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Abstract 

This paper demonstrates the utility of the Semantic Network Array Processor (SNAP) 
as a massively parallel platform for high performance and large-scale natural language 
processing systems. SNAP is an experimental massively parallel machine which is dedi- 
cated to, but not limited to, the natural language processing using semantic networks. In 
designing the SNAP, we have investigated various natural language processing systems 
and theories to determine the scope of the hardware support and a set of micro-coded 
instructions to be provided. As a result, SNAP employs an extended marker-passing 
model and a dynamically modifiable network model. A set of primitive instructions 
is micro-coded to directly support a parallel marker-passing, bit-operations, numeric 
operations, network modifications, and other essential functions for natural language 
processing. This paper demonstrates the utility of SNAP for various paradigms of nat- 
ural language processing. We have discovered that the SNAP provides milliseconds or 
microseconds performance on several important applications such as the memory-based 
parsing and translation, classification-based parsing, and VLKB search. Also, we argue 
that there are numerous opportunities in the NLP community to take advantages of the 
computational power of the SNAP. 
Keywords: Massively Parallel Computing, Memory Based Translation, VLKB, Clas- 
sification based Parsing 
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1 Introduction 

In order to accomplish the high-performance natural language processing, we have de- 
signed a highly parallel machine called Semantic Network Array Processor (SNAP) [Lee 
and Moldovan, 1990]. The goal of our project is to develop and test the validity of the 
massively parallel machine for high performance and large-scale natural language processing. 
Thus, the architecture of the SNAP was determined reflecting extensive analysis of basic 
operations essential to the natural language processing. As a result of the investigation, we 
have decided to employ an extended marker-passing model and a dynamically modifiable 
network. Also, a set of primitive instructions is micro-coded to directly support essential 
operations in natural language systems. 

Several approach can be taken to use SNAP as a platform for natural language processing 
systems. We can fully implement NLP system on SNAP, or we can speed up existing systems 
by implementing computationally expensive parts on SNAP. We have implemented some of 
these approaches on SNAP, and obtained extremely high performance (order of milliseconds 
for given tasks). 

In this paper, we describe the design philosophy and architecture of SNAP, and present 
several approaches toward high performance natural language processing systems on SNAP. 

2 SNAP Architecture 

2.1    Design Philosophy of SNAP 

The Semantic Network Array Processor (SNAP) is a highly parallel array processor fully 
optimized for semantic network processing with a marker-passing mechanism. The funda- 
mental design decisions are (1) a semantic network as a knowledge representation scheme, 
and (2) parallel marker-passing as an inference mechanism. 

First, the use of a semantic network as a representation scheme can be justified from 
the fact that most of the representation schemes of current AI and NLP theories (such as 
frame, feature structure, sort hierarchy, systemic choice network, neural network, etc.) can 
be mapped onto semantic networks. Also, there are numbers of systems and models which 
directly use semantic networks [Sowa, 1991]. 

Second, the use of marker-passing can be justified from several aspects. Obviously, there 
are many AI and NLP models which use some form of marker-passing as the central comput- 
ing principle. For example, there are significant number of research being done on word-sense 
disambiguation as seen in [Waltz and Pollack, 1985], [Hendler, 1988], [Hirst, 1986], [Char- 
niak, 1983], [Tomabechi, 1987], etc. All of them assume passing of markers or values among 
nodes interconnected via some types of links. There are studies to handle syntactic con- 
straints using some type of networks which can be mapped onto semantic networks. Recent 
studies on the Classification-Based Parsing [Kasper, 1989] and the Systemic Choice Network 
[Carpenter and Pollard, 1991] assume hierarchical networks to represent various linguistic 
constraints, and the search on these networks can be done by marker-passing. Also, there 
are more radical approaches to implement entire natural language systems using parallel 
marker-passing as seen in [Norvig, 1986], [Riesbeck and Martin, 1985], [Tomabechi, 1987], 
and [Kitano, 1991]. There are, however, differences in types of information carried in each 
marker-passing model. We will describe our design decisions later. 

