
Learning Translation Templates from Examples1

H. Altay Güvenir and Ilyas Cicekli
Department of Computer Engineering and Information Sciences

Bilkent University, Ankara 06533, Turkey
e-mail: fguvenir,ilyasg@cs.bilkent.edu.tr

Abstract

This paper proposes a mechanism for learning lexical level correspondences between two
languages from a set of translated sentence pairs. The proposed mechanism is based on an
analogical reasoning between two translation examples. Given two translation examples, the
similar parts of the sentences in the source language must correspond the similar parts of
the sentences in the target language. Similarly, the different parts should correspond to the
respective parts in the translated sentences. The correspondences between the similarities,
and also differences are learned in the form of translation templates. The approach has been
implemented and tested on a small training dataset and produced promising results for further
investigation.

1 Introduction

Traditional approaches to machine translation (MT) suffer from tractability, scalability and per-
formance problems due to the necessary extensive knowledge of both the source and the target
languages. Corpus-based machine translation is one of the alternative directions that have been
proposed to overcome the difficulties of traditional systems. Two fundamental approaches in
corpus-based MT have been followed. These are statistical and example-based machine transla-
tion (EBMT), also called memory-based machine translation (MBMT). Both approaches assume
the existence of a bilingual parallel text (an already translated corpus) to derive a translation for an
input. While statistical MT techniques use statistical metrics to choose the most probable structures
in the target language, EBMT techniques employ pattern matching techniques to translate subparts
of the given input [1].

Exemplar-based representation has been widely used in Machine Learning (ML). According to
Medin and Schaffer [8], who originally proposed exemplar-based learning as a model of human
learning, examples are stored in memory without any change in the representation. The charac-
teristic examples stored in the memory are called exemplars. The basic idea in exemplar-based
learning is to use past experiences or cases to understand, plan, or learn from novel situations
[5, 7, 11]. EBMT has been proposed by Nagao [9] as translation by analogy which is in paral-
lel with memory based reasoning [14], case-based reasoning [12] and derivational analogy [2].
Example-based translation relies on the use of past translation examples to derive a translation for
a given input [3, 10, 13, 15]. The input sentence to be translated is compared with the example
translations analogically to retrieve the closest examples. Then, the fragments of the retrieved
examples are translated and recombined in the target language. Prior to the translation of an input

1This research has been supported in part by NATO Science for Stability Program Grant TU-LANGUAGE.



sentence, the correspondences between the source and target languages should be available to the
system; however this issue has not been given enough consideration by the current EBMT systems.
Kitano has adopted the manual encoding of the translation rules, however this is a difficult and an
error-prone task for a large corpus [6]. This paper formulates the acquisition problem as a machine
learning task in order to automate the process.

Our first attempt was to construct parse trees between the example translation pairs [4]. However,
the difficulty was the availability of a reliable parser for both languages. In this paper, we propose
a technique which stores exemplars in the form of templates that are generalized exemplars,
rather than parse trees. A template is an example translation pair where some components (e.g.,
words stems and morphemes) are generalized by replacing them with variables in both sentences,
and establishing bindings between the variables. We will refer this technique as GEBMT for
Generalized Exemplar Based Machine Translation.

The algorithm we propose here, for learning such templates, is based on a heuristic to learn
the correspondences between the patterns in the source and target languages, from two translation
pairs. The heuristic can be summarized as follows: Given two translation pairs, if the sentences
in the source language exhibit some similarities, then the corresponding sentences in the target
language must have similar parts, and they must be translations of the similar parts of the sentences
in the source language. Further, the remaining differing constituents of the source sentences should
also match the corresponding differences of the target sentences. However, if the sentences do not
exhibit any similarity, then no correspondences are inferred. Consider the following translation
pairs given in English and Turkish to illustrate the heuristic:

I gave the ticket to Mary � Mary’e bileti verdim
I gave the pen to Mary � Mary’e kalemi verdim .

