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■ Machine translation of human languages (for ex-
ample, Japanese, English, Spanish) was one of the
earliest goals of computer science research, and it
remains an elusive one. Like many AI tasks, trans-
lation requires an immense amount of knowledge
about language and the world. Recent approaches
to machine translation frequently make use of
text-based learning algorithms to fully or partially
automate the acquisition of knowledge. This arti-
cle illustrates these approaches.

How can we write a computer program to
translate an English sentence into
Japanese? Anyone who has taken a

graduate-level course in AI knows the answer.
First, compute the meaning of the English sen-
tence; that is, convert it into logic or your fa-
vorite knowledge representation language.
This conversion process will appeal to a dictio-
nary, which maps words (such as canyon) onto
concepts (such as canyon) and to a world mod-
el that contains facts about reality (such as
canyons don’t fly). In this way, an ambiguous
sentence such as “John saw the Grand Canyon
flying to New York” gets the correct interpreta-
tion. Finally, turn the conceptual structure into
Japanese (or whatever), using further grammat-
ical and lexical knowledge bases. 

Along the way, there will be many fascinat-
ing problems to solve, such as canyons don’t
fly, but do people fly? Only in the sense of ride-
in-airplane, with the caveat that the wheels of
the airplane must at some point leave the
ground, do we fly; otherwise, we’re just taxiing.
How about “John flew me to New York”? This
is another meaning of fly, involving drive-air-
plane as well as ride-in-airplane. In addition, if
I state “United flew me to New York,” I might
say that the airplane that I rode in was driven
by an employee of the airline that owns the air-
plane. While we’re at it, why don’t canyons

fly? Airplanes and canyons are both inanimate,
but a canyon seems too big to fly or, anyway,
not aerodynamic enough.… We seem to be on
the right track, but considering the vastness of
human language and the intricacies of mean-
ing, we’re in for a long journey. 

Meanwhile, in the real world (not the formal
model), people are buying shrink-wrapped ma-
chine-translation software for $50. E-mail pro-
grams ship with optional language-translation
capacity. Companies use machine translation
to translate manuals and track revisions. Ma-
chine-translation products help governments
to translate web pages and other net traffic. 

What’s happening here? Is AI irrelevant? No,
but there are many approaches to machine
translation, and not all of them use formal se-
mantic representations. (I’ll describe some in
this article.) This should come as no surprise
because machine translation predates AI as a
field. An AI scientist could easily spend two
months representing “John saw the Grand
Canyon flying to New York,” but anybody with
a bilingual dictionary can build a general-pur-
pose, word-for-word translator in a day. With
the correct language pair, and no small amount
of luck, word-for-word results might be intelli-
gible: ”John vi el Grand Canyon volando a
New York.” This is okay Spanish. However,
most of the time, the translations will be terri-
ble, which is why machine-translation re-
searchers are busy building high-quality se-
mantics-based machine-translation systems in
circumscribed domains, such as weather re-
ports (Chandioux and Grimaila 1996) and
heavy-equipment manuals (Nyberg and Mita-
mura 1992); abandoning automatic machine-
translation and building software to assist hu-
man translators instead (Dagan and Church
1997; Macklovitch 1994; Isabelle et al. 1993);
and developing automatic knowledge-acquisi-
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much we understand about human language.
If we pour in lots of theories from computer
science, linguistics, statistics, and AI—and still
get wrong translations—then we know we
need better theories. Broadly speaking, theo-
ries of machine translation fall into the cate-
gories shown in figure 1. The simplest method,
at the bottom of the triangle, is word-for-word
substitution. Words are ambiguous, so select-
ing which substitution to make is not easy.
Word-substitution programs often also wind
up doing a limited amount of reordering, for
example, flipping adjectives and nouns. Word-
order differences can be handled more elegant-
ly if we do a syntactic analysis of the source
text, then transfer this analysis into a corre-
sponding target language structure. In this
case, word translations can be sensitive to syn-
tactic relations; for example, we can translate a
verb differently depending on its direct object.
Still, the target text syntax will likely mirror
that of the source text. Therefore, we can do a
semantic analysis that abstracts away syntactic
details (moving up the triangle in figure 1).

Ultimately, we arrive at an all-encompassing
meaning representation called interlingua. You
might wonder why semantics and interlingua
are not the same thing: Here is an illustration
from a Japanese-English machine-translation
system I have worked on. It once translated a

tion techniques for improving general-purpose
machine translation (Knight et al. 1995; Yam-
ron et al. 1994; Brown et al. 1993b). 

There have been exciting recent develop-
ments along all these lines. I concentrate on
the third thrust—improving machine-transla-
tion quality through automatic knowledge ac-
quisition. 

If you take a poll of general-purpose ma-
chine-translation users, you will find that they
want many improvements: speed, compatibil-
ity with their word processor, customizable
dictionaries, translation memory, revision
tracking, and so on. At the top of everyone’s
list, however, is better output quality. Unfortu-
nately, the machine-translation companies are
busy supplying all these other things because
they know how. Commercial translation qual-
ity has reached something of a plateau because
it is difficult to enter so much linguistic knowl-
edge by hand; so, there’s a great payoff for suc-
cessful research in automatic, corpus-based
knowledge acquisition. Recent corpus-based
techniques (parsing, word-sense disambigua-
tion, bilingual text analysis, and so on) have
yet to show up in commercial machine trans-
lation, and it looks like there are plenty more
results to come. 

From a scientific point of view, machine
translation remains the classic acid test of how
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Figure 1. Different Strategies for Machine Translation.



Japanese sentence as “there is a plan that a ba-
by is happening in her”—a reasonable transla-
tion but with a definite Japanese-semantics
feel to it. Semantics is not an all-or-nothing
proposition in machine translation any more
than in, say, expert systems. 

As you go up the triangle, you encounter
more good ideas, linguistic generalizations,
and explanatory power. It also becomes more
difficult to build large-scale systems because
the knowledge requirements become severe.
At the bottom, you need to know things such
as how to say real estate in French. To parse,
you need to know parts of speech and gram-
mar. To get meaning, you need to know all the
meanings of all the words, including the slip-
pery little ones, and have knowledge for com-
bining word meanings into sentence mean-
ings. It’s progressively harder to get the
knowledge. Fortunately for machine transla-
tion, recent work in corpus-based learning of-
fers the possibility of reducing the knowledge
bottleneck.1

Word-for-Word Translation 
Word-for-word translation was first proposed
in the 1950s. Protocomputers had just broken
German military codes, successfully transform-
ing encrypted German into real German by
identifying letter shifts and substitutions.
Cryptographers and information-theory scien-
tists wondered if Russian couldn’t usefully be
viewed as encrypted English—and machine
translation as a kind of decipherment. 