As reported in [Evett, et al., 1990], however, serial machines are not suitable for such 
processing because  it  causes  performance  degradation  as  size  of  semantic network increases. 
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Figure 1: SNAP-1 Architecture 

There axe clear needs for highly parallel machines. The rest of this section provides a brief 
overview of the SNAP architecture. 

2.2 The Architecture 

SNAP consists of a processor array and an array controller (Figure 1). The processor array 
has processing cells which contain the nodes and links of a semantic network. The SNAP 
array consists of 160 processing elements each of which consists of a TMS320C30 DSP chip, 
local SRAM, etc. Each processing elements stores 1024 nodes which act as virtual processors. 
They are interconnected via a modified hypercube network. The SNAP controller interfaces 
the SNAP array with a SUN 3/280 host and broadcasts instructions to control the operation 
of the array. The instructions for the array are distributed through a global bus by the 
controller. Propagation of markers and the execution of other instructions can be processed 
simultaneously. 

2.3 Parallel Marker-Passing 

In the SNAP, content of the marker are: (1) bit-vector, (2) address, and (3) numeric value 
(integer or floating point). In SNAP, the size of the marker is fixed. According to the 
classification in [Blelloch, 1986], our model is a kind of Finite Message Passing. There 
are types of marker-, or message-, passing that propagates feature structures (or graphs), 
which are called Unbounded Message Passing. Although we have extended our marker- 
passing model from the traditional bit marker-passing to the complex marker-passing which 
carries bits, address, and numeric values, we decided not to carry unbounded messages. 
This is because propagation of feature structures and heavy symbolic operations at each 
PE are not practical assumptions to make, at least, on current massively parallel machines 
due to processor power, memory capacity on each PE, and the communication bottleneck. 
Propagation of feature structures would impose serious hardware design problems since the 
size of the message is unbounded, which means that the designer can not be sure if the local 
memory size is sufficient or not until the machine actually runs some applications. Also, PEs 
capable  of  performing  operations  to  manipulate  these  messages  (such  as  unification) would 
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be large in physical size which causes assembly problems when thousands of processors are to 
be assembled into one machine. Since we decide not to support unbounded message passing, 
we decide to support functionalities attained by the unbounded message passing by other 
means such as sophisticated marker control rules, dynamic network modifications, etc. 

2.4 Instruction Sets 

A set of 30 high-level instructions specific to semantic network processing are implemented 
directly in hardware. These include associative search, marker setting and propagation, 
logical/arithmetic operations involving markers, create and delete nodes and relations, and 
collect a list of nodes with a certain marker set. Currently, the instruction set can be 
called from C language so that users can develop applications with an extended version 
of C language. From the programming level, SNAP provides data-parallel programming 
environment similar to C* of the Connection Machine [Thinking Machines Corp., 1989], but 
specialized for semantic network processing with marker passing. 

Particularly important is the marker propagation rules. Several marker propagation rules 
are provided to govern the movement of markers. Marker propagation rules enables us to 
implement guided, or constraint, marker passing as well as unguided marker passing. This 
is done by specifying the type of links that markers can propagate. The following are some 
of the propagation rules of SNAP: 

• Seq(r1,r2) :   The Seq (sequence) propagation rule allows the marker to propagate 
through r1 once then to r2. 

• Spread(r1,r2) :  The Spread propagation rule allows the marker to travel through a 
chain of r1 links and then r2 links. 

• Comb(r1,r2) : The Comb (combine) propagation rule allows the marker to propagate 
to all r1 and r2 links without limitation. 

