Connectionist F-structure Transfer

YE-Y1 WANG & ALEX WAIBEL -
Carnegie Mellon University

Ahstract

A traditional transfer system in machine translation maps between
language structures and an intermediate representation. Qur con-
nectionist transfer system maps from f-structures of one language to
f-structures of another language. It encodes the intermediate rep-
resentation implicitly in neural networks' activation patterns. The
systemn is learnable, therefore it does not need any effort in hand-
crafting the representation and mapping rules. Experiments show
the system has good scalability and Igeneraliss,bility performance.

1 Introduction _ ,

Most of the.current machine translation systems adopt an indirect strategy
that maps between languages and an intermediate representation. The
interlingus model (Nirenburg et al. 1987) uses a language-independent
‘intermediate representation. Design of the representation requires cross-
linguistic ‘expertise. The intermediate representation in a transfer model
(White 1987) is language-dependent. Its design is relatively easier. How-
ever, multiple such representations are required for a multi-lingual trans-
lator. Both models rely upon hand-crafted mapping rules, which demand
tremendous human effort.
_ The difficulties appeal for automatic learning mechanisms for interme-
diate representations and mapping rules. Chrisman (1991} proposed a con-
nectionist confluent influence system that acquired the distributed inter-
language representation of sentences during its learning to achieve the tight
- coupling between the representations of sentences in two different languages.
The approach was hard to scale up for larger tasks or to generalise for unseen
inputs, mostly due to its over-simplified representation of sentences.
. 'We present here a connectionist mapper. It can learn the transfer from
a source language {English) LFG f-structure (Bresnan 1982} into its cor-
-responding target language (German) f-structure. It does not need explicit
_intermediate representation or mapping rules. Instead, the connection pat-
terns of the neural networks implicitly encode the rules and representation.
The domain of our task was the Conference Registration Telephony Con-
versations. It covered a wide range of topics related to conferences, such as
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registration, cancellation, hotel reservation, conference information inquiry,
etc. The lexicon for the task contained about 400 English and 400 German
words in root forms. About 300 pairs of fstructures of the English and
German sentences were available from symbolic parsers.

A machine translation system for the Conference Registration task con-
sisted of three parts: a parser deriving the f-structure from an input source
language sentence, a mapper generating a target language f-structure from
its source language counterpart, and a text generator producing a target lan-
guage sentence from its f-structure. According to our experience, mapping
between f-structures was the most difficult part, which required the hand-
crafting of an intermediate representation and the rules that map between
f-structures and the intermediate representation. An automatic transfer
system is thus desirable. The system should have the following properties:

Learnability: The system should be able to learn the structure transfer
automatically from paired samples. It should not require hand-crafting of
any explicit representations and mapping rules.

Scalability: With limited retraining, the system should be able to deal
with larger tasks with an expanded lexicon.

Generalisability: The system should have satisfactory performance on
unseen inputs. ' '

2 - F-structure representations

An f-structure is a structured functional representation of a sentence or a
phrase. It is composed of a head, terminal features, and sub-structures.
For the f-structure in Figure 1a, *SEND is the head. The contents in the
inner brackets are the sub-structures, whose gremmatical relations or roles’
are labeled next to the brackets. The rest parts in Figure 1a are the ter-
minal features. A sub-structure can be referred to with its grammatical
relation or its phrasal category (NP, VP, ...). Thus the sub-structure [o;
*¥YOU]J can be called either a SUBJECT sub-structure or an NP sub-structure.
The SUBJECT, RECIP and OBJECT sub-structures are the three immedi-
ate sub-giructures of the top level f-structure in Figure 1la, becaunse there
is no intervening structure between these sub-structures and the top level
f-structure. The DET sub-structure is an immediate sub-structure of the
OBJECT sub-structure. If A is an immediate sub-structure of B, then B is
the parent structure of A.

