Integrating Morphology in Probabilistic Translation Models

Chris Dyer

joint work with Jon Clark,Alon Lavie, and Noah Smith

January 24, 201I

Haus

Haus

\downarrow
 house

das

das

markant

markant

So far so good,

but....

alten

alden

guten Tag

\downarrow
hello

Problems

I. Source language inflectional richness.

old

guten Tag
\uparrow
hello

alte

guten Tag
\uparrow
hello

alten?

guten Tag
\uparrow
hello

Problems

I. Source language inflectional richness.

2. Target language inflectional richness.

Kopfschmerzen

head ache
Bauchschmerzen
\downarrow

Kopf
head

Kopfschmerzen

head ache
Bauchschmerzen \downarrow abdominal pain

Kopf \downarrow
head
???

Kopfschmerzen
\downarrow
head ache
Bauchschmerzen abdominal pain

Rücken
back
Kopf
\downarrow
head

Bauchschmerzen \downarrow
abdominal pain
Rücken

back

Kopf
\downarrow
head

Problems

I. Source language inflectional richness.

2. Target language inflectional richness.
3.Source language sublexical semantic compositionality.

General Solution

MORPHOLOGY

But...Ambiguity!

- Morphology is an inherently ambiguous problem
- Competing linguistic theories
- Lexicalization
- Morphological analyzers (tools) make mistakes
- Are minimal linguistic morphemes the optimal morphemes for MT?

Problems

I. Source language inflectional richness.

2. Target language inflectional richness.
3.Source language sublexical semantic compositionality.
4.Ambiguity everywhere!

General Solution

MORPHOLOGY PROBABILITY

Why probability?

- Probabilistic models formalize uncertainty
- e.g., words can be formed via a morphological derivation according to a joint distribution:

$$
p(\text { word }, \text { derivation })
$$

- The probability of a word is naturally defined as the marginal probability:

$$
p(\text { word })=\sum_{\text {derivation }} p(\text { word }, \text { derivation })
$$

- Such a model can even be trained observing just words (EM!)
$p($ derived $)=$ $p($ derived, de + rive +d$)+$ $p($ derived, derived $+\varnothing)+$ $p($ derived, derive+d) + $p($ derived, deriv+ed $)+\ldots$

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
- Embracing uncertainty: multi-segmentations for decoding and learning
- Rich morphology via sparse lexical features
- Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
- Embracing uncertainty: multi-segmentations for decoding and learning
- Rich morphology via sparse lexical features
- Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

Two problems

- We need to decode lots of similar source candidates efficiently
- Lattice / confusion network decoding

Kumar \& Byrne (EMNLP, 2005), Bertoldi, Zens, Federico (ICAASP, 2007), Dyer et al. (ACL, 2008), inter alia

Two problems

- We need to decode lots of similar source candidates efficiently
- Lattice / confusion network decoding

Kumar \& Byrne (EMNLP, 2005), Bertoldi, Zens, Federico (ICAASP, 2007), Dyer et al. (ACL, 2008), inter alia

- We need a model to generate a set of candidate sources
- What are the right candidates?

Uncertainty is everywhere

Requirement: a probabilistic model $p(\mathbf{f} \mid \mathbf{f})$ that transforms $\mathbf{f} \rightarrow \mathbf{f}$,

Possible solution: a discriminatively trained model, e.g., a CRF

Required data: example (f,f') pairs from a linguistic expert or other source

Uncertainty is everywhere

What is the best/right analysis ... for MT?

$$
\begin{gathered}
\text { AlAntxA.bAt } \\
(\text { DEF+election+PL) }
\end{gathered}
$$

Uncertainty is everywhere

What is the best/right analysis ... for MT?

$$
\begin{gathered}
\text { AlAntxAbAt } \\
(\text { DEF+election+PL) }
\end{gathered}
$$

Some possibilities: Sadat \& Habash (NAACL, 2007)

$$
\begin{aligned}
& \text { AlAntxAb +At } \\
& \text { Al+ AntxAb +At } \\
& \text { Al+ AntxAbAt } \\
& \text { AlAntxAbAt }
\end{aligned}
$$

Uncertainty is everywhere

What is the best/right analysis ... for MT?

$$
\begin{gathered}
\text { AlAntxAbAt } \\
(\mathrm{DEF}+\text { election+PL) }
\end{gathered}
$$

Some possibilities: Sadat \& Habash (NAACL, 2007)

$$
\begin{gathered}
\text { AlAntxAb +At } \\
\text { Al+ AntxAb +At } \\
\text { Al + AntxAbAt } \\
\text { AlAntxAbAt } \\
\text { Let's use them all! }
\end{gathered}
$$

Wait...multiple references?!?

- Train with EM variant
- Lattices can encode very large sets of references and support efficient inference

Dyer (NAACL, 2009), Dyer (thesis, 2010)

Wait...multiple references?!?

- Train with EM variant
- Lattices can encode very large sets of references and support efficient inference

Dyer (NAACL, 2009), Dyer (thesis, 2010)

- Bonus: annotation task is much simpler
- Don't know whether to label an example with A or B?
- Label it with both!

Reference Segmentations

Rückenschmerzen
Rückensc + hmerzen
Rü + cke + nschme + rzen

bad phonotactics!

Phonotactic features!