2.5 Knowledge Representation on SNAP 

SNAP provides four knowledge representation elements: node, link, node color and link 
value. These elements offer a wide range of knowledge representation schemes to be mapped 
on SNAP. On SNAP, a concept is represented by a node. A relation can be represented by 
either a node called relation node or a link between two nodes. The node color indicates 
the type of node. For example, when representing USC is in Los Angeles and CMU is 
in Pittsburgh, we may assign a relation node for IN. The IN node is shared by the two 
facts. In order to prevent the wrong interpretations such as USC in Pittsburgh and CMU 
in Los Angeles, we assign IN#1 and IN#2 to two distinct IN relations, and group the two 
relation nodes by a node color IN. Each link has assigned to it a link value which indicates 
the strength of interconcepts relations. This link value supports probabilistic reasoning and 
connectionist-like processing. These four basic elements allow SNAP to support virtually 
any kind of graph-based knowledge representation formalisms such as KL-ONE [Brachman 
and Schmolze, 1985], Conceptual Graphs [Sowa, 1984], KODIAK [Wilensky, 1987], etc. 

3    The Memory-Based Natural Language Processing 

Memory-based NLP is an idea of viewing NLP as a memory activity. For example, parsing 
is  considered  as  a  memory-search  process  which  identifies  similar cases in the past from the 
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memory, and to provide interpretation based on the identified case. It can be considered 
as an application of Memory-Based Reasoning (MBR) [Stanfill and Waltz, 1986] and Case- 
Based Reasoning (CBR) [Riesbeck and Schank, 1989] to NLP. This view, however, counters 
to traditional idea to view NLP as an extensive rule application process to build up meaning 
representation. Some models has been proposed in this direction, such as Direct Memory 
Access Parsing (DMAP) [Riesbeck and Martin, 1985] and ΦDMDIALOG [Kitano, 1991]. 
For arguments concerning superiority of the memory-based approach over the traditional 
approach, see [Nagao, 1984], [Riesbeck and Martin, 1985], and [Sumita and Iida, 1991]. 

DMSNAP is a SNAP implementation of the ΦDMDIALOG speech-to-speech dialogue 
translation system which is based on, in part, the memory-based approach. Naturally, it 
inherits basic ideas and mechanisms of the ΦDMDIALOG system such as a memory-based 
approach to natural language processing and parallel marker-passing. Syntactic constraint 
network is introduced in DMSNAP whereas ΦDMDIALOG has been assuming unification 
operation to handle linguistic processing. 

DMSNAP consists of the memory network, syntactic constraint network, and markers to 
carry out inference. The memory network and the syntactic constraint network are compiled 
from a set of grammar rules written for DMSNAP. 

Memory Network on SNAP The major types of knowledge required for language trans- 
lation in DMSNAP are: a lexicon, a concept type hierarchy, concept sequences, and syn- 
tactic constraints. Among them, the syntactic constraints are represented in the syntactic 
constraint network, and the rest of the knowledge is represented in the memory network. 
The memory network consists of various types of nodes such as concept sequence class 
(CSC), lexical item nodes (LEX), concept nodes (CC) and others. Nodes are connected 
by a number of different links such as concept abstraction links (ISA), expression links for 
both source language and target language (ENG and JPN), Role links (ROLE), constraint 
links (CONSTRAINT), contextual links (CONTEXT) and others. A part of the memory 
network is shown in Figure 2. 

Markers The processing of natural language on a marker-propagation architecture requires 
the creation and movement of markers on the memory network. The following types of 
markers are used: (1) A-Markers indicate activation of nodes. They propagate through 
ISA links upward, carry a pointer to the source of activation and a cost measure, (2) P- 
Markers indicate the next possible nodes to be activated. They are initially placed on the 
first element nodes of the CSCs, and move through NEXT link where they collide with 
A-MARKERs at the element nodes, (3) G-Markers indicate activation of nodes in the target 
language. They carry pointers to the lexical node to be lexicalized, and propagate through 
ISA links upward, (4) V-Markers indicate current state of the verbalization. When a V- 
MARKER collides with the G-MARKER, the surface string (which is specified by the pointer 
in the G-MARKER) is verbalized, (5) C-Markers indicate contextual priming. Nodes with 
C-MARKERs are contextually primed. A C-MARKER moves from the designated contextual 
root node to other contextually relevant nodes through contextual links, and (6) SC-Markers 
indicate active syntax constraints, and primed and/or inhibited nodes by currently active 
syntactic constraints. It also carries pointer to specific nodes. There are some other markers 
used for control process and timing; they are not described here. 