As a cipher, Russian looked to be complex.
Sometimes a word would be encrypted one
way and sometimes in another (what we now
call lexical ambiguity). Words also changed
their order, transposition in the cryptographic
jargon. Now, to crack complex ciphers, it was
always useful to intercept messages in both
their normal and encrypted forms (also known
as plaintext and ciphertext). Fortunately, there
were many such messages in both Russian and
English available: translations of Tolstoy, for
example. However, the cryptographers soon
gave up this approach because of the sheer size
of the problem. German encryption had been
performed on rotor machines in the field, but
machine translation was something else, with
complex grammar and hundred-thousand-
word substitution alphabets. 

This line of attack was resumed in the 1990s,
however, when computers grew more power-
ful. I reconstruct the basic approach with an
example. 

Suppose I give you the translated document
shown in figure 2. Sentences appear in both

Centauri and Arcturan translations. If you
aren’t fluent in extraterrestrial languages, don’t
despair; the nonsense words will actually help
you to see the text from a computer’s point of
view. Aware that you might soon be abducted
by aliens and put to work in the Interstellar
Translation Bureau, you are eager to analyze
the data.

You first notice that corresponding sen-
tences have the same number of words, except
for sentence pair 11. You conjecture that the
two languages are close to one another, and
perhaps, simple word-for-word substitution
will suffice for translation. To test this hypoth-
esis, you look at the Centauri word ghirok,
which appears in sentence pairs 3 and 10. It
sits directly above hilat and bat in the two re-
spective Arcturan translations; so, perhaps the
word ghirok is ambiguous, like the English
word bank. However, the Arcturan word hilat
appears in both sentence pairs; in fact, hilat ap-
pears in Arcturan if and only if ghirok appears
in Centauri; so, you might instead assume that
although ghirok always means hilat, Centauri
and Arcturan use different word-order
schemes. 

Next, you decide to fry some easy fish. The
words ok-voon and at-voon (sentence pair 1)
look suspiciously familiar, so you link them.
You do the same for at-drubel and ok-drubel
(sentence pair 2), ok-yurp and at-yurp (sentence
pair 9), and zanzanok and zanzanat (sentence
pair 11). The pair enemok and eneat (sentence
pair 7) also looks promising, but you decide to
wait for more evidence. 

Sentence pair 1 is now partially explained,
leaving two obvious hypotheses:

1. ororok means bichat
(and sprok means dat).

2. ororok means dat
(and sprok means bichat). 

Of course, it could be the case that ororok is
an (untranslated) auxiliary verb and that sprok
has a phrasal translation bichat dat. However,
you ignore that possibility for now; so, which
of the two alternatives is more likely? To find
out, you look for a sentence that contains
sprok but not ororok, such as sentence 2a. Its
translation (sentence 2b) has dat, lending sup-
port to the first hypothesis. You can now add
two more entries to your translation dictionary
and link their occurrences throughout the cor-
pus (sentence pairs 1, 2, 3, 6, and 7). 

Sentence pair 2 is a logical place to continue
because you only need to consider how to map
anok plok onto pippat rrat. Again, two possibil-
ities suggest themselves, but sentence pair 4
pushes you toward anok-pippat and, therefore,
plok-rrat. 
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Sentence pair 3 is much more challenging.
So far, we have

erok sprok izok hihok ghirok 

totat dat arrat vat hilat

The Centauri word izok would be translated
as either totat, arrat, or vat, yet when you look
at izok in sentence pair 6, none of those three
words appear in the Arcturan. Therefore, izok
appears to be ambiguous. The word hihok,
however, is fixed in sentence pair 11 as arrat.
Both sentence pairs 3 and 12 have izok hihok
sitting directly on top of arrat vat; so, in all pos-
sibility, vat seems a reasonable translation for
(ambiguous) izok. Sentence pairs 5, 6, and 9
suggest that quat is its other translation.
Through process of elimination, you connect
the words erok and totat, finishing off the
analysis: 

erok sprok izok hihok ghirok 

totat dat arrat vat hilat

Notice that aligning the sentence pairs helps
you to build the translation dictionary and
that building the translation dictionary also
helps you decide on correct alignments. You
might call this the decipherment method. 

Figure 3 shows the progress so far. With a
ballpoint pen and some patience, you can car-
ry this reasoning to its logical end, leading to
the following translation dictionary:

anok - pippat mok - gat
brok - lat nok - nnat
clok - bat ok-drubel - at-drubel
crrrok - (none?) ok-voon - at-voon
drok - sat ok-yurp - at-yurp
enemok - eneat ororok - bichat
erok - totat plok - rrat
farok - jjat rarok - forat
ghirok - hilat sprok - dat
hihok - arrat stok - cat
izok - vat/quat wiwok - totat
jok - krat yorok - mat
kantok - oloat zanzanok - zanzanat
lalok - wat/iat

The dictionary shows ambiguous Centauri
words (such as izok) and ambiguous Arcturan
words (such as totat). It also contains a curious
Centauri word (crrrok) that has no transla-
tion—after the alignment of sentence pair 11,
this word was somehow left over: 

lalok nok crrrok hihok yorok zanzanok

wat nnat arrat mat zanzanat

You begin to speculate whether crrrok is
some kind of an affix, or crrrok hihok is a polite
form of hihok, but you are suddenly whisked
away by an alien spacecraft and put to work in
the Interstellar Translation Bureau, where you
are immediately tasked with translating the
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--------------------------------------------------
1a.  ok-voon ororok sprok .

1b.  at-voon bichat dat .
--------------------------------------------------
2a.  ok-drubel ok-voon anok plok sprok .

2b.  at-drubel at-voon pippat rrat dat .
--------------------------------------------------
3a.  erok sprok izok hihok ghirok .

3b.  totat dat arrat vat hilat .
--------------------------------------------------
4a.  ok-voon anok drok brok jok .

4b.  at-voon krat pippat sat lat .
--------------------------------------------------
5a.  wiwok farok izok stok .

5b.  totat jjat quat cat .
--------------------------------------------------
6a.  lalok sprok izok jok stok .

6b.  wat dat krat quat cat .
--------------------------------------------------
7a.  lalok farok ororok lalok sprok izok enemok .

7b.  wat jjat bichat wat dat vat eneat .
--------------------------------------------------
8a.  lalok brok anok plok nok .

8b.  iat lat pippat rrat nnat .
--------------------------------------------------
9a.  wiwok nok izok kantok ok-yurp .

9b.  totat nnat quat oloat at-yurp .
--------------------------------------------------
10a. lalok mok nok yorok ghirok clok .

