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Abstract

We present a phrase-based extension to memory-based machine translation. This form of example-

based machine translation employs lazy-learning classifiers to translate fragments of the source sen-

tence to fragments of the target sentence. Source-side fragments consist of variable-length phrases

in a local context of neighboring words, translated by the classifier to a target-language phrase. We

compare three methods of phrase extraction, and present a new decoder that reassembles the trans-

lated fragments into one final translation. Results show that one of the proposed phrase-extraction

methods—the one used in Moses—leads to a translation system that outperforms context-sensitive

word-based approaches. The differences, however, are small, arguably because the word-based ap-

proaches already capture phrasal context implicitly due to their source-side and target-side context

sensitivity.

1 Introduction

In characterising example-based machine translation, Somers [1] cites the common use of a collection of

translations, and the process of matching new source-language sentences against stored source-language

sentences in this collection. This matching, which may involve partial matching of fragments of sen-

tences at the source side, leads to a selection of target-language fragments which are recombined and

possibly post-processed to form the final translation.

Memory-based machine translation [2, 3, 4] (MBMT for short) is a form of example-based machine

translation. A key characteristic of MBMT is the use of memory-based classifiers [5, 6] for the translation

step. Memory-based classifiers do not only look up stored translation pairs, but are also able to generate

translations when the input does not offer an exact match with a memorized translation pair. A parallel

corpus serves as the main knowledge base. All sentences in this parallel corpus are tokenised and paired

up with their counterparts, and between the words of each sentence pair, an alignment is computed.

This alignment serves as the basis from which small fragments in their context can be extracted that

are subsequently passed to a classifier for training. Whereas prior research in MBMT composed these

fragments from single words in context [2, 4], the approach proposed in this study takes a phrase–one or

more words—in context, as the focus element of each fragment.

We thus start from a mapping of fragments in the source language to fragments in the target language.

Subsequently, memory-based learning is applied to convert these paired fragments into a memory-based

classifier [5]. This classifier can then be used to translate new sentences. Given a sentence to translate,

we segment this into various phrase-based fragments; for each fragment, a distribution of possible output

fragment translations is predicted by the memory-based classifier. As a final step, all translations of these

fragments are recombined by a new decoder that searches for a globally optimal translation of the given

sentence.

The study builds upon previous research on MBMT [2, 3, 4]. The question addressed here is whether

a phrase-based approach improves MBMT. An extension to phrases introduces non-trivial issues; one is

how to detect phrases in a parallel training corpus. In the study described in this paper, three methods
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of phrase extraction are tested and compared. Second, there is the issue of choosing a representation of

variable-length phrases in a fixed-length feature vector used for memory-based classification.

In Section 2 we present our approaches to phrase-based MBMT in detail. In Section 3 the results

of a comparative series of experiments are presented and discussed. We formulate our conclusions and

starting points for future research in Section 4. Note that the system presented in this paper is available

as open-source from http://ilk.uvt.nl/mbmt/pbmbmt .

2 Phrase-based memory based machine translation

An MBMT system divides into a training subsystem, producing a translation model, and a translation

subsystem. A parallel corpus is used for phrase extraction and example generation, i.e. the generation

of translations of source fragments to target fragments. These fragments, with as its main constituent

an aligned pair of phrases, are compressed, rather than merely stored, in the training phase. The aim of

compression into a tree structure is primarily to offer fast retrieval, but as a side effect memory needs are

minimized as well. In testing, unseen source-language sentences in a test corpus are also transformed

into fragments, which the memory-based classifier maps onto a distribution of target-language fragment

translations. A decoder then reassembles all translated fragments together into one sentence, searching

through and choosing between alternative solutions when more than a single target sentence can be built

out of the predicted fragments.

2.1 Example generation

Figure �: Left: A word alignment between a French and English sentence, Right: A phrase-based training example

in context

We assume a word-alignment between all sentence pairs in the parallel corpus. Figure 1 (left) illus-

trates such a word-aligned sentence pair, serving as an example throughout this section. On the basis

of this, we create example fragment translations that serve as training examples. On the input side, an

example consists of a feature vector representing a source-language fragment; on the output side, the

example is labeled with a class, representing a fragment of the target sentence aligning to the source

fragment. In prior research [2, 4], the feature vector consisted of one focus word, one context word to

the left, and one context word to the right; the class was composed of the target-language word aligned

to the focus word, and again one context word to the left, and one to the right. Suppose we translate

French to English and look at the word est in Figure 1 (left), then the feature vector would be �inconnu,

est, condamné), and the class would be �man,is,wrongly). Note that the class is considered by the classifier

as an atomic symbol, but it is decomposed later into its constituents by the decoder. By moving a sliding

window over the source sentence, fragments can be generated for all words save for zero-fertility words.