The parsing algorithm is similar to the shift-reduce parser except that our algorithms 
handle ambiguities, parallel processing of each hypothesis, and top-down predictions of pos- 
sible  next  input  symbol.    The  generation  algorithm  implemented  on  SNAP  is  a  version of 
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the lexically guided bottom-up algorithm which is described in [Kitano, 1990]. Details of the 
algorithm is described in [Kitano et al., 1991b]. 

DMSNAP can handle various linguistic phenomena such as: lexical ambiguity, structural 
ambiguity, referencing (pronoun reference, definite noun reference, etc), control, and un- 
bounded dependencies. Linguistically complex phenomena are handled using the syntactic 
constraint network (SCN). The SCN enables the DMSNAP to process sentences involving 
unbounded dependencies, controls without passing feature structures. Details of the SCN 
is described in [Kitano et al., 1991b]. One notable feature of DMSNAP is its capability 
to parse and translate sentences in context. In other words, DMSNAP can store results of 
previous sentences and resolve various levels of ambiguities using the contextual information. 
Examples of sentences which DMSNAP can handle is shown below. It should be noted that 
each example consists of a set of sentences (not a single sentence isolated from the context) 
in order to demonstrate the contextual processing capability of the DMSNAP. 

Example I 
s1    John wanted to attend Coling-92. 
s2    He is at the conference. 
s3    He said that the quality of the paper is superb. 

Example II 
s4    Dan planned to develop a parallel processing 

computer. 
s5    Eric built a SNAP simulator. 
s6    Juntae found bugs in the simulator. 
s7    Dan tried to persuade Eric to help Juntae modify 

the simulator. 
s8    Juntae solved a problem with the simulator. 
s9    It was the bug that Juntae mentioned. 

These sentences in examples axe not all the sentences which DMSNAP can handle. Cur- 
rently, DMSNAP handles a substantial portion of the ATR conference registration domain 
(vocabulary 450 words, 329 sentences) and sentences from other corpora. 

The following are examples of translation into Japanese generated by the DMSNAP for 
the first set of sentences (s1, s2 and s3): 

t1    Jon ha koringu-92 ni sanka shitakatta. 
t2    Kare ha kaigi ni iru. 

                                  t3    Kare ha ronbun no shitsu ga subarashii to itta. 

DMSNAP completes the parsing in the order of milliseconds. Table 1 shows parsing 
time for some of the example sentences. 

4    Classification-Based Parsing 

Classification-Based Parsing is a new parsing model proposed in [Kasper, 1989]. In the 
classification-based parsing, feature structures are indexed in the hierarchical network, and 
an unifiability of two feature structures are tested by searching the Most Specific Subsumer 
(MSS). The unification, a computationally expensive operation which is the computational 
bottleneck of many parsing systems, is replaced by search in the lattice of pre-indexed feature 
structures. 

27 



 

Figure 2: Part of Memory Network 

Sentence                         Length Time at 
                                       (words)       10 MHz (msec) 

s2: He is at ...                        4                     0.65 
s3: He said that ...              10                       1.50 
s5: Eric build ...                   5                       0.55 
s6: Juntae found ...               6                    1.05 
s8: Juntae solved ...             7                       1.65 

Table 1: Execution times for DMSNAP 

F3         
gender    male 
number   singular 
person     3rd 

Fl       F2 
gender   male number   singular 

person     3rd 

Figure 3: A part of a simple example of classification lattice 
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For example, in Figure 3, the feature structure F3 is a result of successful unification of 
the feature structure F1 and F2 (F3 = F1  F2). All feature structures are pre-indexed in a 
lattice so that the unification is replaced by an intersection search in the lattice with complex 
indexing. To carry out a search, first we set distinct markers on each feature structures F1 
and F2. For example, set marker M1 on F1, and M2 on F2. Then, markers Ml and M2 
propagate upward in the lattice. Ml and M2 first co-exist at F3. The most simple program 
(without disjunctions and conjunctions handling) for this operation follows: 

set_marker(Ml,f1); 
set_marker(M2,f2); 
propagate(M1,M1,UP,UP,SPREAD); 
propagate(M2,M2,OP,UP,SPREAD); 
marker_and(Ml,M2,M3); 
propagate (M3, m_tmp, UP, UP, SPREAD); 
cond_clear_marker(m_tmp,M3); 
collect_nodes(M3); 

Of course, nodes for each feature structure may need to be searched from a set of features, 
instead of direct marking. In such a case, a set of markers will be propagated from each node 
representing each feature, and takes disjunction and conjunction at all nodes representing a 
feature structure root. This operation can be data-parallel. 