10b. wat nnat gat mat bat hilat .
--------------------------------------------------
11a. lalok nok crrrok hihok yorok zanzanok .

11b. wat nnat arrat mat zanzanat .
--------------------------------------------------
12a. lalok rarok nok izok hihok mok .

12b. wat nnat forat arrat vat gat .
--------------------------------------------------

Translation dictionary:

ghirok - hilat             ok-yurp - at-yurp
ok-drubel - at-drubel      zanzanok - zanzanat
ok-voon - at-voon          

Figure 2. Twelve Pairs of Sentences Written in 
Imaginary Centauri and Arcturan Languages.



following Arcturan dispatch into Centauri:
13b. iat lat pippat eneat hilat oloat at-yurp . 
14b. totat nnat forat arrat mat bat . 
15b. wat dat quat cat uskrat at-drubel .

You have never seen these sentences before,
so you cannot look up the answers. More rea-
soning is called for.

The first sentence contains seven Arcturan
words. You consult your dictionary to con-
struct a list of seven corresponding Centauri
words: (1) lalok, (2) brok, (3) anok, (4) enemok,
(5) ghirok, (6) kantok, and (7) ok-yurp. You con-
sider writing them down in this order (a simple
word-for-word translation), but because you
want to make a good first impression at the bu-
reau, you also consider shifting the words
around. There are 5040 (7!) possible word or-
ders to choose from. Centauri text can provide
useful data; there you can see that word A fol-
lows word B more or less frequently. Your re-
quest for more Centauri text is granted (figure
4). With relish, you set about tabulating word-
pair frequencies, noting in passing new words
such as vok, zerok, zinok, and ziplok.

You are now in a position to evaluate your
5040 alternative word orders. As a shortcut,
you might ask which word is most likely to
start a sentence (or which word usually follows
a period). Surely, it is lalok. Of the remaining
six words, which best follows lalok? It is brok,
then anok. However, after anok, ghirok is more
suitable than enemok. Fortunately, enemok itself
is a good follow-on to ghirok; so, you decide to
flip the words enemok and ghirok. Your final
translation is

13a. lalok brok anok ghirok enemok kantok 
ok-yurp .

You move to the next sentence, 14b. Imme-
diately, you are faced with a lexical ambiguity.
Should you translate totat as erok or wiwok? Be-
cause wiwok occurs more frequently and be-
cause you’ve never seen erok followed by any
of the other words you’re considering, you de-
cide on wiwok. However, admittedly, this is on-
ly a best guess. Next, you consider various
word orders. The arrows in figure 5 represent
word pairs you have seen in Centauri text.
There appears to be no fluent (grammatical?)
path through these words. Suddenly, you re-
member that curious Centauri word crrrok,
which had no translation but which turns out
to be a natural bridge between nok and hihok,
giving you the seemingly fluent, possibly cor-
rect translation:

14a. wiwok rarok nok crrrok hihok yorok clok .

The last sentence, 15b, is straightforward ex-
cept that one of the Arcturan words (uskrat) is
new; it does not appear in the bilingual dictio-
nary you built. (You imagine uskrat to be some
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--------------------------------------------------
1a.  ok-voon ororok sprok .

1b.  at-voon bichat dat .
--------------------------------------------------
2a.  ok-drubel ok-voon anok plok sprok .

2b.  at-drubel at-voon pippat rrat dat .
--------------------------------------------------
3a.  erok sprok izok hihok ghirok .

3b.  totat dat arrat vat hilat .
--------------------------------------------------
4a.  ok-voon anok drok brok jok .

4b.  at-voon krat pippat sat lat .
--------------------------------------------------
5a.  wiwok farok izok stok .

5b.  totat jjat quat cat .
--------------------------------------------------
6a.  lalok sprok izok jok stok .

6b.  wat dat krat quat cat .
--------------------------------------------------
7a.  lalok farok ororok lalok sprok izok enemok .

7b.  wat jjat bichat wat dat vat eneat .
--------------------------------------------------
8a.  lalok brok anok plok nok .

8b.  iat lat pippat rrat nnat .
--------------------------------------------------
9a.  wiwok nok izok kantok ok-yurp .

9b.  totat nnat quat oloat at-yurp .
--------------------------------------------------
10a. lalok mok nok yorok ghirok clok .

10b. wat nnat gat mat bat hilat .
--------------------------------------------------
11a. lalok nok crrrok hihok yorok zanzanok .

11b. wat nnat arrat mat zanzanat .
--------------------------------------------------
12a. lalok rarok nok izok hihok mok .

12b. wat nnat forat arrat vat gat .
--------------------------------------------------

Translation dictionary:

anok - pippat              ok-yurp - at-yurp
erok - total               ok-voon - at-voon
ghirok - hilat             ororok - bichat
hihok - arrat              plok - rrat
izok - vat                 sprok - dat 
ok-drubel - at-drubel      zanzanok - zanzanat

Figure 3. The Progress of Building a Translation Dictionary 
from Pairs of Sentences, Using a Decipherment Method.



with your work. You are hired and tasked with
translating new sentences such as “brizat mi-
nat stat vat borat” that are full of words you’ve
never seen before. To improve your correspon-
dence tables, you seek out more documents,
both bilingual (Arcturan-Centauri) and mono-
lingual (Centauri). You are soon overwhelmed
with documents. Perhaps a computer would
help.…

* * *
Was this a realistic foray into language trans-

lation or just inspired nonsense? Actual trans-

type of animal). You translate the third sen-
tence as

15a. lalok sprok izok stok ? ok-drubel ,

where the question mark stands for the Cen-
tauri equivalent of uskrat. You decide to con-
sult your Centauri text to find a word that is
likely to appear between stok and ok-drubel. Be-
fore you can finish, however, you and your
translations are rushed before the Arcturan
Rewrite Perspicuity Authority. 

Although you cannot understand Arcturan,
you get the feeling that the authority is pleased

Figure 4. Monolingual Centauri Text with Associated Word-Pair (Bigram) Counts.
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ok-drubel anok ghirok farok .  wiwok rarok nok zerok ghirok enemok .
ok-drubel ziplok stok vok erok enemok kantok ok-yurp zinok jok yorok clok .
lalok clok izok vok ok-drubel .  ok-voon ororok sprok .  ok-drubel ok-voon
anok plok sprok .  erok sprok izok hihok ghirok .  ok-voon anok drok brok
jok .  wiwok farok izok stok .  lalok sprok izok jok stok .  lalok brok
anok plok nok .  lalok farok ororok lalok sprok izok enemok .  wiwok nok
izok kantok ok-yurp .  lalok mok nok yorok ghirok clok .  lalok nok crrrok
hihok yorok zanzanok .  lalok rarok nok izok hihok mok . 