The phrase-based approach we present here is similar. Examples are composed as follows: The

feature vector consists of a phrase from the source sentence, with one context word on the left side,

and one context word on the right side. The class consists of the target-language phrase that aligns to

the source-language phrase, and can optionally also take left- and right context words. In this research

however we found that taking no target-side context produced significantly better results. In representing

the source-language side of the example as a feature vector, the focus can be coded into multiple features,
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such as one per position relative to the focus. Since phrases can be of arbitrary length and the classifier

expects a feature vector of fixed size, this poses a problem. Section 2.3 will address this issue further.

Suppose that the alignment links the source-language phrase “l’homme inconnu” to the target-

language phrase “the unknown man” in the target language. Figure 1 (right) illustrates the phrase-based

training example generated for this aligned pair of phrases.

2.2 Phrase extraction

A first task is how to determine phrases in the source- and target-language sentences in the parallel

corpus available for training. One solution is to employ the same type of method as used in phrase-based

statistical machine translation, making use of a phrase-translation table [7]. Such a table lists aligned

phrases in both source and target language, assigning conditional probabilities for each. These aligned

phrase pairs are computed statistically over the entire parallel corpus by taking the intersection of source-

to-target and target-to-source word alignments [7], and can be extended by incrementally adding points

from the union of the two alignments [8]. We use the implementation in Moses [9] to this end.

In addition to this first method, we include two other approaches to phrase extraction for comparison.

The second method of phrase extraction, henceforth named the phrase-list approach, is a straightforward

method that extracts frequent n-grams only from the source-language side of the training corpus, and

stores this in what we call a phrase list. The approach needs a frequency threshold above which an

n-gram is included in the phrase list, which after exploratory experimentation was fixed at 25. Unlike

in the phrase-table method, the aligned counterpart of a source-side phrase is computed on the fly. Each

source sentence is matched against the phrase list, and whenever a phrase is found, we follow the word-

alignments from the phrase and assume that the sequence of words it points to is the aligned target phrase,

possibly with intervening fertility words.

Using phrases from either a phrase-translation table or phrase-list, we can never expect to obtain

full coverage of test sentences. To decrease problems of low coverage and data sparsity, we defined a

phrase to consist of one or more words. In addition to phrase extraction, we always generate word-based

fragments using the same word-oriented approach as used in prior research. This makes the phrase-based

approach an extension of the word-based approach. Given the same parallel corpus and input sentences,

the training and test examples in phrase-based MBMT are a superset of those in word-based MBMT.

Due to the phrase-based character of our approach, a word in the source sentence can be part of

the focus of a feature vector multiple times. A single word always generates its word-based example,

but there may also be one or more extracted phrases that the word is a part of. We may thus generate

multiple examples that all contain the same word or words as part of their focus. Phrase overlap occurs

in both training and test examples. The latter has an important side-effect that will have an impact on

the decoding process we describe later on. If there are multiple examples covering the same words, then

there will be multiple possible fragmentations of the input sense (see also Figure 2).

2.2.1 Marker-based chunking

The third phrase-extraction method is marker-based chunking, which segments a sentence into non-

overlapping chunks, splitting whenever so-called marker words occur. Marker words are typically de-

fined as closed-class function words, and overlap significantly with the top-most frequent words in most

corpora. A chunk must contain at least one non-marker word at its end. The idea behind marker-based

chunking is rooted in the Marker Hypothesis [10], an idea from psycho-linguistics that posits that all

languages are marked for surface syntax by a specific closed set of lexemes or morphemes [3].

Marker-based chunking is a phrase extraction strategy that differs from the previous two in the sense

that it does not use data statistics on n-grams. It has already been employed in a previous study of MBMT
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[3], inspired in turn by its earlier application in EBMT [11, 12]. In this study we also use the method and

compare it to the previous two methods.

2.3 Representing phrase-based examples

If we encode the focus phrase of the feature vector in terms of its encoding words and their position

in the phrase, we end up with feature vectors of different sizes. However, the memory-based classifier

demands a fixed number of features in order to compute its similarity function. There are at least three

ways to resolve this problem. First, we can consider the phrase as one atomic feature. Second, we can

reserve a fixed number n of features, and fill those with position-specific words (such as the final word,

the prefinal word, etc.), assigning dummy values to unused feature slots. Third, we can assign separate

classifiers to different phrase lengths, assigning examples with a particular phrase-length to a separate

classifier trained only on examples of this length. In this setup a master process assigns examples to

different classifiers and reassembles their output again for the decoder.