There are several motivations to use classification-based parsing, some of which are de- 
scribed in [Kasper, 1989]. The efficiency consideration is one of the major reasons for using 
classification-based parsing. Since over 80% of parsing time has been consumed on unifica- 
tion operations, replacing unification by a faster and functionally equivalent method would 
substantially benefit the overall performance of the system. The classification-based parsing 
is efficient because (1) it maximizes structure sharing, (2) it utilizes indexing dependencies, 
and (3) it avoids redundant computations. However, these advantages of the classification- 
based parsing can not be fully obtained if the model was implemented on the serial machine. 
This is because a search on complex index lattice would be computationally expensive for 
serial machines. Actually, the time-complexity of the sequential classification algorithm is 
O(Mn2), and that of the retrieval algorithm is O(RavelogM), where M is a number of con- 
cepts, n is an average number of property links per concept, Rave is an average number of 
roleset relations for one concept. We can, however, circumvent this problem by using SNAP. 
Theoretically, time-complexity of the classification on SNAP is O(logFoutM), and that of the 
parallel retrieval is O(FinDave + Rave), where Fout is an average fan-out (average number of 
subconcepts for one concept), Fin is an average fan-in (average number of superconcept for 
one concept), and Dave is an average depth of the concept hierarchy [Kim and Moldovan, 
1990]. 

In our model, possible feature structures are pre-computed and indexed using our clas- 
sification algorithms. While a large set of feature structures need to be stored and indexed, 
SNAP provides sufficiently large memory/processor space to load an entire feature structure 
lattice. It is analogous to the idea behind the memory-based parsing which pre-expand all 
possible syntactic/semantic structures. Here again, we see the conversion of time-complexity 
into space-complexity. 

Figure 4 shows performance of retrieval of classification lattice with varying fan-out 
and size. The clock cycle is 10 MHz. It demonstrates that we can attain micro-seconds 
response for each search. Given the fact that the fastest unification algorithm, even on 
the parallel machines, takes over few milliseconds per unification, the performance obtained 
in our experiment promises a significant improvement in parsing speed for many of the 
unification-based parsers by replacing unification by classification-based approach. 
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Figure 4: Retrieved Performance on Classification Network 

5    VLKB Search: Integration with the Knowledge-Based 
Machine Translation 

Language processing is a knowledge-intensive process. Knowledge-Based Machine Transla- 
tion (KBMT) [Goodman and Nirenburg, 1991] has been proposed and developed based on the 
assumption that intensive use of linguistic and world knowledge would provide high quality 
automatic translation. 

One of the central knowledge sources of the KBMT is the ontological hierarchy which 
encodes abstraction hierarchies of concepts in the given domain, property information of 
each concept, etc. When a parser creates ambiguous parses or when some parts of the 
meaning representation (as represented in an interlingua) are missing, this knowledge source 
is accessed to disambiguate or to fill-in missing information. 

However, as the size of the domain scales up, access time to the knowledge source grows 
to the extent that cost-effective bulk processing would not be possible. For example, [Evett, 
et al., 1990] reports that access to large frame systems on serial computers have a time- 
complexity of O(M x Bd) where M is the number of conjuncts in the query, B is the average 
branching factor in the network, and d is the depth of the network. Thus, even a simplest 
form of search takes over 6 seconds on a VLKB with 28K nodes measured on a single user 
mode VAX super mini-computer. Since such search on a VLKB must be performed several 
times for each parse, the performance issue would be a major concern. Considering the fact 
that VLKB projects such as CYC [Lenat and Guha, 1990] and EDR [EDR, 1988] aim at 
VLKBs containing over a million concepts, the performance of VLKB search would be an 
obvious problem in practical use of these VLKBs. In the massively parallel machines such 
as SNAP, we should be able to attain time-complexity of O(D + M) [Evett, et al., 1990]. 