Word pair counts:

1 . erok               1 hihok yorok           1 ok-drubel ok-voon
7 . lalok              1 izok enemok           1 ok-drubel ziplok
2 . ok-drubel          2 izok hihok            2 ok-voon anok
2 . ok-voon            1 izok jok              1 ok-voon ororok
3 . wiwok              1 izok kantok           1 ok-yurp .
1 anok drok            1 izok stok             1 ok-yurp zinok
1 anok ghirok          1 izok vok              1 ororok lalok
2 anok plok            1 jok .                 1 ororok sprok
1 brok anok            1 jok stok              1 plok nok
1 brok jok             1 jok yorok             1 plok sprok
2 clok .               2 kantok ok-yurp        2 rarok nok
1 clok izok            1 lalok brok            2 sprok .
1 crrrok hihok         1 lalok clok            3 sprok izok
1 drok brok            1 lalok farok           2 stok .
2 enemok .             1 lalok mok             1 stok vok
1 enemok kantok        1 lalok nok             1 vok erok
1 erok enemok          1 lalok rarok           1 vok ok-drubel
1 erok sprok           2 lalok sprok           1 wiwok farok
1 farok .              1 mok .                 1 wiwok nok
1 farok izok           1 mok nok               1 wiwok rarok
1 farok ororok         1 nok .                 1 yorok clok
1 ghirok .             1 nok crrrok            1 yorok ghirok
1 ghirok clok          2 nok izok              1 yorok zanzanok
1 ghirok enemok        1 nok yorok             1 zanzanok .
1 ghirok farok         1 nok zerok             1 zerok ghirok
1 hihok ghirok         1 ok-drubel .           1 zinok jok
1 hihok mok            1 ok-drubel anok        1 ziplok stok



lation is, of course, more complicated: 
First, only 2 of the 27 Centauri words were

ambiguous, whereas in natural languages such
as English, almost all words are ambiguous. 

Second, sentence length was unchanged in
all but one of the translations; in real transla-
tion, this is rare. 

Third, the extraterrestrial sentences were
much shorter than typical natural language
sentences. 

Fourth, words are translated differently de-
pending on context. The translation method
only used Centauri word-pair counts for con-
text, preferring “wiwok rarok...” over “erok
rarok.…” However, resolving lexical ambiguity
in general requires a much wider context and,
often, sophisticated reasoning as well. 

Fifth, output word order should be sensitive
to input word order. Our method could not de-
cide between output “John loves Mary” and
“Mary loves John,” even though one of the
two is likely to be a terrible translation. 

Sixth, the data seemed to be cooked: Drop
out sentence pairs 8 and 9, for example, and
we would not be able to settle on alignments
for the remaining sentences. Many such align-
ments would be possible, complicating our
translation dictionary. 

Seventh, our method does not allow for any
phrasal dictionary entries (for example, anok
plok = pippat rrat), although human translators
make extensive use of such dictionaries. 

The list goes on: What about pronouns?
What about inflectional morphology? What
about structural ambiguity? What about do-
main knowledge? What about the scope of
negation? 

However, our extraterrestrial example was
realistic in one respect: It was actually an exer-
cise in Spanish-English translation! Centauri is
merely English in light disguise—for erok, read
his; for sprok, read associates; and so on. Span-
ish and Arcturan are also the same. Here is the
real bilingual training corpus:

1a. Garcia and associates.
1b. Garcia y asociados.

2a. Carlos Garcia has three associates.
2b. Carlos Garcia tiene tres asociados.

3a. his associates are not strong.
3b. sus asociados no son fuertes.

4a. Garcia has a company also.
4b. Garcia tambien tiene una empresa.

5a. its clients are angry.
5b. sus clientes están enfadados.

6a. the associates are also angry.
6b. los asociados tambien están enfadados.

7a. the clients and the associates are enemies.
7b. los clientes y los asociados son enemigos.

8a. the company has three groups.
8b. la empresa tiene tres grupos.

9a. its groups are in Europe.
9b. sus grupos están en Europa.

10a. the modern groups sell strong pharmaceuti-
cals.
10b. los grupos modernos venden medicinas
fuertes.

11a. the groups do not sell zanzanine.
11b. los grupos no venden zanzanina.

12a. the small groups are not modern.
12b. los grupos pequeños no son modernos. 

If you don’t know Spanish (even if you do),
you can congratulate yourself on having trans-
lated the novel sentence “la empresa tiene en-
emigos fuertes en Europa” (13b) as “the com-
pany has strong enemies in Europe” (13a). Had
you not flipped the order of ghirok and enemok,
your translation would have been worse: “The
company has enemies strong in Europe.” Like-
wise, you translated “sus grupos pequeños no
venden medicinas (14b) as “its small groups do
not sell pharmaceuticals” (14a). The curiously
untranslatable Centauri word crrrok was actual-
ly the English word do; “do not sell” translates
to “no venden.” 

Without relying on linguistic phrase struc-
ture and real-world knowledge, you were able
to learn enough about English and Spanish to
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wiwok

nok

yorok

hihok

clok

.

crrrok

rarok

Figure 5. An Attempt to Put a Group of Centauri Words in the Right Order.
Arrows represent previously observed word pairs from figure 4.



tions. You can imagine an algorithm along the
lines of the decipherment method itself: If I
know that house and maison form a word pair,
then I could guess that corpus sentences the
house is blue and la maison est bleue might form
a pair, in which case, blue and bleue might form
another word pair, and so on. This method
would work, although such decipherment is
computationally expensive. More practical
methods rely on rougher clues such as (1)
French sentences are usually in the same order
as the English sentences (even though within-
sentence word order can be different); (2) short
French sentences usually correspond to short
English sentences; and (3) corresponding
French and English sentences often contain
many of the same character sequences because
of proper names, numbers, and cognates. 

For example, we can transform the previous
sentence-alignment problem into one where
sentences are replaced by their word counts:

English: ... 13 6 19 12 ... 

French: ... 15 7 43 ... 

Clearly, the 43-word French sentence is a
good candidate to match the two English sen-
tences of 19 and 12 words each. Other align-
ments, such as one matching the 7 with both
the 6 and the 19, seem less likely. 

By now, many researchers have worked with
many sorts of bilingual text, and all have faced
the problem of creating a sentence-aligned cor-
pus. Whenever many researchers face the same
problem, competition ensues—in this case, for
the most accurate, speedy, noise-robust, lan-
guage-independent algorithms. These meth-
ods are successful, and (surprisingly) you can
find more recent papers on bilingual text
alignment than on machine translation itself.
See Macklovitch and Hannan (1996), Simard
and Plamondon (1996), Chen (1993), Kay and
Röscheisen (1993), Brown et al. (1991), Gale
and Church (1991), and Catizone et al. (1989).
Alignment problems become more severe
when sentence boundaries are hard to find, as
is the case with web documents, imperfectly
scanned documents, and distant language
pairs (for example, Chinese-English). These
problems have led to the methods discussed by
Melamed (1997), Fung and McKeown (1994),
and Church (1993). 

