Hierarchical Phrase-based Translation with Weighted Finite-State Transducers

Gonzalo Iglesias

Machine Intelligence Laboratory

Cambridge University Engineering Department

Leuven, 31st of May 2011

Exactness in Search I

- The search space is the intersection of s_1^n with the grammar.
- In order to improve performance we may consider exploring bigger search spaces
- But if it is too big for the decoder, local pruning is needed.

Exactness in Search II

- Local pruning leads to search errors
- CUED Machine Translation group: Exactness and WFSTs.
 - Phrase-based Translation: TTM¹
 - HiFST + shallow-N grammars

¹Kumar, Shankar, Yonggang Deng, and William Byrne. 2006. A weighted finite state transducer translation template model for statistical machine translation. Natural Language Engineering.

This talk

- Hierarchical Phrase-based Translation
- HiFST: Hiero decoder using WFSTs
- Shallow-N grammars
- Results on several Translation Tasks
 - Contrast with Hiero Cube pruning decoder for AREN and ZHEN
 - HiFST and LMBR (rescoring and system combination)
 - WMT10 (FR/EN and SP/EN tasks)

Hierarchical Phrase-based Translation

- Hierarchical grammars and decoders first introduced by Chiang²
- Hierarchical rules (phrases with gaps) allow generalization and reordering
- These rules are formulated as a synchronous grammar

$$\begin{array}{|c|c|c|c|} S \rightarrow & \langle X, X \rangle & \text{glue rule 1} \\ S \rightarrow & \langle S \ X, S \ X \rangle & \text{glue rule 2} \\ X \rightarrow & \langle \gamma, \alpha, \sim \rangle \text{ , } \gamma, \alpha \in \{X \cup \mathbf{T}\}^+ & \text{hiero rules} \end{array}$$

Table: Rules contained in the standard hierarchical grammar.

- Gaps have no syntactic meaning
- Greedy automatic extraction from aligned parallel data, with standard constraints³
- ► For search: Hierarchical Cube pruning decoders,...

 $^2\mbox{David}$ Chiang. A hierarchical phrase-based model for statistical machine translation. ACL, 2005.

³David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 2007.

HiFST

- ► A hierarchical decoder that uses lattices⁴ for translation hypotheses.
- Why use lattices?
 - Compactness
 - Easily represented with Weighted Finite-State Transducers (WFSTs).
 - WFSTs: OpenFST, available at openfst.org⁵
 - Weights typically represented as costs under Tropical Semiring $\{\mathcal{R}, \oplus = min, \otimes = +, \overline{0} = \infty, \overline{1} = 0\}$
 - Standard WFST Operations templated over semiring (minimize, compose, prune shortestpath, ...) handle efficiently weights
 - Key for success: RTNs
- WFSTs: succesfully applied to several NLP tasks

⁴Gonzalo Iglesias, Adrià de Gispert, Eduardo R. Banga, and William Byrne. **Hierarchical phrase-based translation with weighted finite state transducers.** NAACL 2009.

⁵Allauzen, Cyril, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. **OpenFst: A general and efficient weighted finite-state transducer library.** CIAA,2007.

HiFST - General Framework

- CYK algorithm: source side
 - ► Given a sentence *s*₁...*s*_J, and a synchronous grammar, find all derivations with root in cell (*S*, 1, *J*)
- \blacktriangleright Lattices $\mathcal{L}(N,x,y)$ are built for each cell following back-pointers of the grid
 - Objective is the expanded lattice $\mathcal{L}(S, 1, J)$, at the top of the grid
- Apply language model to $\mathcal{L}(S, 1, J)$ and prune

Lattice Building

2 3

1				
	1	\mathbf{S}_1		
Create rule lattice by catenation of element lattices				
Create cell lattice $\mathcal{L}(N, x, y)$ by unioning rule lattices				
l ret	urn			
	it lat le lat	It lattice le lattice	It lattices le lattices l return	

 Recursive algorithm with memoization – traverses grid and returns RTN for the topmost cell. Lower level lattices also stored⁶.

⁶Adrià de Gispert and Gonzalo Iglesias and Graeme Blackwood and Eduardo R. Banga and William Byrne. **Hierarchical Phrase-based Translation with Weighted Finite State Transducers and Shallow-N Grammars.** Computational Linguistics,2010.

Lattice Expansion I

- Our lattices are a mixture of words and pointers to lower level lattices (RTNs)
- ► Topmost cell lattice $\mathcal{L}(S, 1, J)$ is expanded.

Lattice Expansion II

Usual operations (rmepsilon, determinize, minimize, etc) work over RTNs (and keep them small) !