We have carried out experiments to measure KB access time on SNAP. Figure 5 shows 
the search time for various size of VLKBs ranging from 800 to 64K nodes. Performance 
was compared with SUN-4 and the CM-2 connection machine. SNAP-1 consistently out- 
performed other machines (performance curve of SNAP-1 is hard to see in the figure as it 
exhibited execution time far less than a second. 
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VLKB Retrieval in PACE Benchmark 

Figure 5: Retrieval time vs. KB size 
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6 Other Approaches 

One clear extension of the currently implemented modules is to integrate the classification- 
based parsing and the VLKB search. The classification-based parsing carry out high per- 
formance syntactic analysis and the VLKB search would impose semantic constraints. In- 
tegration of these two would require that the SNAP-1 to have a multiple controller because 
two different marker control processes need to be mixed and executed at the same time. 
Currently SNAP-1 has only one controller. This would be one of the major items for the 
up-grade of the architecture. However, the performance gain by this approach would be 
significant and its impact can be far reaching because a lot of current NLP research has been 
carried out on the framework of the unification-based grammar formalism and use VLKBs 
as major knowledge sources. 

A more radical approach, however rooted in the traditional model, is to fully map the 
typed unification grammars [Emele and Zajac, 1990] on the SNAP. The typed unification 
grammar is based on the Typed Feature Structure (TFS) [Zajac, 1989] and HPSG [Pollard 
and Sag, 1987], and represents all objects in TFS. Objects includes Phrasal Sign, Lexical 
Sign, general principles such as the "Head Feature Principle", the "Subcat Feature Principle", 
grammar rules such as the "Complement Head Constituent Order Feature Principle," the 
"Head Complements Constituent Order Feature Principle," and lexical entries. The lexical 
entries can be indexed under the lexical hierarchy. In this approach, all linguistic knowledge 
is precompiled into a huge network. Parsing and generation will be carried out as a search 
on this network. We have not yet complete a feasibility study for this approach on SNAP. 
However, as of today, we consider this approach is feasible and expect to attain single- 
digit millisecond order performance on an actual implementation. The dynamic network 
modification, address propagation, and marker propagation rules are especially useful in 
implementing this approach. 

Natural language processing model on semantic networks such as [Norvig, 1986], SNePS 
[Neal and Shapiro, 1987], and TRUMP, KING, ACE, and SCISOR at GE Lab. [Jacobs, 1991] 
should fit well with the SNAP-1 architecture. For [Norvig, 1986], SNAP provides floating 
point numbers to be propagated. As for SNePS, the implementation should be trivial, yet 
we are not sure the level of parallelism gain by the SNePS model. When the parallelism was 
found to be low, the coarse-grain processor may fit well with this model. Although we do 
not have space to discuss in this paper, there are, of course, many other NLP and AI models 
which can be implemented on SNAP. 

7 STAR: Subsumptive Translation Architecture 

Let us now put all these things into one perspective. We wish to build a theory which 
takes maximum advantages of memory-based processing, and rule-based processing. The 
architecture should entail memory-based process at the most specific layer, VLKB search 
for symbolical-level of constraint satisfaction operation, and classification-based parsing or 
TFS system to handle abstract grammar-based processing. Memory-based and rule-based 
processes are no longer mutually exclusive, they are complementary processes (Figure 6). 

Also, we have seen elsewhere [Kitano, 1991] that there are several levels of translation 
such as lexical, phrasal, and sentential. 

We argue that the architecture for machine translation systems should entail all these 
levels of processing in a consistent manner. The STAR Theory is under development to 
satisfy the requirements argued above. 
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Figure 6: Translation at different levels of abstraction 

In the STAR theory, there are several levels of translation which are executed au- 
tonomously but influenced by higher-levels of processing. Lexical translation which is a 
autonomous process is governed by phrasal-leve of translation which, in turn, governed by 
sentence-level translation. This is analogous to the subsumption architecture [Brooks, 1986]. 