Using the Hansard corpus, Brown et al.
(1993b, 1990) present a machine-translation
system that works somewhat like the one we
used for Centauri—translate the words, and
get them in the right order. However, it deals
explicitly with uncertainty and ambiguity:
How to translate word x? Should word y go be-
fore or after word z? In a given sentence, some
decisions will go well together, and others will

translate a few sentences correctly. If you had
more training text, you might have learned
more. Could such a method be scaled to gen-
eral-purpose machine translation? Several
questions arise: Is there a large bilingual corpus
for some pair of natural languages? Can the
corpus easily be converted to sentence-pair for-
mat? Can the decipherment method be auto-
mated? What does the algorithm look like?
Can the translation method be automated?
Perhaps most importantly, are the translations
good? 

Bilingual Text Alignment 
These questions were first posed and studied
by a research team at IBM (Brown et al. 1990).
This group pioneered the use of text corpora in
machine translation. IBM used the Hansard
corpus, a proceedings of the Canadian Parlia-
ment written in French and English (each lan-
guage on a separate tape). This corpus contains
millions of sentences. Of course, correspond-
ing sentence pairs are not marked in the text,
and worse, whole paragraphs on one tape are
sometimes missing from the other. (A severe
case of information getting lost in transla-
tion!). Also, one French sentence can get trans-
lated as two English ones, or vice versa. Here is
a small version of the problem (Church 1993):

English:

…

The higher turnover was largely due to an in-
crease in the sales volume. 

Employment and investment levels also climbed. 

Following a two-year transitional period, the new
Foodstuffs Ordinance for Mineral Water came in-
to effect on April 1, 1988. 

Specifically, it contains more stringent require-
ments regarding quality consistency and purity
guarantees. 

…

French:

… 

La progression des chiffres d’affaires résulte en
grande partie de l’accroissement du volume des
ventes. 

L’emploi et les investissements ont également
augmenté. 

La nouvelle ordonnance fédérale sur les denrées
alimentaires concernant entre autres les eaux
minérales, entrée en vigueur le ler avril 1988 après
une période transitoire de deux ans, exige surtout
une plus grande constance dans la qualité et une
garantie de la pureté.

. . . 

There are multiple ways of matching up the
four English sentences with the three French
sentences, to say nothing of the million-sen-
tence problem. Manual editing is out of the
question; so, we must seek automatic solu-
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not. Probability theory helps the machine
make the best overall sequence of decisions it
can, given what it knows. 

Language Model 
First let’s look at word order. In our Centauri
translation, we had a bag of words, and we
wanted to get them in the right order. Howev-
er, suppose we had several different bags, cor-
responding to different possible collections of
word translations. We could find the best word
order for each bag, but how could we choose
between the resulting sentences? The answer is
to assign a probability to any conceivable se-
quence of words. We then pick the most prob-
able sequence (from any bag). Sequences such
as “John saw Mary” and “that’s enough al-
ready” should be probable, but “John Mary
saw” and “radiate grouper engines” should be
improbable.

Linguistics has traditionally divided se-
quences into grammatical and ungrammatical,
but in machine translation, we are constantly
forced to choose between two grammatical
sentences. For example, which is a better trans-
lation, A or B?

A. John viewed Mary in the television. 
B. John saw Mary on TV.

The speech-recognition community has
plenty of experience assigning probabilities to
word sequences, for example, preferring “bears
hibernate” over “bare cyber Nate.” Typical
methods use word-pair or word-triple counts,
which are converted into probabilistic quanti-
ties, for example,

P(oil | Arabian)  ,

which is the chance that given the word Ara-
bian, the next word will be oil. The nice thing
about these quantities is that they can directly
and automatically be estimated from a large
English corpus. In my corpus, Arabian oc-
curred 471 times and was followed by oil 62
times; so, P(oil | Arabian) = 62/471, or 13 per-
cent. This is called a conditional bigram proba-
bility. A conditional trigram probability looks like
the following:

P(minister | Arabian oil)  .

That is, given the words Arabian oil, what is the
chance that the next word is minister? My cor-
pus gives 8/25, or 32 percent. 

To assign a probability to a whole sentence,
we multiply the conditional probabilities of
the n-grams it contains; so, a good sentence
will be one with a lot of common subse-
quences. In the bigram case,

P(I found riches in my backyard) ~ 
P(I | start-of-sentence) ×
P(found | I) ×
P(riches | found) ×

P(in | riches) ×
P(my | in) ×
P(backyard | my) ×
P(end-of-sentence | backyard)  .

It’s easy to see how simple probabilities are
useful for word ordering; there is a strong pref-
erence for “I found riches in my backyard”
over “My I in riches backyard found.” In fact,
Brown et al. (1990) describe a small experi-
ment in restoring order to scrambled English
sentences (bag generation). For sentences of
fewer than 10 words, a probabilistic program
was able to restore the original word order 63
percent of the time. Under a looser meaning-
preserving metric, the program scored 84 per-
cent. Longer sentences were significantly
tougher to reconstruct however. 

A technical point arises when P(y | x) is zero,
that is, when the word pair x y has never been
observed in training. Any zero-probability sub-
sequence will make the whole sentence’s prod-
uct go to zero. This problem is particularly
acute for word triples; a phrase like “found
riches in” might never appear in a training cor-
pus, but that doesn’t mean it’s not a decent tri-
gram. There is now a large literature on how to
best assign nonzero probabilities to previously
unseen n-grams, a process called smoothing. See
Chen (1996) for a comparison of several meth-
ods. The overall topic of assigning probabilities
to sentences is called language modeling. 

Language modeling is useful not only for
word ordering but also for choosing between
alternative translations such as

A. I found riches in my backyard. 
B. I found riches on my backyard.

This decision comes up in Spanish-English
machine translation, where both in and on cor-
respond to en. In my corpus, the trigram “in
my backyard” appears seven times, but “on my
backyard” never occurs; so, A is preferred.
Thus, you can attack some disambiguation
problems by looking only at the target lan-
guage—but not all! Consider two possible
translations:

A. Underline it. 
B. Emphasize it.

English bigram frequencies might slightly
prefer B, but the only way to really decide cor-
rectly is to look at the original Spanish sen-
tence. The Spanish verb subrayar translates ei-
ther as underline or as emphasize but mostly as
underline. In fact, to say emphasize in Spanish,
you usually say acentuar. Now, we are talking
about probabilistic quantities that connect
Spanish words to English words rather than
English words to each other. These cross-lan-
guage quantities make up a translation model
that complements the language model. We
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P(Yo no comprendo | I don’t understand) 
P(Comprendo yo no | Don’t understand I) 
P(No yo comprendo | I don’t understand) 
P(Comprendo yo no | I don’t understand) 
P(Yo no comprendo | I understand don’t) 
P(Yo no comprendo | Understand I don’t)  .

