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Abstract

We present a new discriminative reordering
model for statistical machine translation. The
model employs a standard data-driven depen-
dency parser to predict reorderings based on
syntactic information. This is made possi-
ble through the introduction of a reordering
structure, which is a word alignment structure
where the target word order is transposed onto
the source sentence as a path. The approach
is integrated in a phrase-based system. Exper-
iments show a large increase in long distance
reorderings. Both automatic and human evalu-
ations show substantial increases in translation
quality on an English to German task.

1 Introduction

Handling word order differences between languages
is one of the main challenges of statistical machine
translation (SMT) today. These differences are of-
ten most naturally handled at a syntactic level, since
they pertain to entire syntactic constituents.

We present a syntactically motivated discrimina-
tive reordering model. The model exploits a reorder-
ing structure, which is a word alignment where the
target sentence is unknown. This structure allows
us to treat the reordering problem as a dependency
parsing problem. We use a standard data-driven de-
pendency parser to predict reorderings instead of de-
pendencies. This is integrated into a phrase-based
SMT (PSMT) framework (Koehn et al., 2003).

2 Reordering Structure

Word alignments are often used to display the rela-
tion between a translation and its source by linking
up equivalent words. Here we transpose the word
alignment information to a representation over a sin-
gle sentence. This can be done by representing the
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corresponding order of the words of the opposite
sentences as a path over the words of the current sen-
tence. In this work we will focus on transposing the
word alignment onto the source sentence by anno-
tating it with the order in which the aligned target
words occur. This is done in the form of a reorder-
ing structure, which is a word alignment, where the
target sentence is unknown. The idea of a reorder-
ing structure is similar to the underlying concept of
source position target order (Elming, 2008) or visit
sequence (Ge, 2010), but the extraction algorithm
and conceptual representation is different.

Figure 1 gives a simple example of how a reorder-
ing structure is created. The figure contains a source
and a target sentence with a word alignment in be-
tween and the corresponding reordering structure on
the source sentence. The numbers are merely used
to explain the correlation between links and edges.
They are not part of the structure. The reordering
structure is created by following the target words
from left to right. The first target word is linked to
the first source word, and the graph therefore starts
by going to the first word. Then the second target
word links to the third source word, so the graph
proceeds to this word, and so on. The resulting rep-
resentation consists of the source sentence annotated
with a reordering structure which reflects the word
order of the corresponding target sentence.

One requirement for the structure is that all source
words partake in an edge. The role of null-linked
source words in the structure cannot be uniquely de-
termined from a word alignment. It can either be
inserted after the previous word or before the fol-
lowing word in the structure.

We employ a syntactic closeness measure to de-
cide between left and right attachment. The distance
from the null-linked word up to the first common
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Figure 1: Example of a reordering structure and its underlying word alignment. Numbers are added for explanatory
reasons indicating correlation between links and edges. They are not part of the structure.
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Figure 2: Syntactic dependency structure illustrating syn-
tactic closeness.

node with the left and right neighbor is measured
as the number of edges passed on the way. If this is
the same for both neighbors, we choose the neighbor
with the shortest distance up to the common node. If
this is also the same, we attach right. As an exam-
ple, if we assume Last in figure 2 is null-linked, we
need to decide whether to insert relative to the left
word ’s or right word Act. Common ancestor node
is 4 with both neighbors, so distance up from Last
is the same. We therefore rely on distance up from
neighbors, which is 2 passed edges for ’s and O for
Act. Act is therefore syntactically closer, and we at-
tach right. Algorithm 1 illustrates the construction
of the reordering structure formally.

The measure is linguistically motivated. The
common ancestor defines the smallest spanning con-
stituent containing both words. The shorter the path
up, the smaller the span, and the syntactically closer
the words. If we simply measured the total path
length, we might get fooled by a long path down.
An example is a noun preceded by a preposition and
followed by a relative clause. Here, the noun itself
is the common ancestor with the relative pronoun,
i.e. it has a 0 distance up, but the down distance may
be long. The total path would not classify the noun
closest to the relative clause, since the distance to
the preceding preposition is 1 up and 0 down.