! We will use Grammatical relation interchangeably with the term role.
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A symbolic f-structure cannot be presented to a neural network directly.
Figure lc-f illustrates how an f-structure can be coded as a network's input.
Below are the terms used for the representation.

fa) Anf-rructure " {ci Lexical vector for *SEND, the head of (), which ir at
_ e pozition (1, §) in a 2D lexican
MOOD YMPERATIVE [cCo-eC.-®-0]
ATTITUDE SOLITE _ 01 1 o
FORM *FINITE
TENSE *PRESENT {d} Terminal feature vecior for (). Only features F1=5
AGR NOT-2-5ING wre activated,
HEAD *SEND [Ce Coe Co |
LI EEEES
sues [ HeAD  “vou ] TorminaiFostures:  uoOD  MMPERATNVE )
(ATVITUGE “POLITE)
RECIP CASE  *OBL FoueE  pateeny
AGR *1-SING . (AGH *NOT-3-5HNG)
| HEAD 4 J (2] HF-vector of (a)
oBJ = peT [ HEAD 'THE]- [ee s0 & cloe cee oe o
AGA ?S-E:ING *DEF f} (2} represented by o ot of HF-veclors
: AN - Bexd HFE-Yoctor of (&)
L L HEAD *SUMMARY | wabi HF-¥ectar of the subf subsiructare
- obj HE-Woctor of the obj substructurs
(B} The abbreviated form of (4) _ E ' E
[ semtence I sung"YOUI *SENDT 0] . abi/det H¥-Vector of the dot subjact of oby
[ o[ 4o THE] "SUMMARYT) " adjuser HF-Vector for Adjunct substructirs

Fig. 1: F-structure representation: (a) an f-structure. (b) abbreviation.
(¢) lezical vector. (d) terminal feature vector. (e) HF-vector.
' (£} f-structure represented by HF-vectors.

A lexical vector is used to code a lexical item. Assuming that every lexical
item is an entry in a two-dimensional space instead of a one-dimensional
word list, we need two indices to specify the position of a lexical item in
the space. Lexical vector is a 0-1 vector with exactly two elements being 1
{being activated). The positions of the two activated elements in the vector
specify the two indices for an item in the 2D lexicon (Figure 1c)?.

The terminal feature vector of an f-structure codes the terminal
features of the f-structure.. Each element of the vector corresponds to a

? Viewing the lexicon as 2D reduces the length of the vector used to represent a lexical
item from n to 2[/n].
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feature-value pair like (TENSE *PRESENT). The vector, again, is a 0-1 vec-
tor with the activated elements indicating that their corresponding feature-
value pairs are terminal features of the fstructure (Figure 1d). Since there
are altogether around 60 different values for all the features used in the -
f-structure, the length of the terminal feature vector is around 60.

The HF-Vector of an F-structure is the concatenation of the lex-
ical vector of the head and the terminal feature vector of the f-structure
(Figure le).

Thus an f-structure can be represented by its HF-vector and its sub-
structures’ HF-vectors {Figure 1f).

3 The mapper

A mapper is a push-down transducer that consists of:

1. a symbolic controller that assigns an f-structure transfer task to a
neural metwork and interpreting the network’s output. According
to the interpretation, it recursively assigns the sub-structure transfer
tasks to the related networks, and assembles these networks’ results
to the target f-structure; )

2. seven neural networks that map phrasal f-structures bétween two lan-

. guages.. Bach network is constructed for a phrasal category in the
target language: IP (sentences), VP, NP, AP, PP, DP (determiners}),
and MP (miscellaneous, for phrases like “hello”, “oh”, etc.).

3.1 Phrasal networks

A phrasal network bas four layers: input, feature, hidden, and output layers
(Figure 2a). The input lager consists of three parts:

Slots of the HF-vectors for an input f-structure and its context (par-
ent) structure. Each slot corresponds to a fixed role.

An input f-structure may have sub-structures of arbitrary depth, but
the networks must have fixed number of input slots. Therefore we cannot
include all sub-structures’ HF-vectors in the networks’ input. Instead, we
‘peel off the shell’ of an f-structure — only include the HF-vectors of the
immediate sub-structures and their immediate sub-structures in turn for
the input f-structure, and the HF-vectors of the immediate sub-structures
for the context f-structure. Pre-analysis of the samples reveals the possible
roles of the sub-structures that can occur at these levels in f£structures for
the seven phrasal categories, and slots are then added to the input and
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Fig.2: Phrasal Network Structure: (a) the architecture of a phrasal
network. (b) details of the lowest two layers. The unshaded slots represent
the input f-structure. The shaded ones represent the context f-structure.

feature layers of the corresponding phrasal networks to take as input the
HF-vectors of the sub-structures with those possible roles.

Grammatical relation of the input source structure in its context?.
This input is a 0-1 vector with exactly one activated element indicating the
grammatical relation of the input structure.