P(S | E) can be sloppy because P(E) will worry
about word order. This sloppiness actually
gives some measure of robustness in translat-
ing ungrammatical Spanish input. It is also
nice for estimating the translation model prob-
abilities. Suppose we assume that for a given
sentence pair S-E, P(S | E) is simply the product
of word-translation probabilities between
them, irrespective of word order:

P(Yo no comprendo | I don’t understand) ~ 
P(Yo | I) ×
P(Yo | don’t) ×
P(Yo | understand)
P(no | I) ×
P(no | don’t) ×
P(no | understand)
P(comprendo | I) ×
P(comprendo | don’t) ×
P(comprendo | understand)  .

We could then estimate word-translation
probabilities from a bilingual corpus. To esti-
mate P(comprendo | understand), we could re-
trieve all sentence pairs containing the English
word understand, count how many times com-
prendo cooccurred, and divide by the total
number of words in the Spanish half of this
subcorpus. 

This is a reasonable first cut, but it has prob-
lems. For one, P(comprendo | understand) will
come out too low in absolute terms. Even if
comprendo appears every time understand ap-
pears, P(comprendo | understand) might still be
only 0.05. Worse, other probabilities such as
P(la | understand) will come out too high; when
you see understand in English, you often see la
in Spanish, but that’s only because la appears
frequently. The right idea is to use a decipher-
ment method, such as the one we used for
Centauri and Arcturan. Understand might cooc-
cur with both la and comprendo, but if we’ve
previously established a strong link between
the and la, then we should lean strongly to-
ward comprendo. Furthermore, the English
word don’t will not translate as comprendo be-
cause don’t and comprendo only cooccur when
understand is already in the neighborhood. Af-
ter such decipherment, P(comprendo | under-
stand) might be close to one. P(la | the) might
be 0.4, with the rest going to P(el | the), and so
on. 

This whole method needs to be boot-
strapped; we can’t keep assuming previously
established links. Fortunately, there is an auto-
matic bootstrapping algorithm, called estima-
tion maximization (Baum 1972). The key to ap-

can combine the two models by multiplying
their scores. 

Translation Model 
In our extraterrestrial example, the translation
model was simply a bilingual dictionary that
supplied possible word translations for the lan-
guage models. As the emphasize-underline ex-
ample shows, we must also build probabilities
into the dictionary. There is one tricky deci-
sion to make. Should the translation model
contain quantities such as P(emphasize | subra-
yar) or P(subrayar | emphasize)? Using P(english
| spanish) seems more intuitive because we are
translating Spanish to English. For a given
Spanish sentence S, we would find the English
sentence E that maximizes P(E) · P(E | S). Math-
ematically, however, it is more accurate to
maximize P(E) · P(S | E) because of Bayes’s rule:

P(E | S) = P(E) · P(S | E) / P(S)  . 

Because P(S) is fixed for a given Spanish sen-
tence, we can ignore it while we try to maxi-
mize P(E | S):

P(E | S) ~ P(E) · P(S | E)  .

We therefore divide the responsibility be-
tween English probabilities and Spanish-given-
English probabilities. Here are scores for the
previous A and B (given subrayar as input):

A. Underline it. 
P(underline) ×
P(it | underline) ×
P(subrayar | underline)  .

B. Emphasize it. 
P(emphasize) ×
P(it | emphasize) ×
P(subrayar | emphasize)  .

Option A is good because underline is a com-
mon word, and it usually translates as subrayar.
Option B is worse because when you translate
emphasize into Spanish, it usually comes out as
acentuar, leaving little probability in P(subrayar
| emphasize).

If it seems backwards, it is. You have to
imagine you are building an English-to-Span-
ish translator, but when you actually go to run
it, you feed in Spanish and ask, “What English
input would have caused this Spanish sentence
to pop out?” The correct answer will be a flu-
ent English sentence (language model) that
means what you think it means (translation
model).

You might wonder why solving P(S | E) in-
stead of P(E | S) makes life any easier. The an-
swer is that P(S | E) doesn’t have to give good
Spanish translations. In fact, P(S | E) can assign
lots of probability to bad Spanish sentences, as
long as they contain the correct words. Any of
the following might be reasonably probable
under the type of P(S | E) we are considering:
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plying estimation maximization is the idea of
word alignments. A word alignment connects
words in a sentence pair such that each Eng-
lish word produces zero or more Spanish
words, and each Spanish word is connected to
exactly one English word. The longer a sen-
tence pair is, the more alignments are possible.
For a given sentence pair, some alignments are
more reasonable than others because they con-
tain more reasonable word translations. Now
we can revise our approximation of P(S | E):
P(Yo no comprendo | I don’t understand) ~

P(Alignment1) × P(Yo | I) ×
P(no | don’t) ×
P(comprendo | understand) 

+ P(Alignment2) × P(Yo | don’t) ×
P(no | I) ×
P(comprendo | understand) 

+ P(Alignment3) × P(Yo | understand) ×
P(no | I) ×
P(comprendo | don’t) 

+ P(Alignment4) × P(Yo | I) ×
P(no | understand) ×
P(comprendo | don’t) 

+ P(Alignment5) × P(Yo | don’t) ×
P(no | understand) ×
P(comprendo | I) 

+ P(Alignment6) × P(Yo | understand) ×
P(no | don’t) ×
P(comprendo | I)  .

(I left out alignments where English words pro-
duce multiple or zero Spanish words.) 

Estimation-maximization training is power-
ful but difficult to master. At an abstract level,
it is simply a way to mechanize the trial-and-
error decipherment we used for Centauri and
Arcturan. At a deeper level, estimation-maxi-
mization training tries to find the word-trans-
lation probabilities that maximize the proba-
bility of one-half the corpus (say, Spanish)
given the other half (say, English). Under-
standing how it really works requires a bit of
calculus. Neural networks require a similar bit
of calculus. Of course, it is possible to imple-
ment both estimation maximization and neur-
al networks without precisely understanding
their convergence proofs. I give a brief descrip-
tion of estimation-maximization training here. 