2.4 Decoding

Due to the overlapping nature of extractable phrases, and the fact that we may end up with multiple

examples covering the same words in the source sentence, we can speak of various possible fragmen-

tations of the source sentence S. We define a fragmentation to be a chain in which the focus parts are

non-overlapping; each fragment covers a certain range of consecutive words of arbitrary length n in

the source sentence S, where 1 ≤ n ≤ |S|. In addition each fragment is associated with a left context

and right context of a length predetermined during example generation. Figure 2 shows three example

fragmentations.

Each test example is mapped by the classifier to a distribution of classes, which are the various

target-side translations for the fragment and an associated probability score. From the perspective of the

decoder these are referred to as hypothesis fragments. Thus, each fragment will be associated with a

collection of one or more hypothesis fragments; the associated scores denote the translation probability

for the particular fragment being translated to the particular hypothesis fragment. Figure 2 illustrates the

relation between the fragmentation of a sample sentence, the source-side fragments that are extracted

from it, and the target-side hypothesis fragments generated from the source-side fragments.

Figure 2: Fragmentations of the sample Dutch input sentence “Het boek ligt op de tafel” (The book is on the

table). The third fragmentation is expanded to list the target-side hypothesis fragments associated with each of the three

source-side fragments the fragmentation is composed of. Context information is printed in small text.

Having gathered all matching fragments for a given source sentence, the task is to search for “good”

fragmentations, leading to the most likely translation. The number of fragmentations tends to increase

exponentially in the length of the source sentence. Therefore it proved to be an infeasible approach to
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generate all fragmentations in an exhaustive fashion. Instead, we attempt to select a number of good frag-

mentations in a local beam search, and decode only on the basis of the hypothesis fragments generated

on the basis of this selection of source-side fragmentations.

For each fragmentation returned by the local beam search, the decoding procedure is started, which

itself employs another local beam search. It should be noted that this makes the phrase-based approach

computationally more expensive compared to the word-based approach, as the latter by definition only

has one fragmentation of the source sentence. The decoder returns a list of the highest-scoring translation

hypotheses for each fragmentation, limited in number by the beam size of the decoder.

The decoding procedure starts by generating an initial hypothesis: a translation hypothesis in which

we simply select for each fragment in the fragmentation the hypothesis fragment with the highest trans-

lation probability. We order the hypothesis fragments for the initial hypothesis in the order we find the

fragments in the source-sentence fragmentation. The initial hypothesis in Figure 2 thus is “The book is

on the table”. In this example, the initial hypothesis already happens to generate the best translation, but

in most cases there is more searching to do. A hypothesis can be modified in two main ways: (1) the

order in which the hypothesis fragments are assembled can be changed, and (2) the choice of hypothesis

fragments can be changed, i.e. other hypothesis fragments with an equal or lower translation probability

could be tried. To this end, the decoder applies two operations to the initial hypothesis. Each yields new

hypotheses and the best few, limited by the beamsize, are selected. To these hypotheses the operators

are applied again. This procedure repeats itself until no better scoring hypotheses can be generated. The

first operator is substitution. It generates new hypotheses in which a hypothesis fragment of a particular

fragment is substituted by another hypothesis fragment from the list. This is done exhaustively. For each

fragment, substitutions are made using all hypothesis fragments that have not undergone a substitution

operation in a previous decoding round. The second operator is the swap operation, in which we swap

the location of two hypothesis fragments. This again is done in an exhaustive fashion such that all possi-

ble swaps are made. Each fragment swaps places with all neighboring fragments within a certain range,

each swap yielding a new hypothesis. An extra parameter specifies the maximum range over which a

swap can occur; we set this at two, allowing swaps with neighboring fragments and their immediate

neighbors.