Lexical vector of the head of the output f-structure’s parent struc-
ture (p-head). Sometimes, one input f-structure may be responsible for the
generation of multiple target f-structures at different levels. For example,
[sentence GOODBYE] corresponds 10 both [sentence AUF [op; WIEDERHOREN]]

" and its sub-struciure [,; WIEDERHOREN] in the training samples. This
input serves as a stack pointer, indicating the level at which the output -

3 Slot position only indicates the role of sub-gtructures, not the role of the input struc-
ture, since the HE-vector of the input f-structure with different roles always occupies
the first slot. ' C
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f-structure should be generated. :
The HF-vectors at the input layer are the local representations for the
. words and features in an f-structure. The activation patterns of the slots at
the feature layer can be viewed as the automatically learned distributed
representation of the input HF-vectors (Miikkulainen 1989). The input slots
have one-to-one connections to the feature slots (Figure 2b): The slot-slot
connections share weights in such a way that the connection from the é#th
unit in slot A at the input layer to the jth unit in slot A at the feature layer
has the same strength as the connection from the #th unit in slot B at the
input layer to the jth unit in slot B at the feature layer. The weight sharing
makes the same HF-vector at different input slots result in the same pattern
in their corresponding featire slots.
The output layer of a phrasal network has three parts:
The HF-vector of the f-structure to be generated. From this vector the
~ head and the terminal features of the target f-structure can be recovered.

The Sub-Structures’ Input Specifiers. It consists of slots of 0-1
vectors. Each slot has at most one element being activated. And each slot
corresponds to a sub-structure of a specific role of the target f-structure.
The role of the sub-structure is implied by the position of the slot in the
output layer. Bach vector of sub-structures’ input specifier is of the size
(|| input layer slots || + 1). For an output slot in sub-structures’ input spe-
cifier, if it has one activated element, then the sub-structure with the corres-
ponding role should be included as a part of the desired output f-structure.
The position of the activated element in the slot indicates the input sub-
structure (as specified by the slot number in the input layer) that is the
counterpart of {and therefore is responsible for the generation of) the tar-
get sub-structure, or nil when no input sub-structure is a counterpart of
the output sub-structure. If a network does not activate any element in
an output slot, then the slot’s corresponding sub-structure should not be
expected as a part of the desired target f-structure.

The Sub-Structures® Categories. It consists of slots of 0-1 vectors.
There can be at most cne element being activated in each slot, specifying one
of the seven phrasal categories for the corresponding target sub-structure.

According to a network’s output, the controller can build sub-structures
recursively by assigning subsequent sub-structure mapping tasks to the net-
works of the categories specified in the output of sub-structures’ categories
at the output layer. The input f-structures of those mapping tasks are
specified in the output of sub-siructures’ input specifiers. By combining the
recursively built sub-structures and the head and the terminal features from
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the output HF-vector, the desired target f-structure can be produced.

4 An example

The following example illustrates how the system works.

Source Sentence: I would like to register for the conference

Source F-structure: [sent [sub I] WOULD loeomp [enss ]} LIKE [zcomp [subs 1]
_REGISTER [pp_s45 FOR [o45 [ser THE] CONFERENCE]]]]]

Target Sentence:  Ich wuerd mich gerne zur Konferenz anmelde

(0) TP network

Input: _ :
~ source: [oen [susj I} WOULD [sobmp [suss T) LIKE [zcomp REGISTER]]]
Output: : : i '
hesNIL, o
subsentence <WOULD VP> (1)°

features: (MOOD *DECLARATIVE)
F-structure assembled by the controlier:
[sentence [surs PRONOUN] WERDE _
[zcormp [susj PRONOUN] [,y GERNE] ANMELDEN [,5; PRONOUN]
[p-adi FUR [op; [ser DER] KONFERENZ]]]]