It is subsumptive from the different point of view, too. Memory-based process is sub- 
sumed by the processing level of the generalized-case. The processing at the generalized-case 
level is subsumed by the rule-base processing. The subsumptive relation in this context is 
the range of coverage, and should be distinguished from the subsumption relation in between 
lexical, phrasal, and sentence translation. 

Partial implementation on massively parallel machines has been made in DMSNAP 
and in ASTRAL [Kitano and Higuchi, 1991b]. These systems has been derived from the 
ΦDMDIALOG system which, in retrospect, was the first machine translation system based on 
the STAR theory, though it was an incomplete model of the STAR theory. 

Justification of this theory comes from several psycholinguistic studies, but the strongest 
motivation was the author's intuition as a professional simultaneous interpreter. 

It is often the case that, when a human interpreter make mistake or when her/his trans- 
lation collapse, mis-translation or confusion start from the middle of the sentence leaving 
initial part of the sentence unaffected. Obviously, there is an incremental understanding, 
translation and generation mechanism which prevents total catastrophe of the translation. 

Most current machine translation system would simply halt when it encounters serious 
flaw in parsing process or when the middle of the sentence was completely ungrammatical. 

It is our speculation that the source of the robustness of the human interpreters (against 
ungrammatical sentences and against the interpreter's own error) is the basic architecture 
for translation process which is distributed, incremental, parallel, and subsumptive. 

Unfortunately, the current implementations are not yet to explore the robustness of the 
STAR theory as the theory itself is under development. 
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8    Conclusion 

In this paper, we have demonstrated that semantic network array processor (SNAP) speeds 
up various natural language processing tasks. We have demonstrated this fact using three 
examples: the memory-based parsing, VLKB processing, and Classification-based parsing. 

In the memory-based parsing approach, we have attained the speed of parsing in the 
order of milliseconds without making substantial compromises in linguistic analysis. To the 
contrary, our model is superior to other traditional natural language processing models in 
several aspects, particularly, contextual processing. 

Next, we have applied the SNAP architecture for a new classification-based parsing model. 
Here, SNAP is used to search the MSS to test the unifiability of the two feature graphs. We 
have attained, again, sub-milliseconds order performance per unifiability test. In addition, 
this approach exhibited desirable scalability characteristics. The search time asymptotically 
researches to 450 cycles as the size of classification network increases. Also, search time 
decreases as average fan-out gets larger. These are natural advantages of using parallel 
machines. 

SNAP is not only useful for the new and radical approach, but also beneficial in speeding 
up traditional NLP systems such as KBMT. We have evaluated the performance to search 
VLKB which is the major knowledge source for the KBMT system. We have attained sub- 
milliseconds order performance per a search. Traditionally, on the serial machines, this 
process has been taking a few seconds posing the major thread to performance on the scaled 
up systems. 

Also, there are many other NLP models (Typed Unification Grammar [Emele and Zajac, 
1990], SNePS [Neal and Shapiro, 1987], and others) which may exhibit high performance 
and desirable scaling property on SNAP. 

Currently, we are designing the SNAP-2 reflecting various findings made by the research 
with SNAP-1. SNAP-2 will be built upon the state-of-the-art VLSI technologies using RISC 
architecture. At least 32K virtual nodes will be supported by each processing element, 
providing the system with a minimum of 16 million nodes. SNAP-2 will feature multi-user 
supports, intelligent I/O, etc. One of the significant features in SNAP-2 is the introduction 
of a programmable marker propagation rules. This feature allows users to define their own 
and more sophisticated marker propagation rules. 

In summary, we have shown that the SNAP architecture can be a useful development 
platform for high performance and large-scale natural language processing. This has been 
empirically demonstrated using SNAP-1. SNAP-2 is expected to explore opportunities of 
massively parallel natural language processing. 
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