Shallow-N grammars I

 $\begin{array}{l} \mathsf{R}^1\colon S{\rightarrow}\langle X,X\rangle\\ \mathsf{R}^2\colon S{\rightarrow}\langle S\ X,S\ X\rangle\\ \mathsf{R}^3\colon X{\rightarrow}\langle X\ \mathsf{s}_3,\mathsf{t}_5\ X\rangle\\ \mathsf{R}^4\colon X{\rightarrow}\langle X\ \mathsf{s}_4,\mathsf{t}_3\ X\rangle\\ \mathsf{R}^5\colon X{\rightarrow}\langle \mathsf{s}_1\ \mathsf{s}_2,\mathsf{t}_1\ \mathsf{t}_2\rangle\\ \mathsf{R}^6\colon X{\rightarrow}\langle \mathsf{s}_4,\mathsf{t}_7\rangle\end{array}$

For certain language pairs, this rule nesting might be unnecessary

Shallow-N grammars II

Allowing only one level of hierarchical rule nesting is trivial:

- ► Easily extended to any N levels: Shallow-N grammars.
- Limiting rule nesting to a fixed threshold is a kind of derivation filtering

Performance

- Lattice output has benefits for lattice rescoring and system combination:
 - Large Language Model rescoring
 - Lattice MBR for rescoring and system combination^{7 8}
- Translation tasks between close languages do not require complex rule nesting – Shallow-1 grammars reach similar state-of-the-art performance with much faster decoding times
 - Arabic-to-English⁹
 - Spanish-to-English¹⁰

⁹See EACL 2009 paper.

¹⁰Gonzalo Iglesias, Adrià de Gispert, Eduardo R. Banga, and William Byrne. **The HiFST** system for the Europarl Spanish-to-English task. SEPLN, 2009.

⁷S. Kumar and W. Byrne. *Minimum Bayes-risk decoding for statistical machine translation*. NAACL 2004.

⁸R. Tromble, S. Kumar, F. Och, and W. Macherey. *Lattice Minimum Bayes-Risk decoding for statistical machine translation*. EMNLP 2008.

Workshop in Machine Translation 2010

Very competitive translation systems using shallow-1 grammars¹¹

	news-test2008	newstest2009	newstest2010
SP-EN	25.4	27.0	30.5
EN-SP	24.7	25.5	29.1
FR-EN	25.6	29.3	29.6
EN-FR	24.2	26.1	28.2

Table: WMT10 HiFST+LMBR Translation Systems

¹¹J. Pino, G. Iglesias, A. de Gispert, G. Blackwood, J. Brunning and W. Byrne. **The CUED HiFST System for the WMT10 Translation Shared Task.** WMT, 2010.

Shallow-N for ZHEN

- Chinese-to-English task: word reordering requirements are harsh.
- Shallow-3 almost bridges the gap at faster decoding times

Shallow-1 Shallow-2 Shallow-3 FULL

HiFST versus Cube Pruning I

HiFST with cube pruning decoder for Arabic-to-English translation task (shallow-1). No search errors + lattices = increased performance.

HiFST vs Cube Pruning II

 HiFST with cube pruning decoder for Chinese-to-English translation task (full grammar). Both require local pruning. Still, lattice rescoring methods yield increased performance.

ZHEN task vs. local pruning

- We still have local pruning on ZHEN translation
- Full grammars define search spaces far too big
- Is it possible to avoid local pruning for ZHEN translation tasks?
- Yes: See our next paper in EMNLP 2011¹²! Recipe:
 - Push-down automata
 - 1st pass with entropy pruned language model
 - Rescoring with full language model

¹²Gonzalo Iglesias,Cyril Allauzen,William Byrne Adrià de Gispert, and Michael Riley.**Hierarchical Phrase-based Translation Representations.**To appear in EMNLP 2011.

HiFST goes online – FAUST project

- FAUST:Feedback Analysis for User Adaptive Statistical Translation
- Motivation: Current MT systems do not respond to suggestions for improvement. There are diverse technical reasons for this, including:
 - User feedback tends to be very noisy
 - No research published to date makes explicit how statistical translation and language models can be adapted to benefit from feedback provided by web users
 - No mechanisms exist to identify user feedback of value and inmediately change behaviour of SMT systems in order to avoid the problem
 - Current SMT systems and research efforts are aimed at sophisticated users - translation professionals, intelligence analysts, etc. These users develop an understanding of how to work around their system weaknesses
 - Casual users are tend to be frustrated by a general lack of fluency

HiFST goes online – FAUST project

HiFST will be available very soon. Check www.reverso.net!

Reverso	Reverso Labs	Partners Language Weaver Universitat Politechnica de Cataluny Cambridge University Charties University in Prague
Translation direction: Spanish->English 🔻		
1. Source text:	2. Translation Show differences	Back-Translation Show differences
el chico que comía patatas	The boy who was eating potatoes	El muchacho que comía patatas
Edit source text New translation	the boy who ate potatoes	el chico que comía patatas
	The guy who ate potatoes	El muchacho que había comido patatas
	The boy who ate potatoes	El chico que comía patatas
		Don't be surprised if the back translation does not give you exactly the same result as the original text. It aims at behing you indee the nulling of the translation

Conclusions

- We described HiFST, a hierarchical decoder based on WFSTs
 - Easy to implement, as complexity is hidden by OpenFST library
 - RTNs effectively reduce complexity during lattice construction
- ▶ For ZHEN: Shallow-3 almost bridges the gap with Hiero Full
- ZHEN: bigger search spaces we still need local pruning
- For languages not in need of strong word reorderings, shallow-1 grammars generally enough
- AREN and WMT10: no search errors: exact decoding

Thank you!

Questions?

System Combination of HiFST systems

- Arabic-to-English NIST09 MT08.
- Three HiFST systems over same Arabic sources with different tokenizations (MADA, SAHKR)
- LMBR combines word lattices and searchs for hypotheses with highest similarity to the rest of the lattice

Marginalization over Translation Derivations

- Pruned lattices mapped to log semiring determinization leads to improved performance
- Improvements do not carry through after LMBR step