The advantage of the reordering structure repre-
sentation is that it is a word alignment representation
without explicit reference to the target sentence. Re-
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sourcePosition previous = rootPosition;
foreach rargetPositiont = 0, ..., T do
foreach sourcePosition s linkedTo t do
add edge from previous to s;
Previous <— S;
end
end
foreach sourcePosition s € nullLinked do
if (s — 1) is syntactically closest to s then
‘ insert s after (s — 1);
else
‘ insert s before (s + 1);
end

end

Algorithm 1: Algorithm for creating reordering
structure from word aligned sentence positions.

ordering in machine translation can be viewed as a
similar challenge, where we want to find the word
alignment knowing only the source sentence. The
reordering structure provides us with a focus on this
problem, since it refers only to the source sentence
and therefore may be predicted from this.

The relation between the reordering structure and
the word alignment is not reversible. Whereas all
reordering structures correspond to a unique word
alignment, the reverse is not the case. Certain word
alignments are not representable by a reordering
structure. In particular, structures where a source
word is linked to target words that are separated
by target words linking to a different source word
cannot be represented without introducing recur-
sion into the structure as exemplified by figure 3.
As a consequence, the structure becomes ambigu-
ous, since a single word would have more out-going
edges that could be traversed in different orders.

Crego & Yvon (2009) face similar challenges
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Figure 3: Example of a word alignment that cannot be represented unrecursively in a reordering structure. The
language pair is here reversed, since we did not find these structures in the direction we are working with.

when monotonizing the parallel sentences. They
handle the problem by making a source word clone
for each discontinuous unit it is linked to. We do
not adopt this approach here, since these structures
are not a major concern with PSMT. PSMT has
two means for handling word order differences be-
tween languages; phrase-internal reordering, where
the equivalent words of a phrase pair appear in dif-
ferent orders, and phrase-external reordering, where
the phrases are combined in a different order than
they appeared in the source sentence. Only phrase-
internal reordering can lead to this problematic word
alignment in application, since a single source word
token cannot participate in more phrases in the same
translation. Since phrase-internal reordering is very
reliable, the main purpose of the reordering model is
to guide the phrase-external reordering, which will
not produce these link constellations.

3 Reordering Structure Modelling

In this work, we will pursue the idea that the reorder-
ing structure is conceptually similar to an unlabeled
syntactic dependency structure. We therefore use the
MSTParser (McDonald et al., 2005), a state-of-the-
art data-driven dependency parser, to model the re-
ordering structure.

The basic idea is that the parser predicts the
most favorable word alignment to the target sentence
based on the source sentence. These predictions are
made before translation and passed to the decoder.
The level of information included in the reordering
structure model therefore only depends on what fea-
tures we are able to design for the parser, and is fully
independent of the PSMT system.

The default output of the parser is the most prob-
able reordering structure given its model. This is too
restrictive for our purpose. The model would often
not be relevant, if it expected a single word order
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To position

1 2 3 4
£[0]-0.6|-1.03 | -1.21 [ -1.39
g1 0.50 | 1.01 | 0.51
g 2] 091 1.16 | 1.48
£13[122] 134 1.14
= [4[023]0.12]-007

Table 1: Illustration of the edge scores that the parser
provides for the English sentence in figure 1. The highest
scoring structure in bold.

during translation. Especially for longer sentences it
would be unlikely to get this exact word order.

One of the characteristics of first-order MST pars-
ing is that the score of each edge is independent of
the rest of the structure. The parser therefore cal-
culates a matrix of scores for each possible edge in
the sentence before searching for the most proba-
ble combined structure. We exploit this behavior by
emitting the matrix of edge scores instead of the best
structure. This way, we can provide the decoder with
scores for each possible reordering it can produce.

Table 1 gives an example of such an edge score
matrix with the scores that the parser provided for
the English sentence in figure 1. As an example,
an edge from word 2 to word 4 has a cost of 1.48.
Higher scores are better. Position 0 is the root po-
sition, which can only have out-going edges. The
bold scores mark the most probable structure, which
is the structure represented in figure 1.

4 Integration in PSMT

As described in the previous section, the decoder re-
cieves an edge score matrix in addition to the source
sentence. This extra information is only used by a
word alignment scoring model. This model returns
a score each time a phrase is added to a translation



System Lexical Tune Development Test
reordering | newstest2008 | newstest2009 | newstest2010

Baseline - 13.69 13.20 14.18
+ 13.98 13.74 14.80

Reordering Structure i 14.04 13.76 14.69
+ 14.48 14.11 14.93

. - 16.99 16.34 17.66

Oracle Reordering Structure N 17.17 16.67 18.06

Table 2: BLEU evaluation for the systems on different data sets.

hypothesis. Since the model returns a single score,
it only introduces one additional parameter to sys-
tem optimization. The score is calculated as the sum
of scores for alignment links of adjacent target word
positions within the phrase:

n

Swa = Z S(ai—ly ai)

=1

ey

where ¢ is the target word position in a sentence of
length n, a; is the source word position it links to,
and s(a;_1, a;) is the score for target word positions
1 — 1 and ¢ being aligned to source word positions
a;—1 and a; respectively. That is, the score of an
edge going from a;_; to a;.