Similarities between the translation examples are shown as underlined. The remaining parts are
the differences between the sentences. We represent the similarities in English as [I gave the
XE to Mary], and the corresponding similarities in Turkish as [Mary’e XT+i verdim].
According to our heuristic, these similarities should correspond each other. Here, XE denotes
a component that can be replaced by any appropriate structure in English and XT refers to its
translation in Turkish. This notation represents an abstraction of the differences “ticket” vs. “pen”
in English and “bilet” vs. “kalem” in Turkish. Continuing even further, we infer that “ticket”
should correspond to “bilet” and “pen” should correspond to “kalem”; hence learning further
correspondences between the examples.

Our learning algorithm based on this heuristic is called TTL (for Translation Template Learner).
Given a corpus of translation pairs, TTL infers the correspondences between the source and target
languages in the form of templates. These templates can be used for translation in both directions.
Therefore, in the rest of the paper we will refer these languages as L1 and L2. Although the
examples and experiments herein are on English and Turkish, we believe the model is equally
applicable to other language pairs.

The rest of the paper is organized as follows. Section 2 explains the representation in the form of
translation templates. The TTL algorithm is described in Section 3. Section 4 illustrates the TTL
algorithm on some example translation pairs. Section 5 describes how these translation templates
can be used in translation. Section 6 concludes the paper.



2 Translation Templates

A template is a generalized translation exemplar pair, where some components (e.g., word stems and
morphemes) are generalized by replacing them with variables in both sentences, and establishing
bindings between these variables. For example, the translation template that would be learned from
the example translations given above is:

[I gave the X1 to Mary] � [Mary’e X2+i verdim] if
[X1] � [X2] .

This translation template is read as the sentence “I gave the X1 to Mary” in L1 and the sentence
“Mary’e X2+i verdim” in L2 are translations of each other, given that X1 in L1 and X2 in L2 are
translations of each other. Therefore, for example, if it has already been acquired that “basket”
in L1 and “sepet” in L2 are translations of each other, i.e., [basket] � [sepet] then the
sentence “I gave the basket to Mary” can be translated into L2 as “Mary’e sepeti verdim”.

Since the TTL algorithm is based on finding the similarities and differences between translation
examples, the representation of sentences plays an important role. As it is, the TTL algorithm may
use the sentences exactly as they can be found in a regular text. That is, no grammatical information
or no preprocessing, e.g. bracketing, on the bilingual parallel corpus is needed. Therefore, it is a
grammarless extraction algorithm for phrasal translation templates from bilingual parallel texts.

For agglutinative languages such as Turkish, this surface level representation of the sentences
limits the generality of the templates to be learned. For example, the translation of the sentence
“I am coming” in Turkish is a single word “geliyorum”. When surface level representation is
used, it is not possible to find a template from that translation and “I am going” � “gidiyorum”.
Therefore, we will represent a word in its lexical level representation, that is, its stem and its
morphemes. For example, the translation pair “I am coming” � “geliyorum” will be represented
as i am come+ing � gel+Hyor+yHm. Similarly, the pair “I am going” � “gidiyorum”
will be represented as i am go+ing � gid+Hyor+yHm. Here, the + symbol is used to
mark the beginning of a morpheme, and the letter H in the morphemes represents a vowel whose
surface level realization is determined according to vowel harmony rules of the Turkish language.
According to this representation, the first two translation pairs would be given as

i give+p the ticket to mary � mary+’e bilet+yH ver+DH+m
i give+p the pen to mary � mary+’e kalem+yH ver+DH+m .

The translation template learned from these two translation pairs is

[i give+p the X1 to Mary] � [mary+’e X2+yH ver+DH+m] if
[X1] � [X2] .

This representation allows an abstraction over technicalities such as vowel and/or consonant
harmony rules, as in Turkish and also, different realizations of the same verb according to tense,
as in English. We assume that the generation of surface level representation of words from their
lexical level representations is trivial.



3 Learning Translation Templates

The TTL algorithm infers translation templates using similarities and differences between two
example translation pairs �Ei� Ej� from a bilingual parallel corpus. Formally, a translation example
Ei : E1

i � E2
i is composed of a pair of sentences, E1

i and E2
i , that are translations of each other

in L1 and L2, respectively.