The success of the decoding algorithm depends on the score function it maximises. For each hypoth-

esis, a score is computed that is an expression of the quality of the hypothesis. A good translation should

preferably maximise both fidelity and fluency. These two components are present in the decoder devel-

oped for the present study. A quantification of fluency is provided by a trigram-based statistical language

model with back-off smoothing on the target language, while fidelity is expressed by the probabilities

generated by the memory-based translation model. More precisely, the score function for a hypothesis

H is made up of the product of the translation probability and distortion score of the given hypothesis:

TranslationModel(H) = ClassifierScore(H) ·DistScore(H) (1)

ClassifierScore(H) =
|H|

∏
i=1

P(classi f icationweighti ) (2)

DistScore(H) =
|H|

∏
i=1

distortion constantdistance(h f ragmenti,h f ragmenti−1) (3)

We see here an expression of the translation probability of a hypothesis. This can be computed

by taking the product of the translation probabilities of all selected hypothesis fragments that make up

the hypothesis (Equation 2). Recall that these translation probabilities come directly from the classifier

output, which predicted a distribution of hypotheses fragments as illustrated in Figure 2. The translation

probabilities can be given an extra weight parameter by raising them to a certain power.
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In addition, a distortion score DistScore(H) is also computed by raising a distortion constant to the

power of a measure of distance between two fragments in the original source sentence (Equation 3).

This is an admittedly crude factor that may fit the language pair, but will tend to favor ungrammatical

and undistorted target sequences over grammatical but reordered target sequences.

3 Results

Experiments were performed on two parallel corpora, in which we focused only on Dutch to English

translation. The first is OpenSubtitles [13], which consists of user-contributed subtitles for movies. The

used training set consists of 286,160 sentence pairs. The second corpus is EMEA [13], a medical and

largely formulaic text corpus represented by a training set of 871,180 sentence pairs. From both corpora

a development and test set of 1,000 sentences each was selected.

First, several simple parameter optimisation experiments were tried in order to assess the effect of

the decoder and some of the parameters. One outcome of these explorations is that omitting target-side

context, as used in prior research where target-side fragments constituted trigrams of words [2, 4], greatly

improves results. In an experiment on the OpenSubtitles corpus, a BLEU score of 0.1211 with target-side

context, rises to 0.2184 when target-side context is removed and only target-side phrases are predicted.

We attribute this effect mainly to the increase in sparsity of classes when adding context, adding to the

sparsity of the phrases themselves.

The main question addressed in this study is whether a phrase-based approach to MBMT (PBMBMT)

improves upon the previous word-based approaches (MBMT [2], CSIMT [4]). In both these methods,

the feature vector as well as the class consist of a trigram, one focus word, one left-context word, and

one right-context word. CSIMT successfully employs a more powerful decoder based on Constraint

Satisfaction Inference, hence we compare against this variant. For completeness, we also compare to the

MBMT variant described in [2] that maps source trigrams to output trigrams, and uses a decoder that is

purely based on target trigram overlap. This overlap-based decoder was introduced in [3], where it was

shown to outperform a marker-based variant of MBMT.

Other questions addressed in this study are: How do the three phrase-extraction methods perform?

What example format is best? Indications for answering these questions can be found in Table 1, which

shows the main results. Note that in this table, the PBMBMT decoder was also run without using any

phrase-extraction method (named wb-PBMBMT), making it operate on a word-based level like in word-

oriented CSIMT, with the notable difference that target-side context is excluded in all PBMBMT experi-

ments. This word-based system offers a baseline for assessing the effectiveness of the phrase-extraction

methods, and it can be compared to the word-based decoders reported in earlier work [2, 4]. Note that

in further comparisons with phrase-based SMT systems, the Moses system was found to attain BLEU

scores of 0.33 on OpenSubtitles, and 0.47 on EMEA, clearly outperforming our best scores.

With respect to the three phrase extraction methods, the Moses [9] phrase-table method performs

best overall. The other two methods, especially marker-based chunking, perform below the word-based

PBMBMT baseline. This may be attributed to the fact that the phrase-translation table is computed using

the two-way alignment statistics of the parallel corpus, whilst the other two methods only rely on source-

side statistics, and the aligned counterparts of the phrases are sought in an ad-hoc and per-sentence

fashion. The two predecessor systems, MBMT [2] and CSIMT [4], are both outperformed by the Moses

phrase-table method, and as reported earlier in [4], the CSIMT method tends to outperform the MBMT

method with the trigram overlap-based decoder on all metrics. On the EMEA corpus, CSIMT outper-

forms the word-based PBMBMT, and performs relatively close to PBMBMT with the Moses phrase-table

approach.