We first assume all alignments for a given
sentence pair are equally likely. One sentence
pair might have 256 alignments, each with p =
1/256, but another sentence pair might have
1031 alignments, each with a small p. Next, we
count up the word-pair connections in all
alignments of all sentence pairs. Each connec-
tion instance is weighted by the p of the align-
ment in which it occurs. Thus, short (less am-
biguous) sentences have more weight to throw
around. Now we consider each English word in
turn, for example, understand. It has weighted
connections to many Spanish words, which
we normalize to sum to one, giving the first cut

at word-translation probabilities. We then no-
tice that these new probabilities make some
alignments look better than others; so, we use
them to rescore alignments so that they are no
longer equally likely. Each alignment is scored
as the product of its word-translation probabil-
ities, then normalized so that alignment prob-
abilities for a given sentence pair still sum to
one. Then we repeat.

Newer alignment probabilities will yield
newer, more accurate word-translation proba-
bilities, which will, in turn, lead to better align-
ments. Usually, one alignment will beat out all
the others in each sentence pair. At this point,
we stop, and we have our word-translation
probabilities. Given a new sentence pair S-E,
we can estimate P(S | E) by using these proba-
bilities. (See Ker and Chang [1997]; Smadja,
McKeown, and Hatzivassiloglou [1996]; and
Dagan and Church [1997] for further discus-
sion of this and other methods for word and
phrase alignment.) 

Translation Method 
That’s it for decipherment. The last thing we
need is a translation algorithm. I mentioned
Bayes’s rule earlier: Given a Spanish sentence S,
we want to find the English sentence E that
maximizes P(E) · P(S | E). We could try all con-
ceivable Es, but it would take too long. There
are techniques with which to direct such a
search, sacrificing optimality for efficiency.
Brown et al. (1990) briefly sketches an A*-
based stack search, but more detailed discus-
sions can be found in Wang and Waibel
(1997), Wu (1996), and Tillmann et al. (1997).
A translation method must also deal with un-
known words, for example, names and techni-
cal terms. When languages use different alpha-
bets and sound patterns, these terms must be
translated phonetically (Knight and Graehl
1997).

Results 
Initial results in statistical word-for-word ma-
chine translation were mixed. Computational
limitations restricted experiments to short sen-
tences and a 3000-word vocabulary. Although
good with individual words, this system did
not cope well with simple linguistic-structural
issues, preferring, for example, “people with
luggage is here” over “people with luggage are
here.” It used little context for sense disam-
biguation, and it failed to take source-language
word order into account. You might imagine
that these shortcomings would lead naturally
to parsing and semantic analysis, but Brown et
al. (1993b) iconoclastically continued to push
the word-for-word paradigm, adding distor-
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Given reasonably accurate parsing systems
(trained or handcrafted), it is possible to write
transfer rules by hand and use a language mod-
el to do lexical and structural disambiguation
(Hatzivassiloglou and Knight 1995; Yamron et
al. 1994). It is also possible to learn transfer
rules from bilingual corpora automatically:
Both halves of the corpus are parsed, and
learning operates over tree pairs rather than
sentence pairs (Matsumoto, Ishimoto, and Ut-
suro 1993). 

A more ambitious, potentially powerful idea
is to train directly on sentence pairs, learning
both phrase structure and translation rules at
the same time. Although a tree bank tells you
a lot about phrase structure in a given lan-
guage, translations can also tell you some-
thing, serving as a sort of poor man’s tree bank.
Research in this vein includes Wu (1995) and
Alshawi, Buchsbaum, and Xia (1997). The ba-
sic idea is to replace the word-for-word scheme
in which words fly around willy-nilly with a
tighter syntax-based machine-translation
model; probabilities are then still selected to
best fit the sentence-pair corpus. Although it is
clear that fairly good word-for-word align-
ments are recoverable from bilingual text, it re-
mains to be seen whether accurate syntactic
alignments are similarly recoverable and
whether these alignments yield reasonable
translations. 

Semantics-Based Translation 
Semantics-based machine translation has al-
ready produced high-quality translations in
circumscribed domains. Its output is fluent be-
cause it uses meaning-to-text language genera-
tion instead of the gluing together of phrases
and hoping the result is grammatical. Its out-
put is accurate because it reasons with a world
model. However, this strategy has not yet
scaled up to general-purpose translation. 

Semantics-based machine translation needs
parsing plus a whole lot more. Fuel for the
analysis side includes a semantic lexicon (for
mapping words onto concept and roles), se-
mantic rules (for combing word meanings into
sentence meanings), and world knowledge (for
preferring one reading over another). The lan-
guage-generation phase also needs a lexicon
and rules and some way of preferring one ren-
dering over another. There are many opportu-
nities for empirical techniques. A language
model can be used to resolve any ambiguities
percolated from morphology, parsing, seman-
tics, and generation. In general, statistical
knowledge can usefully plug gaps in all incom-
plete knowledge bases (Knight et al. 1995), let-

tion probabilities (for keeping French and Eng-
lish words in roughly the same order), context-
sensitive word-translation probabilities, and
long-distance language modeling. Bilingual
dictionaries were used to supplement corpus
knowledge (Brown et al. 1993a). These im-
provements, combined with more efficient de-
cipherment and translation algorithms, led to
a full-scale French-English machine-transla-
tion system called CANDIDE. This system per-
forms as well as the commercial systems, with
no hand-built knowledge bases! That’s the
good news. Where does word-for-word transla-
tion go from here? It is unclear whether the
outstanding problems can be addressed within
the word-for-word framework, using better sta-
tistical modeling or more training data. It is al-
so unclear how this method would perform on
language pairs such as Vietnamese-English,
with radically different linguistic structure and
less bilingual data online. 

It is interesting to note that the statistical
method will always work hard to find a trans-
lation, even if the input sentence happens to
appear verbatim in the training corpus. In this
case, a good translation can be retrieved by
simple lookup. This idea is the basis of another
corpus-based machine-translation approach,
called example-based machine translation (Sato
1992; Nagao 1984). When exact lookup fails,
an example-based system will look for a close
match and attempt to modify the corpus trans-
lation to fit the new sentence. This type of re-
trieve-and-tweak strategy has strengths and
weaknesses similar to those of case-based rea-
soning in AI. 

Syntax-Based Translation 
Knowing the syntactic structure of a source
text—where phrase boundaries are and which
phrases modify which—can be useful in trans-
lation. Most handcrafted commercial systems
do a syntactic analysis followed by transfer, in
which phrases are translated and reordered.
There are many opportunities for empirical
methods in such a framework. The most obvi-
ous is trainable parsing (Collins 1997; Herm-
jakob and Mooney 1997; Bod 1996; Charniak
1996; Magerman 1995). Unfortunately, such
parsers often require a tree bank (a collection of
manually parsed sentences), and tree banks are
not yet available in most languages. Any ad-
vances in grammar induction from raw text
will therefore have a big impact on machine
translation. Some machine-translation systems
use handcrafted grammars with a word-skip-
ping parser (Lavie 1994; Yamada 1996) that
tries to find a maximal parsable set of words. 