Given two translation examples �Ei� Ej�, we try to find similarities between the constituents of
Ei and Ej . A sentence is considered as a sequence of lexical items (i.e., words or morphemes). If
no similarities can be found, then no templates from these examples is learned. If there are similar
constituents then a match sequence in the following form is generated.

S1
0 �D

1
0� S

1
1 � � � � �D

1
n�1� S

1
n�� S2

0 �D
2
0� S

2
1 � � � � �D

2
m�1� S

2
m for 1 � n� m.

Here, S1
k represents a similarity (a sequence of common items) between E1

i and E1
j . Similarly,

D1
k : �D1

i�k� D
1
j�k� represents a difference between E1

i and E1
j , whereD1

i�k andD1
j�k are non-empty

differing items between two similar constituents S1
k and S1

k�1. Corresponding differences do not
contain common items. That is, for a difference Dk, Di�k and Dj�k do not contain any common
item. Also, no lexical item in a similarity Si appears in any previously formed difference Dk for
k � i. Any of S1

0 , S1
n, S2

0 or S2
m can be empty, however, S1

i for 0 � i � n and S2
j for 0 � j � m

must be non-empty. Note that there exists either a unique match or no match between two example
translation pairs. For instance, the match sequence obtained for the translation examples given
above is

i give+p the (ticket,pen) to mary
� mary’e (bilet,kalem)+yH ver+DH+m .

That is, S1
0=“i give+p the”, D1

0=(“ticket”,“pen”), S1
1=“to mary”, S2

0= “mary’e”,
D2

0=(“bilet”,“kalem”), S2
1= “+yH ver+DH+m”.

If there exist only a single difference in both sides of a match sequence, i.e., n � m � 1,
then these differing constituents must be the translations of each other. Therefore, from the match
sequence given above the following translation template can be inferred:

[i give+p the X1 to mary] � [mary+’e X2+yH ver+DH+m] if
[X1] � [X2] .

If, on the other hand, the number of differences are equal on both sides, but more than one, i.e.,
1 � n � m, without prior knowledge, it is impossible to determine which difference pairs in
one side correspond to which difference pairs on the other side. Therefore, learning depends on
previously acquired translation templates. For example, the following translation examples have
two differences on both sides.

i give+p the book � kitab+yH ver+DH+m
you give+p the pen � kalem+yH ver+DH+n .

Without prior information, we cannot determine if i corresponds to kitab or +m. However, if it
has already been learned that i corresponds to +m and you corresponds to +n, then the following
three translation templates can be inferred:



procedure TTL(Training Set)
begin

for each pair of translation examples Ei and Ej in Training Set do begin
Let the match sequence be

Mi�j = S1
0 �D

1
0� � � � �D

1
n�1� S

1
n�� S2

0 �D
2
0� � � � �D

2
m�1� S

2
m

if n � m � 1 then generate the following rules:
�S1

0 � X1� S1
1 � � �S2

0 � X2� S2
1 � if �X1� � �X2�

�D1
0�i� � �D2

0�i�
�D1

0�j �� �D2
0�j�

else if 1 � n � m and for all differences in Mi�j except one,
D1

k and D2
l the differences can be reduced then

generate the following rules:
�S1

0 � � � � X1 � � � S1
n� � �S2

0 � � � � X2 � � � S2
m� if �X1� � �X2� and D

�D1
k�i� � �D2

l�i�
�D1

k�j� � �D2
l�j�

Here, D stands for the list of conditions for known differences
end if

end for
sort the templates by their specificities

end.

Figure 1: The TTL algorithm.

[X1
1 give+p the X1

2 ] � [X2
2 +yH ver+DHX2

1]
if [X1

1 ]�[X2
1 ] and [X1

2 ]�[X2
2 ]

[book] � [kitab]
[pen] � [kalem] .

In general, when the number of differences in both sides of a match sequences is greater than
or equal to 1, e.i., 1 � n � m, the TTL algorithm learns new translation templates only if at least
n� 1 of the differences have already been learned. Otherwise, the current version of the algorithm
cannot learn new rules.