We thus observe that the advantage of phrase-based MBMT compared to earlier word-oriented ap-
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OpenSubtitles

Extraction Single / multi Translation performance metrics
Decoder mMethod classifier BLEU NIST METEOR WER PER

MBMT - - 0.1631 4.243 0.3835 68.39 61.33
CSIMT - - 0.2002 4.750 0.4431 68.42 55.18
wb-PBMBMT - - 0.2163 5.136 0.4644 55.23 48.22

PBMBMT phrase table single 0.2300 5.055 0.4623 54.47 49.18
PBMBMT phrase table multi 0.2256 5.004 0.4583 55.28 49.74

PBMBMT phrase list single 0.2190 4.980 0.4543 54.09 48.77
PBMBMT phrase list multi 0.2184 4.975 0.4529 54.09 48.79

PBMBMT marker-based single 0.1003 2.935 0.3057 76.79 71.16
PBMBMT marker-based multi 0.1394 3.360 0.3437 66.40 62.38

EMEA

Extraction Multi or single Translation performance metrics
Decoder method classifier BLEU NIST METEOR WER PER

MBMT - - 0.2533 5.115 0.4801 72.78 63.66
CSIMT - - 0.3013 5.938 0.5333 63.00 50.85
wb-PBMBMT - - 0.2715 5.600 0.5381 65.99 57.25

PBMBMT phrase table single 0.3075 6.011 0.5455 59.00 52.02
PBMBMT phrase table multi 0.3078 6.019 0.5449 58.76 51.63

PBMBMT phrase list single 0.2440 5.352 0.4946 62.74 56.67
PBMBMT phrase list multi 0.2440 5.378 0.4967 62.82 56.86

PBMBMT marker-based multi 0.2370 4.612 0.4513 74.37 66.78

Table �: Main results on the OpenSubtitles and EMEA corpora, Dutch to English.

proaches, including the closest comparable system, the word-based PBMBMT baseline (wb-PBMBMT in

the table) that restricts itself to words and uses the same decoder as PBMBMT, turns out to be limited.

This is a surprising outcome. We may posit that sparsity plays a role here; phrases are by definition less

prevalent than single words, which complicates the classification process. The omission of context in

classes (in contrast to CSIMT, which maps to trigrams of words) attempts to compensate for this to a

certain extent. Another reason for the lack of a clear difference between word-based and phrase-based

MBMT may be sought in the fact that even in word-oriented CSIMT there is already a significant but

implicit role for phrasal context. Essentially we are comparing phrasal context inherent to the phrases

themselves in PBMBMT, against phrasal context implicit in the input and output word trigrams in CSIMT.

Often, such as with phrases of length 3, the two approaches are mapping about the same input to the

same output. The limited gain of the phrase-based approach may stem from the added value of the fact

that PBMBMT is not restricted to trigrams, and can vary between whatever is the strongest n-gram.

Concerning the example format, reserving space for a fixed number of position-specific features (i.e.

words) in a single classifier versus distributing different phrase-lengths over multiple classifiers perform

more or less on a par.

4 Conclusions and future research

The study described in this paper has demonstrated how memory-based machine translation can be ex-

tended from translating fixed-length word trigrams to translating phrases of arbitrary length. We com-

pared three methods of phrase extraction, of which the Moses phrase-translation table approach emerges

as the best solution.

Prior research in MBMT such as the recent CSIMT approach [4] relied partly on target-side context,

making use of the overlap between predicted target-side fragments (word trigrams) in decoding. The

current study shows that ignoring target-side context produces significantly better results in a phrase-

based approach. This can be credited to the decrease in sparsity in the output class space. Moreover,
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removing this context can be justified by the fact that context becomes less relevant in phrase-based

approaches, as target-side phrases capture enough internal context themselves.

Nevertheless, the impact of phrases in comparison to word-based MBMT has been shown to be lim-

ited. A potential explanation for this limited effect is that earlier word-based MBMT approaches can

be seen as implicitly phrase-based already. The approach followed in [2, 4] maps trigrams of source-

side words to trigrams of target-side words, implicitly capturing all phrases up to length three. In this

perspective, our current approach changes this only slightly by turning the source-side trigrams into

variable-width examples of Moses phrases surrounded by their left and right neighboring words, and

predicting variable-width target-side phrases at the output, starting from single words.

Besides further hyperparameter optimisation of the memory-based classifier and the inclusion of

richer (e.g. linguistic) features, we think that most improvement can be obtained by improving the

decoder. In future work it could be extended with more operations, such as a delete operation powered

by a null model; moreover, an alternative should be sought for its current crude distortion factor. The

findings with regard to omission of target-side context could be tested and incorporated into the strategy

proposed in CSIMT [4]. Future work should also focus on different language pairs and datasets.
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