(1) VP network

Input: _ :
50Urce:  [sent [suts 1] WOULD [zeomyp [sups [} LIKE [5comp REGISTERY]]]
context: NIL _ '
role: sentence
p-head:® NIL
Output:
head: WERDE .
subs: subj. <1 NP> (2)

xcomp <LIKE VP> (3)
features: ((CAT V) (PERSON 1)} (MODAL +) {FORM FIN) ...)
F-structure assembled by the controller:
" [ [sus; PRONOUN] WERDE _
[ [sus PRONOUN] [,y GERNE] ANMELDEN [,5; PRONOUN]
~ Iop=etj FUR [0 [sx DER] KONFERENZ][]]
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In step (0), the controller first activates the IP network with the source
input f-structure. There is no contezt input for the IP network, since the
sentential f-structures are the top level f-structures in our task. From the
network’s output, the controller knows that the head of the IP is NIL'. It also
generates the sentential feature (MOOD *DECLARATIVE). And it interprets
the output as that the only sub-structure of the sentence is a German VP,
whose English counterpart is the (non-proper) sub-structure with the head
WOULD®. Therefore it builds the target f-structure framework [ NIL (MOOD
*DECLARATIVE) [sentence *]], and activates the VP metwork in step (1).
Upon receiving the VP sub-structure returned from step (1), it combines
that sub-structure with the f-structure framework, and collapses the NIL-
headed f-structure to form the assembled f-structure shown as the ocutput
in step (0).

In step (1}, the input source was determmed in step {0}, since the sen-
tence sub-structure’s head was “WOULD” acecording to the IP network’s
sub-structure’s input specifier in step (0). The coniext input is NIL because
the source f-structure does not have a parent f-structure. The input role has
the value sentence because the slot position of the output sub-structure in
step (0) implies the grammatical relation of the sub-structure is sentence.
The input p-head is NIL because the head of target f-structure in step (0)
was NIL as specified by the output HF-vector there, }

The VP network maps the input f-structure to its German counterpart
by specifying (a) the head of the German VP structure WERDE and the
terminal features of the German VP structure in the ouiput HF-vector,
and (b) the input specifiers and the categories of the sub-structures of the
target German VP f-structure. To build detailed sub-structures for this VP
f-structure, the controller will activate the NP network with the input of the
English sub-structure with the head “I” and the VP network with the input
English sub-structure with the head “LIXE” in the subsequent steps, and

* The sub-structure’s input specifier and category are combined into a tuple here.

% The number in the parenthesis indicates the subsequent step of network activation for
this sub-structure. ' '

8 P.head is the head of the target f-structure’s parent structure

7 Nil-headed f-structure happens only when there is only one sub-structure or when
there is an zeomp sub-structure. The NIL-headed f-structure must collapse into the
only sub-structure in the frst case, or into the zcomp sub-structure in the second
cagse. All terminal features and other sub-structures are moved into the collapsed-into
sub-structure during collapsing.

8 The network actually specifies the slot at the input layer instead of the lexical item
WOULD.
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combine the sub-structures returned from these subsequent steps into the
Estructure framework ([sus; *| WERDE [zeomp *1]. The combined structure
is then returned to step (0) to be integrated into the top level f-structure
framework there,

5 Training, testing and performance

From the 300 sentential f-structure pairs, we extracted all the German
NP sub-structures, their grammatical relaticns and their parent structures’
heads. We labeled their English counterparts®. These were all the inform-
ation required for the training of the NP network. About 700 samples
for the NP networks were created this way. The training samples for the
other networks were prepared in the same way. The NP network had the
most samples, while the MP network had the least of 89 samples. Stand-
ard back-propagation was used to train the networks. We also tried the
information-theoretical networks (Gorin et al. 1991) to generate the head
of a target structure in the HF-vector, which required less training time and
achieved comparable performance as the network trained with pure back-
" propagation algorithm (Wang 1994). The training took 500 to 2000 epochs
for different networks, and the training time ranged from one hour to three
days on DEC Station 5000, The mapper achieved 92.4% accuracy on the
training datal®.
Learnability: The connectionist f-structure transfer described above
.did not require any hand-crafted rules or representations. The structure
transfer was learned automatically. By clustering the distributed represent-
" ations of words learned by the networks, i.e., the activation patierns of a
feature slot 'when a lexical item was presented to its connected input slot,
we had some interesting findings about what was learned by the networks.
- One of them was that the feature patterns for English nouns in the DP
network were clustered into three classes, which reflected the three genders
of German nouns: the German translations of the words in each class were
roughly of the same gender. Another finding was about the classification of
verbs. When we clustered the feature patterns for verbs in the VP networks,
- we found some intransitive verbs like register in the same class as most of
the transitive verbs. This seemly strange classification is not odd at all if we
consider the fact that thé German translation for register, “anmelden”, is a