The last step of the algorithm is to order templates according to their specificities. Given two
templates, the one that has a higher number of terminals is more specific than the other. Note that,
the specificity is defined according to the source language. For two way translation, the templates
are ordered once for each language as the source. A formal description of the TTL algorithm is
summarized in Figure 1.

4 Examples

In order to evaluate the TTL algorithm we have implemented it in PROLOG and tested on a sample
bilingual parallel text. Training set contained 112 training pairs.

In the first pass, the TTL algorithm learned 320 translation templates. In the second pass, using



the initial training pairs and these new translation templetes, the TTL algorithm inferred 29 new
translation templates. In the third pass, the algorithm learned 2 more templates in 3.24 seconds.
No new templates were learned in the fourth pass. On a SPARC 20/61 workstation, each pass took
about 3.8 seconds real time. Using these 463 templates, translation of a new sentence, took about
16 miliseconds on the average.

In this section, we will illustrate the behavior of TTL on that sample training text.

Example 1: Given the example translations “I saw you at the garden” � “Seni bahçede gördüm”
and “I saw you at the party” � “Seni partide gördüm”, their lexical level representations are

i see+p you at the garden � sen+yH bahçe+DA gör+DH+m
i see+p you at the party � sen+yH parti+DA gör+DH+m .

From these examples with one pair of differences in both sides, the following translation templates
are learned:

[i see+p you at the X1] � [sen+yH X2+DA gör+DH+m]
if [X1]�[X2]

[garden] � [bahçe]
[party] � [parti].

Example 2: Given the example translations “It falls”� “Düşer”, “I will take the car”� “Arabayı
alacağım”, “If a pen is dropped then it falls” � “Bir kalem bırakılırsa, düşer” and “If he brought
the keys then I will take car” � “anahtarları getirdiyse arabayı alacağım”, their lexical level
representations are

it fall+s � düş+Ar
i will take the car � araba+yH al+yAcAk+yHm
if a pen is drop+pp � bir kalem bırak+Hl+Hr+ysA,

then it fall+s düş+Ar
if he bring+p the keys � anahtarlarI getir+DH+ysA,

then i will take the car araba+yH al+yAcAk+yHm.

The match sequence between the last two example translations contains two similatities for
if and then, and two differences. Since there are more than one differences, no translations
templates can be learned directly. However, with the help of the first two example pairs, the
following translation templates are learned:

[a pen is drop+pp] � [bir kalem bırak+Hl+Hr]
[he bring+p the keys] � [anahtarlarI getir+DH]

[if X1
1 then X1

2 ] � [X2
1 +ysA, X2

2 ]
if [X1

1 ]� [X2
1 ] and [X1

2 ]�[X2
2 ].

Example 3: Given the example translations “I would like to look at it” � “Ona bakmak isterim”
and “Do not look at it” � “Ona bakma” their lexical level representations are



i would like to look at it � o+nA bak+mAk iste+Hr+yHm
do not look at it � o+nA bak+mA .

Even from these structurally different translation examples, the following translation templates are
learned:

[X1 look at it] � [o+nA bak X2] if [X1] � [X2]
[i would like to] � [+mAk iste+Hr+yHm]

[do not] � [+mA] .

Example 4: Given the example translations “he can write � “yazabilir”, “do not talk” �
“konuşma”, “he can write while he is reading” � “okurken yazabilir” and “do not talk while
you are eating” � “yemek yerken konuşma”, their lexical level representations are

he can write � yaz+yAbil+Hr
do not talk � konuş+mA

he can write while he is read+ing � oku+Hr+yken yaz+yAbil+Hr
do not talk while you are eat+ing � yemek ye+Hr+yken konuş+mA .

From these translations examples the following useful translation templates are learned:

[X1
1 while X1

2 +ing] � [X2
2 +Hr+yken X2

1 ]
if [X1

1 ]�[X2
1] and [X1

2]�[X2
2 ]

[he is read] � [oku]
[you are eat] � [yemek ye] .

The last two translation templates may be used to fill in more complex translation templates.