The scoring process is exemplified in figure 4.
The left box illustrates the end of a translation hy-
pothesis, and the right box illustrates the new phrase
being added to this hypothesis. Only the reorder-
ing structure being scored at this stage is shown
above the translation. Again we indicate the rela-
tionship between the word alignment and the edges
using indexes. The index 0 shows the final link of
the translation hypothesis, which decides where the
new phrase links up. That is, the score for adding
a new phrase is the sum of the score for connecting
to the previous phrase (edge 1) and the scores for the
phrase-internal edges (edges 2 and 3). These phrase-
internal edges can be computed at phrase retrieval to
save computation.

S Experiments

Experiments were conducted from English to Ger-
man, a language pair which exhibits substantial
word order challenges.
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wiére schon
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den Plan zu sehen

Figure 4: Illustration of the scoring done by the word
alignment scoring model when extending the translation
hypothesis with a new phrase.

5.1 Data

We use the English-German data from the Workshop
on Statistical Machine Translation 2011 (WMT11)!.
This consists of 3.4/3.3 million words of parallel
news data, 46.0/43.7 million words of parallel Eu-
roparl data, and 309 million monolingual words of
europarl and news. We only use unique sentences
from the monolingual data. We use newstest2008
for tuning, newstest2009 for development, and new-
stest2010 for testing.

5.2 Reordering Structure Model Setup

The reordering structure model is created with the
MSTParser?, a dependency parser based on online
discriminative learning. Since the reordering struc-
ture will contain many crossing edges, it is neces-
sary to use non-projective parsing. There are no
algorithmic modification to the parser. The only
modification we make is that we make it emit the
edge score matrix for each sentence that it parses.
We only train the model on 25,000 sentences from
the parallel news data to keep down computational
costs. The English side of this subcorpus is de-
pendency parsed using an MSTParser trained on the

! http://www.statmt.org/wmt1 1 /translation-task.html
2 http://sourceforge.net/projects/mstparser/



Penn Treebank converted to dependency structures,
and grow-diag-final-and word alignments from cre-
ating the PSMT system are used to extract reorder-
ing structures in CoNLL format. The dependency
parse is used to connect null-linked source words as
described in section 2, and it provides word form,
part-of-speech tag, and dependency relation features
for the reordering structure parser. We did not do ex-
tensive feature selection for the reordering structure
model, but excluding either of the three information
levels decreased performance on a translation task.

5.3 PSMT Setup

All our PSMT systems are created with the Moses
toolkit (Koehn et al., 2007). We use the base-
line system from WMT113 as our baseline with the
small modifications that we use truecasing instead
of lowercasing and recasing, and allow training sen-
tences of up to 80 words. For our reordering exper-
iments, we expand the baseline Moses system with
the word alignment scoring model described in sec-
tion 4. This is the only change to the baseline sys-
tem. The baseline system got the best results with a
distortion limit of 10, which we used for all exper-
iments. The phrase table and the lexical reordering
model is trained on the union of all parallel data with
a max phrase length of 7, and the 5-gram language
model is trained on the entire monolingual data set.

6 Results

6.1 Automatic Evaluation

Table 2 shows the results from automatic evaluation
using the BLEU metric (Papineni et al., 2002). We
report on the performance of the baseline and the re-
ordering structure system with and without the lexi-
cal reordering model switched on. We use bootstrap-
ping* to test the significance of the results (Zhang
et al., 2004). For all the data sets, the reordering
structure system significantly outperforms the cor-
responding baseline system.

An interesting observation is that adding either
the lexical reordering model or the reordering struc-
ture model to the baseline brings an improvement,
and adding both improves performance even further.