? An NP’s counterpart is not necessary to be an NP, .
18 A source language f-structure is said to be accurately mapped if the generated target
language f-structure it exactly the same as desired in the sample.
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transitive verb. These twe independent findings reveal the networks! ability.
to discover some linguistic features of the target language and use if in the
representation of an entity of the source language which does not possess
those features. This is exactly what a symbolic transfer are supposed to do: -
using an intermediate representation which reflects the linguistic features of
the two languages in question (even if one of the languages may have degen-
erated form for a specific feature,) and thus being able to make a ‘transfer’
at both the lexical and structural level into corresponding structure in the
target language. Qur system learned the intermediate representation auto- -
matically, although it was not expressed explicitly in symbolic forms but
encoded in the networks’ activation patterns. Because the development of
this representation was integrated into the process of automatic learning of
f-structure mapping, it tended to include in the intermediate representation
the important language specific linguistic features which were directly rel-
. evant for the ultimate purpose of structure transfer. In the other words, the
learning of the intermediate representation was focused on the purpose of
improving the transfer performance. This is one of the biggest advantage
of this approach over the hand-crafted intermediate representation.

Scalability: We did a preliminary scalability experiment. We extended
the source and target language lexicon by 2%, and made 30 new f-structures
with these new lexical items. Trying to scale up from what was already
learned, we froze all but the input-feature connections, trained the network
for about 40 epochs with the new data, then fine-tuned all the connections
with old and new data for a few epochs. In doing so, we let the networks first
learn the new words to derive their distributed representations, and then
learn the structure mapping for the new data later. This approach was
based on ihe observation that a big portion of the new English words were
translated to some German words already in the lexicon, which in turn was
translated from some English words in the old training data. These old Eng-
lish words were mostly the synonyms of the new English words. By freezing
the other connections and training only the input-feature connections, we
hoped the networks to be able to develop the distributed representation for
a new word similar to the already-learned representations of its synonyms.

This approach greatly reduced the learning time for new words, since
the one layer back-propagation was much fast than the full-blown learning.
The mapper with the new phrasal networks that were retrained this way
achieved 83.3% accuracy on the new data, without affecting the performance
on the old data.
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Generalisability: A separate set of data was used to test the gener-
alisation performance of the system. The testing data was collected from
people not associated with our researches. The data was compared with
the training corpus, and the sentences that appeared in the training data
were removed. An LR parser parsed the sentences to English f-structures.
The English were translated into German manually, and the translations
were parsed by a German LR-parset. We picked the most probable struc-
ture when a parsing result was ambiguous. There were 154 f-structure pairs
after we eliminated the wrongly-parsed sentences. The mapper achieved
61.7% accuracy on the testing data. Considering the limited number of
training samples, this performance was encouraging. Previous research as
in {Chrisman 1991) did not generalise to deal with unseen data.

6 Discussion

The application of the connectionist transfer described in this paper has its
. restrictions. First, it requires well-formed f-structures for both the input and
output sentences. This greatly limits the applicable domain of the approach
to well-structured ‘clean’ languages. It is difficult to use this approach for
“spoken language where performance data like ungrammatical utterances,
noises, false starts are pervasive.

Another restriction is that this approached can only achieve satisfactory
performance when the input and output languages are similar, in the sense
that the translation equivalents in the two languages mosily have similar
recursive f-structures. Although the system can deal with structurally dif-
ferent input/output sentences, like the aforementioned example of [,entence
GOODBYE] and [sentence AUF [ WIEDERHOEREN]|, we believe that the
performance would drop significantly if drastic structure differences hetween
translation equivalents are very common for the two languages in question.

- Fortunately, as shown by our data, the structural difference between Engllsh
and German is not so drastic to ruin our system’s performance.

Although we had done some scalability experiment, it is unclear how
the system will perform if we increase the lexicon significantly instead of by
2%. Because of the limitation of available data, we found it very difficult

- to conduct scalability experiments with much more expanded lexicon. We
~ hope that with stable incremental performance, the system can be gradually
.and easily retrained to deal with more complicated problems.
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7 Conclosion .

Aiming at the difficulties in symbolic transfer, we have proposed a connec-’
tionist transfer system that maps between f-structures of two languages. It.
can discover meaningful linguistic features by learning. Its performance is
promising with respect to learnability, scalability and generalisability.
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