Example 5: Natural languages are full of idiomatic expressions. For example, in Turkish, “kafayı
yediler” is such an expression meaning “they have got crazy”, while its literal translation would be
“they ate the head”. Since, the TTL algorithm sorts the templates according to their specificities,
such idiomatic expressions can be handled easily. Consider that the following examples are
provided to learn the templates: “we have got crazy” � “kafayı yedik”, “this is an apple” � “bu
bir elmadır, “this is an orange” � “bu bir portakaldır”, “i ate the apple” � “elmayı yedim”, and
“you ate the orange” � “portakalı yedin”. The lexical level representations are

this is an apple � bu bir elma+DHr
this is an orange � bu bir portakal+DHr

they have get+p crazy � kafa+yH ye+DH+lAr
we have get+p crazy � kafa+yH ye+DH+k

i eat+p the apple � elma+yH ye+DH+m
you eat+p the orange � portakal+yH ye+DH+n .

From these translation examples the following useful translation templates are learned, in the order
of specificity:



[X1
1 have get+p crazy] � [kafa+yH ye+DHX2

1 ] if [X1
1 ]�[X2

1 ]
[this is an X1

1 ] � [bu bir X2
1 +DHr] if [X1

1 ]�[X2
1]

[X1
1 eat+p the X1

2 ] � [X2
2 +yH ye+DHX2

1]
if [X1

1 ]�[X2
1] and [X1

2 ]�[X2
2]

[they] � [+lAr]
[we] � [+k]

[apple] � [elma]
[orange] � [portakal]

[i] � [+m]
[you] � [+n].

5 Translation

The templates learned by the TTL algorithm can be used in the translation directly. These templates
can be used for translation in both directions. The outline of the translation process is given below:

1. First, the lexical level representation of the input sentence to be translated is derived.

2. The most specific translation templates matching the input are collected. These templates
are those that are most similar to the sentence to be translated.

3. For each selected template, its variables are instantiated with the corresponding values in the
source sentence. Then, templates matching these bound values are sought. If they are found
successfully, their values are replaced in the variables corresponding to the sentence in the
target language.

4. The surface level representation of the sentence obtained in the previous step is generated.

For instance, after learning the templates in Example 5, if the input is given as “kafayı yedim”,
firts its lexical level represetation, which is kafa+yH ye+dH+m, is derived. Although there are
two matching templates (the first and the third), the most specific template matching this is

[X1
1 have get+p crazy] � [kafa+yH ye+DHX2

1 ] if [X1
1 ]�[X2

1 ].

The variable X2
1 is instantiated with +m. Then, the translation of +m is found to be i using

[i] � [+m].

Therefore, replacing the value of i for X1
1 in the template, the lexical level representation i

have get+p crazy is obtained. Finaly, the surface level representation “I have got crazy” is
derived easily.

On the other hand, if the input sentence is “portakalı yedim”, only the third template can be
used, and the correct translation “I ate the orange” is obtained.

Note that, if the sentence in the source language is ambiguous, then templates corresponding
to each sense will be retrieved, and the sentences for each sense will be generated. Among the
possible translations, a human user can choose the right one according to the context.



6 Conclusion

In this paper, we have presented a model for learning translation templates between two languages.
The model is based on a simple pattern matcher. We integrated this model with an example-based
translation model into Generalized Exemplar-Based Machine Translation. We have implemented
this model as the TTL (Translation Template Learner) algorithm. The TTL algorithm is illustrated
in learning translation templates between Turkish and English. The approach is applicable to any
pair of languages.

The major contribution of this paper is that the proposed TTL algorithm eliminates the need for
manually encoding the translations, which is a difficult task for a large corpus. The TTL algorithm
can work directly on surface level representation of sentences. However, in order to generate useful
translation patterns, it is helpful to use the lexical level representations. It is usually trivial, at least
for English and Turkish, to obtain the lexical level representations of words.

Our main motivation was that the underlying inference mechanism is compatible with one
of the ways humans learn languages, i.e. learning from examples. We believe that in everyday
usage, humans learn general sentence patterns, using the similarities and differences between many
different example sentences that they are exposed to. This observation led us to the idea that a
computer can be trained similarly, using analogy within a corpus of example translations.

