int’l Conference on Cybernetics & Society, Tucson, Arizona, November 1985 (in
press).

[Bruc72]

Bruce, B.. “A Model for Temporal References and Its Application in a Question Answering Pro-
gram.” Artificial Intelligence, Vol. 3, 1072, 1-25.

109

[Carb81]

Carbonell, J.G., Cullingford, R.E. and Gershman, A.V., “Steps Toward Knowledge-Based
Machine Translation,” IEEE Trans. on Systems, Man & Cybernetics, Vol. PAMI-3, No. 4, pp.
376-392, July 1981.

[Char72]
Charniak, E., “Towards a Model of Children's Story Comprehension,” (Ph.D. Diss.) Al Labora-
tory TR-266, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1972.

[Cull79]
Cullingford, R.E., “Pattern Matching and Inference in Story Understanding,” Discourse
Processes, Vol. 2, No.4, pp. 319-334, November 1979.

[Cull81]
Cullingford, R. E. et. al., “Towards Automating Explanations,” Proc. 1981 Int. Joint Conf. on
Artificial Intelligence, pp. 432-438, Vancouver, B.C., August 1981.

[Cull83]
Cullingford, R. E. and Joseph, L. J., “A Heuristically ‘Optimal’ Knowledge Base Organization
Technique,” IFAC Automatica, Vol. 19, No. 6, Nov-Dec, 1983.

[Cull84]
Cullingford, R. E. and Pazzani, M. J., “Word Meaning Selection in Multimodule Language Pro-
cessing Systems,” [EEE Trans. PA&MI, Vol. PAMI-6, No. 4, pp. 493-509, (July).

|Cull85]
Cullingford, R.E., Natural Language Processing: A Knowledge Engineering Approach, Rowman &
Allanheld, Totowa, NJ, 1985 (in press).

[Daws85]
Dawson, B., “A Preference-Based Conceptual Analyzer,” Dept. of EE&CS Research Report
(M.S. thesis). University of Connecticut, Storrs, CT 1985.

[Gers79]
Gershman, A.V., “Knowledge-Based Parsing,” (Ph.D. diss.) Research Report No. 156, Depart-
ment of Computer Science, Yale University, New Haven, CT, 1979.

[Lyti84]

Lytinen, S.L., “The Organization of Knowledge in a Multi-Lingual, Integrated Parser,” (Ph.D.
diss.) Research Report No. 340, Department of Computer Science, Yale University, New
Haven, CT, 1979.

[Mill76]
Miller, G.A., & Johnson-Laird. P.N., Language and Perception, Belknap/Harvard Press, Cam-
bridge, MA, 1976.

[Scha73|

Schank, R.C., “Identification of Conceptualizations Underlying Natural Language.” In R. C.
Schank and K. M. Colby (eds.), Computer Models of Thought and Language, Freeman, San Fran-
cisco, 1973.

[Scha75]
Schank, R. C. (ed.), Conceptual Information Processing, North Holland, New York, 1975.

110

[Simm72]
Simmons, R., and Slocum, J., “Generating English Discourse from Semantic Networks,” Comm.
ACM, Vol. 15, No. 10, 1972.

[Swar77]
Swartout, W., “A Digitalis Therapy Advisor with Explanations,” Proc. 5th International Joint

Conf. on Al, Cambridge, Massachusetts, 1977.

[Tuck84]

Tucker, A. and Nirenburg, S., “Machine Translation: A Contemporary View,” Annual Review of
Information Science and Technology, Vol. 19, Chapter 5, American Society for Information Sci-
ence.

[Wein80]
Weiner, J. L., “BLAH, A System which Explains its Reasoning,” Artificial Intelligence, Vol. 15,
Nos. 1, 2, 1980.

[Wile81]
Wilensky, R., and Morgan, M., “One Analyzer for Three Languages,” UCB/ERL TR-M81-87,
University of California, Berkeley, 1981.

[Wilk73]
Wilks, Y., “An Artificial Intelligence Approach to Machine Translation."”’In R. C. Schank and K.
M. Colby (eds.), Computer Models of Thought and Language, Freeman, San Francisco, 1973.

[Wilk75]
Wilks, Y., “A Preferential, Pattern-Seeking Semantics for Natural Language Understanding,”
Artificial Intelligence, Vol. 6, pp. 53-74, 1975.

[Wino72]
Winograd, T., Understanding Natural Language, Academic Press, New York, 1972.

111

CONCEPTUAL

TP ANALYZER | 7]

ANNOTATER

CONCEPTUAL
GENERATCR

N

i

+

WORDSENSE
DATABASE

Figure 1: Surface-Semantic Machine Translation System

112

s Figure 2: Generator Definition for "punch"
: This is EXACTLY the same wordsense as the analyzer uses
{def-wordsense wsPUNCH1
sur face-form (punch)
ws—-structure
(propel-f actor ({(nil)
ob} (bpart~f bptype (hand) partof {nil}}
to (physcont val (bpart~f bptype (nil) partof (nil})))
equivs
({{actor) (ob]j partof)))
;default focus for the generator
focus
{actor)

)

{gdictdef wsPUNCHL
2 [1]
;syntax for the active voice
(actor)
;2]
: (actor) placement for (actor) focus (active voice)
{({(actor)
;the realization of the (actor) is
; to precede "punch" on the C-LIST
(pr)
: to precede the realization of the (to val partof) filler
{(pr (to val partef))
; and to precede the filler of (to val)
(pr (o val)))
: (to val partof) placement in active voice
((to val partof)
: following "punch"
(£o)
; fellewing the (actor)
(fo (actor))
: and preceding the (to val) filler
(pr (to val)))
: (to val) placement
({to val)
: following “"punch"
(fo}
: following {(actor)
(fo (actor))
: following (te val partof)
(fo (to val partof))
; and following the function word "in"
(fo in)))

2 [3]
;syntax for the passive volice
(to val partof}
(((to val partof)
{pr) (pr (actor)) (pr (to val partof}})
{(to val)
(fe) (fo (to val partof)) (pr (actor)) (fo in))

{{(actor) 1183

(fo) (fo {(to val partof}) (fo (to val)) (fo by)))

114

(def-wordsense wsNAMED-PERSON1
:"word" is the empty lexeme
surface-form (nil)
ws—structure
(person—f persname (nil) surname (nil})}

)

{gdictdef wsNAMED-PERSON1
(((persname)
(pr) (pr (surname)))

({surname)
(fo) (fo (persname))))}

sempreds
(or (filledp ' (persname)}) (filledp ' (surname)))

: Figure 3: Generator Definitien for "named-person®

115