3 See a detailed desciption at http://www.statmt.org/
wmtl 1/baseline.html

4 http://projectile.sv.cmu.edu/research/public/tools/
bootStrap/tutorial.htm
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All | Non-monotone
edges edges
Tune 69.47 11.81
Development | 69.03 11.88
Test 71.32 14.51

Table 3: Unlabeled attachment scores for the reordering
structure model on the data sets.

This indicates that the two models target different
areas of reordering, and therefore they do not even
each other out. Instead we see a cumulative effect
where performance is increased even further.

The final system represented in table 2 called Or-
acle Reordering Structure gives an indication of the
performance that is attainable if the predictions of
the reordering structure model are improved. Here
the gold standard reordering structure was added as
a feature, so the parser obtained a 100% unlabeled
attachment score on the data sets. The idea of this
system is to see how much there is to gain if we have
a perfect reordering structure model. However, the
gold standard builds on erroneous automatic word
alignments, which means that the “correct” structure
may mislead the translation. Also this is the oracle
best structure, not the oracle best edge score matrix,
which is what is actually used by the system.

Table 3 shows the unlabeled attachment scores for
the basic reordering structure model on the data sets.
The scores are computed based on the most probable
parse for each sentence, and they are reported for all
edges and for non-monotone edges, i.e. edges going
anywhere else than to the right neighboring word.
These non-monotone edges are the most interesting
edges, since they represent the reordering, and the
prediction of these is very poor. We therefore expect
that a fair part of the gain indicated by the Oracle Re-
ordering Structure system is attainable through im-
provement of the reordering structure model.

6.2

In addition to the automatic evaluation, we also per-
form a small human evaluation using sentence trans-
lation ranking (Callison-Burch et al., 2010). We
have two native German speakers rank the transla-
tions from the baseline system and the reordering
structure system relative to each other. We evaluate
on the first 100 sentences of the test corpus (new-

Human Evaluation



Equally | Baseline | RS
good best best

Evaluator 1 50 17 33
Evaluator 2 34 20 46
Average 42.0 18.5 39.5

Table 4: Human evaluation comparing the baseline and
the reordering structure (RS) system on the first 100 sen-
tences of the test set.

stest2010). On this subset, the baseline system gets
a BLEU score of 10.55, and the reordering structure
system gets 10.70.

The evaluators are presented with the source sen-
tence and the two translations in randomized order.
They are told to rank the systems from best to worst.
Ties are allowed. The evaluators agreed on their
judgements in 67 of the 100 sentences. Compared
to an expected chance agreement of 1/3, the kappa
coefficient is 0.505, which is much in line with find-
ings from WMT10 (Callison-Burch et al., 2010).

Table 4 shows the results from the human evalua-
tions. The translations from the reordering structure
system were chosen as better than the baseline sys-
tem more than twice as often as the reverse. This
indicates that the reorderings introduced by the RS
system may improve translation quality more than
what the BLEU scores reflect. It has previously been
reported that BLEU can be insensitive to word order
improvements (Callison-Burch et al., 2007).

7 Analysis

An interesting aspect of the effect of the reordering
structure model is the amount of word order differ-
ences it leads to. This information can be extracted
from the word alignment information produced dur-
ing a translation. Figure 5 shows the amount of
reordering created by the baseline and reordering
structure model systems on the development data.
The figure shows that the reordering structure sys-
tem introduces a lot more long distance reordering
to the translation than the baseline systems. With
lexical reordering on, it produces more than twice
as many reorderings with a distance of 4 words, and
more than 4 times as many reorderings with a dis-
tance of 8 words.

Here we also see a cumulative effect of combin-
ing the reordering structure model with the lexical
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Figure 5: The amount of non-monotone decoding done
by the baseline and reordering structure systems on the
development data. More specifically, the number of tar-
get words representing a given reordering distance. LR
specifies whether lexical reordering is in use.

reordering model. Together with the baseline sys-
tem, the lexical reordering model does not introduce
much long distance reordering, but combined with
the reordering structure model the amount of long
distance reordering gets boosted, also compared to
the reordering structure model by itself.

8 Related Work

In recent years, the integration of syntactic knowl-
edge into statistical machine translation has received
much attention. The main motivation for this has
been the need for better reordering of the words dur-
ing translation. In a framework like synchronous
context-free grammars (SCFGs) syntax is incorpo-
rated either on the source side (Liu et al., 2006), the
target side (Galley et al., 2004), or both sides (Liu
et al., 2009), and reordering is handled through the
rules that constitute the building blocks for the trans-
lation. Such approaches have proven successful es-
pecially for language pairs which exhibit much non-
local reordering (Zollmann et al., 2008; Birch et al.,
2009). The hard constraints within the formalisms
of these frameworks may however be too restrictive
to handle frequently occuring aspects of parallel lan-
guages (Wellington et al., 2006; Sggaard and Kuhn,
2009; Galley and Manning, 2010).