Knowing the
syntactic
structure 

of a source
text—
where 

phrase
boundaries

are and 
which 

phrases 
modify

which—
can be 

useful in
translation.
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ting designers and linguists focus on deeper
problems that elude automatic training. Semi-
automated knowledge acquisition plays an im-
portant role in creating large-scale resources
such as conceptual models and lexicons (Vie-
gas et al. 1996; Knight and Luk 1994). For the
statistically oriented, Bayes’s rule is still useful-
ly applied—let E be an English sentence, S be
Spanish, and M be a representation of a sen-
tence meaning. This M can be a deep interlin-
gua or a shallow case frame. Then, we can
break translation down into two phases:

P(M | S) ~ P(M) · P(S | M) Analysis 
P(E | M) ~ P(E) · P(M | E) Generation  .

P(M) is essentially a world model. It should,
for example, assign low probability to
fly(canyon). P(S | M) and P(M | E) are like trans-
lation models we saw earlier. P(E) is our old
friend the language model. There are many
open problems: Can these distributions be es-
timated from existing resources? Can a system
learn to distinguish sensible meanings from
nonsense ones by bootstrapping off its own
(ambiguous) analyses? Can translation models
be learned, or can they be supplanted with
easy-to-build handcrafted systems? 

The language-generation phase provides a
good case study. Although there are many ap-
plications for language-generation technology,
machine translation is a particularly interest-
ing one because it forces issues of scale and ro-
bustness. Knight and Hatzivassiloglou (1995)
describe a hybrid generator called NITROGEN,
which uses a large but simple dictionary of
nouns, verbs, adjectives, and adverbs plus a
hand-built grammar. This grammar produces
alternative renderings, which are then ranked
by a statistical language model. Consider a
meaning such as this one, computed from a
Japanese sentence:
(A/ ACCUSATION 

:agent SHE 
:patient (T / THEFT 

:agent HE 
:patient (M / MOTORCAR)))  .

(Roughly, there is an accusation of theft, the
accuser is she, the thief is he, and the stolen ob-
ject is a motorcar). 

This representation is bare bones. There are
events and objects but no features for singular-
plural, definiteness, or time because many of
these are not overtly marked in the Japanese
source. NITROGEN’s grammar offers 381,440
English renderings, including

Her incriminates for him to thieve an automo-
biles. 

There is the accusation of theft of the car by him
by her. 

She impeaches that he thieve that there was the
auto.

It is extremely time consuming to add for-
mal rules describing why each of these thou-
sands of sentences is suboptimal, but a statisti-
cal language model fills in nicely, ranking the
following as its top five choices:

1. She charged that he stole the car. 
2. She charged that he stole the cars. 
3. She charged that he stole cars. 
4. She charged that he stole car. 
5. She charges that he stole the car.

Comparable scale-ups—particularly in syntac-
tic grammar, semantic lexicons, and semantic
combination rules—will be necessary before
semantics-based machine translation can real-
ize its promise. 

Evaluation 
Evaluating machine translation is a tricky busi-
ness. It’s not like speech recognition, where
you can count the number of wrong words.
Two translations can equally be good without
having a single word in common. Omitting a
small word such as the might not be bad, but
omitting a small word such as not might spell
disaster. 

The military routinely evaluates human
translators, but machine translators fall off the
low end of this scale. Many specialized meth-
ods for evaluating machines have been pro-
posed and implemented. Here are a few:

First, compare human and machine transla-
tions. Categorize each machine-generated sen-
tence as (1) same as human, (2) equally good,
(3) different meaning, (4) wrong, or (5) un-
grammatical (Brown et al. 1990). 

Second, build a multiple-choice comprehen-
sion test based on some newspaper article, but
force the test takers to work from a translation
instead of the original article (White and
O’Connell 1994). If the translation is too gar-
bled, the test takers won’t score very high. 

Third, develop error categories (pronoun er-
ror, word-selection error, and so on), and di-
vide them according to improvability and ef-
fect on intelligibility (Flanagan 1994). Tabulate
errors in text. 

These methods can be expensive. More au-
tomatic methods can be envisioned—a com-
mon idea is to translate English into Spanish
and back into English, all by machine, and see
if the English comes back out the same. Even
if it does, it is no guarantee. I have a translator
on my personal computer that turns the
phrase “why in the world” into “porqué en el
mundo,” then nicely back into “why in the
world.” Great, except “porqué en el mundo”
doesn’t mean anything in Spanish! A more
useful automatic evaluation (Gdaniec 1994)
correlates human quality judgments with gross
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Conclusion
I have described several directions in empirical
machine-translation research. As yet, there is
no consensus on what the right direction is.
(In other words, things are exciting.) Word-for-
word proponents look to semantics as a dubi-
ous, mostly uninterpretable source of training
features, but semantics-proponents view statis-
tics as a useful but temporary crutch. Knowl-
edge bottlenecks, data bottlenecks, and effi-
ciency bottlenecks pose interesting challenges. 

I expect that in the near future, we will be
able to extract more useful machine-transla-
tion knowledge from bilingual texts by apply-
ing more linguistically plausible models. I also
expect to see knowledge being gleaned from
monolingual (nonparallel) corpora, which ex-
ist in much larger quantities. Semantic dictio-
naries and world models, driven by AI applica-
tions mostly outside machine translation, will
continue to scale up. 

Will general-purpose machine-translation
quality see big improvements soon? In this dif-
ficult field, it is useful to remember the maxim,
“Never be more predictive than ‘watch this!’“
I am optimistic, though, because the supply of
corpus-based results is increasing, as is the de-
mand for machine-translation products. I see
machine translation following a path some-
what like that of computer chess. Brute force
brought the computer to the table, but it took
carefully formalized chess knowledge to finally
beat the human champion. A similar combina-
tion of brute-force statistics and linguistic
knowledge makes up the current attack on ma-
chine translation. The main thing is to keep
building and testing machine-translation sys-
tems, the essence of the empirical approach.

Note
1. You will see that I devote more pages to word-for-
word machine translation than to semantic machine
translation. In part, it is to present the statistical
word-for-word work a bit more simply and accessi-
bly. Furthermore, word-for-word machine transla-
tion comprises a fairly self-contained set of tech-
niques, but semantic machine translation benefits
from the full range of corpus-based–language re-
search, most of which I do not review. 
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