The accuracy of the translation templates learned by this approach is quite high with ensured
grammaticality. Given that a translation is carried out using the rules learned, the accuracy of the
output translation critically depends on the accuracy of the rules learned.

We do not require an extra operation to maintain the grammaticality and the style of the output,
as in Kitano’s EBMT model [6]. The information necessary to maintain these issues is directly
provided by the translation templates.

The learning and translation times on the small training set are quite reasonable, and that
indicates the program will scale up real large training corpora. Note that this algorithm is not
specific to English and Turkish languages, but should be applicable to the task of learning machine
translation between any pair of languages. Although the learning process on a large corpus will
take a considerable amount of time, it is only one time job. After learning the translation templates,
the translation process is fast.

The model that we have proposed in this paper may be integrated with other systems as a Natural
Language Front-end, where a small subset of a natural language is used. This algorithm can be
used to learn to translate user queries to the language of the underlying system.

This model may also be integrated with an intelligent tutoring system (ITS) for second language
learning. The template representation in our model provides a level of information that may
help in error diagnosis and student modeling tasks of an ITS. The model may also be used in
tuning the teaching strategy according to the needs of the student by analyzing the student answers
analogically with the closest cases in the corpus. Specific corpora may be designed to concentrate
on certain topics that will help in student’s acquisition of the target language. The work presented
by this paper provides an opportunity to evaluate this possibility as a future work.



References

[1] Arnold D., Balkan L., Humphreys R. Lee, Meijer S., Sadler L.: Machine Translation, NCC
Blackwell (1994).

[2] Carbonell, J.G.: Derivational Analogy: A Theory of Reconstructive Problem Solving and
Expertise Acquisition. In Jude W. Shavlik and Thomas G. Dietterich (eds), Readings in
Machine Learning, Morgan Kaufmann (1990) 636–646.

[3] Furuse, O. & Iida, H.: Cooperation between Transfer and Analysis in Example-Based Frame-
work, Proceedings of COLING-92 (1992).

[4] Güvenir, H.A. & Tunç, A.: Corpus-Based Learning of Generalized Parse Tree Rules for Trans-
lation. In Gord McCalla (Ed). New Directions in Artificial Intelligence: Proceedings of the
11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence.
Springer-Verlag, LNCS 1081, Toronto, Ontario, Canada, (May 22-24, 1996), 121-131.

[5] Hammond, K.J.: (Ed.) Proceedings: Second Case-Based Reasoning Workshop. Pensacola
Beach, FL:Morgan Kaufmann (1989).

[6] Kitano, H.: A Comprehensive and Practical Model of Memory-Based Machine Translation.
In Ruzena Bajcsy (Ed.) Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann V.2 (1993) 1276-1282.

[7] Kolodner, J.L.: (Ed.) Proceedings of a Workshop on Case-Based Reasoning. Clearwater
Beach, FL: Morgan Kaufmann (1988).

[8] Medin, D.L. & Schaffer, M.M.: Context theory of classification learning. Psychological
Review, 85 (1978) 207-238.

[9] Nagao, M. A.: Framework of a Mechanical Translation between Japanese and English by
Analogy Principle (1985).

[10] Nirenburg, S., Beale, S. & Domashnev, C.: A Full-Text Experiment in Example-Based Ma-
chine Translation. Proceedings of the International Conference on New Methods in Language
Processing, NeMLap Manchester, UK (1994) 78-87.

[11] Ram, A.: Indexing, Elaboration and Refinement: Incremental Learning of Explanatory Cases.
In Janet L. Kolodner (ed.), Case-Based Learning, Kluwer Academic Publishers (1993).

[12] Reisbech, C. & Schank, R.: Inside the Case-Based Reasoning, Lawrence Elbaum Associates
(1990).

[13] Sato, S. & Nagao, M.: The Memory-Based Translation, Proceedings of COLING-90 (1990).

[14] Stanfill, C. & Waltz, D.: Toward Memory-Based Reasoning. CACM, Vol.29, No.12 (1991)
185-192.

[15] Sumita, E. & Iida, H.: Experiments and Prospects of Example-Based Machine Translation,
Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics
(1991).