In order to avoid such hard constraints introduced
by the formalism, we place reordering information
in the model to motivate certain word orders rather
than prohibit others. That is, we create a reorder-



ing model that scores translation in parallel to other
scoring models. This is much in line with Chiang
(2010), who place syntactic correspondence infor-
mation in the model as a soft constraint, but their
approach is heavily tied to the SCFG framework,
whereas our approach is framework independent.

A lot of work has been done on reordering in
PSMT. The original approach deterred reordering
by applying a distortion penalty for each word that
is moved across (Koehn et al., 2003). Another ap-
proach is lexicalized reordering, which conditions
the probability of moving a phrase in a certain direc-
tion on the lexical content of the phrase (Tillmann,
2004; Koehn et al., 2005). A third approach is pre-
translation reordering, which reorders the source
words in an attempt to assimilate the word order of
the target language prior to translation. This can be
done by supplying the decoder with a single permu-
tation (Xia and McCord, 2004; Collins et al., 2005;
Habash, 2007; Xu et al., 2009) or multiple weighted
permutations (Zhang et al., 2007; Li et al., 2007;
Elming, 2008; Ge, 2010). The present approach
relates to the pre-translation reordering approaches
in that it tries to predict the target word order from
source sentence syntax. However, in these previous
approaches, the source words are reordered prior to
translation. This is not done in the current approach
— instead, we use a decoder-internal model for scor-
ing all generated reorderings.

The approach utilizes syntactic dependency re-
lations to predict reorderings. This has previously
been suggested to provide a better basis for reorder-
ing in machine translation due to higher inter-lingual
phrasal cohesion than phrase structure (Fox, 2002).
Much previous work has included dependency struc-
ture information in an SMT system. Quirk et al.
(2005) use a source side dependency structure in
their treelet SMT system, which translates from sub-
trees to strings. Galley & Manning (2009) use a de-
pendency parser in a phrase-based setup for assign-
ing a dependency structure to the target side during
translation. This allows for the integration of a de-
pendency language model directly into the system.
Gimpel & Smith (2009; 2011) treat translation as a
monolingual dependency parsing problem, creating
a dependency structure over the translation during
decoding. No syntactic structure is created during
decoding in our approach. Instead the dependency
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parser is used for the sole purpose of scoring the
word order of the target sentence.

9 Conclusion and Future Work

We have introduced a new syntactically motivated
discriminative reordering model. The model em-
ploys a standard data-driven dependency parser to
predict reorderings. This is made possible by intro-
ducing a reordering structure. Within the framework
of PSMT, we obtain substantial increases in trans-
lation quality both measured automatically and by
human evaluators on an English to German task.

In the present work, we did very little feature
selection and only provided word form, part-of-
speech, and dependency relation information for the
parser. In the future, we will experiment with ad-
ditional features to improve the reordering structure
model. In particular, we expect that more syntac-
tic features will be beneficial. Also approaches such
as second-order and stacked parsing may be helpful,
since first-order parsing may be too weak to handle
the complexities of the reordering structure. We also
want to look closer at the features exploited by the
standard MTSParser. These features are optimized
to learn dependency structures, and they may not be
optimal for learning the reordering structure.

One concern with the approach is that the model is
trained against a gold standard which was extracted
from automatic word alignment. This means that
there will be a lot of noise in the training mate-
rial. Also when training against the gold standard,
all edges are considered equally important, but this
may in fact not be the case for translation. Certain
reorderings should always apply, while other may
be stylistic and optional. A better way of training
the model might be to train it as part of optimiz-
ing the PSMT system. This way, the system would
be optimizing directly towards improving the word
order of the translation. Due to the discriminative
model’s large number of weights, using a discrimi-
native algorithm to optimize the system (Watanabe
et al., 2007; Chiang et al., 2008) would be an inter-
esting option. This could either be done by learn-
ing from only the data set used for tuning the PSMT
system, or by taking the model trained in the present
work as a point of departure and revising the weights
in the context of optimizing a PSMT system. We ex-
pect to pursue this direction in future work.
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