Just 20 features

- Phonotactic probability
- Lexical features (in vocab, OOV)
- Lexical frequencies
- Is high frequency?
- Segment length

Input: tonbandaufnahme

Input: tonbandaufnahme

Input: tonbandaufnahme

Translation Evaluation

Input	BLEU	TER
Unsegmented	20.8	61.0
I-best segmentation	20.3	60.2
Lattice (a=0.2)	$\mathbf{2 1 . 5}$	$\mathbf{5 9 . 8}$

in police raids found illegal guns, ammunition stahlkern, laserzielfernrohr and a machine gun .
in police raids found with illegal guns and ammunition steel core , a Iaser objective telescope and a machine gun .
REF:
police raids found illegal guns, steel core ammunition , a Iaser scope and a machine gun .

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
- Embracing uncertainty: multi-segmentations for decoding and learning
- Rich morphology via sparse lexical features
- Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

What do we see when we look inside the IBM models?
(or any multinomial-based generative model...like parsing models!)

What do we see when we look inside the IBM models?
(or any multinomial-based generative model...like parsing models!)

What do we see when we look inside the IBM models?
(or any multinomial-based generative model...like parsing models!)

DLVM for Translation

Addresses problems:

I. Source language inflectional richness.
2. Target language inflectional richness.

How?

I. Replace the locally normalized multinomial parameterization in a translation model $p(\mathbf{e} \mid \mathbf{f})$ with a globally normalized log-linear model.
2.Add lexical association features sensitive to sublexical units.
C. Dyer, J. Clark, A. Lavie, and N. Smith (in review)

Fully directed model (Brown et al., 1993;
Vogel et al., 1996; Berg-Kirkpatrick et al., 2010)

Fully directed model (Brown et al., 1993;
Vogel et al., 1996; Berg-Kirkpatrick et al., 2010)

Our model

New model:

$$
\begin{aligned}
& \operatorname{score}(\mathbf{e}, \mathbf{f})=0.2 h_{1}(\mathbf{e}, \mathbf{f})+0.9 h_{2}(\mathbf{e}, \mathbf{f}) \\
& \quad+1.3 h_{1}(\mathbf{e}, \mathbf{f})+\ldots
\end{aligned}
$$

old alt+ $\Omega^{[0,2]}$ gammelig $+\Omega^{[0,2]}$

New model:

$$
\begin{aligned}
& \operatorname{score}(\mathbf{e}, \mathbf{f})=0.2 h_{1}(\mathbf{e}, \mathbf{f})+0.9 h_{2}(\mathbf{e}, \mathbf{f}) \\
& +1.3 h_{1}(\mathbf{e}, \mathbf{f})+\ldots
\end{aligned}
$$

old alt+ $\Omega^{[0,2]}$ gammelig $+\Omega^{[0,2]}$
(~ Incremental vs. realizational)

Sublexical Features

každoroční \rightarrow annual

ID každoroční_annual

PREFIX ${ }_{k a z ̌ z a n n ~}$
PREFIXkažd_annu
PREFIXkaždo_annua
SUFFIXíll
SUFFIX ${ }_{\text {ní_al }}$

Sublexical Features

každoroční \rightarrow annually

IDkaždoroční_annually
PREFIX ${ }_{k a z ̌ z _a n n ~}$
PREFIXkažd_annu
PREFIXkaždo_annua
SUFFIXí_y
SUFFIX ní_ly

Sublexical Features

každoročního \rightarrow annually

IDkaždoročního_annually
PREFIX ${ }_{\text {kaž_ann }}$
PREFIXkažd_annu
PREFIXkaždo_annua
SUFFIXo_y
SUFFIXho_ly

Sublexical Features

každoročního \rightarrow annually

IDkaždoročního_annually

PREFIX ${ }_{k a z ̌ _a n n ~}$
PREFIXkažd_annu
PREFIX každo_annua

Abstract away from inflectional variation!

SUFFIXo_y
SUFFIXho_ly

Evaluation

- Given a parallel corpus (no supervised alignments!), we can infer
- The weights in the log-linear translation model
- The MAP alignment
- The model is a translation model, but we evaluate it as applied to alignment

Alignment Evaluation

				AER
Model 4	$\mathbf{e} \mid \mathbf{f}$	24.8		
	$\mathbf{f} \mid \mathbf{e}$	33.6		
	sym.	23.4		
	$\mathbf{e} \mid \mathbf{f}$	21.9		
	$\mathbf{f} \mid \mathbf{e}$	29.3		
	sym.	$\mathbf{2 0 . 5}$		

Czech-English, 3.IM words training, 525 sentences gold alignments.

Translation Evaluation

Alignment	BLEU \uparrow	METEOR \uparrow	TER \downarrow
Model 4	$16.3_{\sigma=0.2}$	$46.1_{\sigma=0.1}$	$67.4_{\sigma=0.3}$
Our model	$16.5_{\sigma=0.1}$	$46.8_{\sigma=0.1}$	$67.0_{\sigma=0.2}$
Both	$\mathbf{1 7 . 4}_{\sigma=0.1}$	$\mathbf{4 7 . 7}_{\sigma=0.1}$	$\mathbf{6 6 . 3}_{\sigma=0.5}$

Czech-English,WMT 2010 test set, I reference

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
- Embracing uncertainty: multi-segmentations for decoding and learning
- Rich morphology via sparse lexical features
- Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

Bayesian Translation

Addresses problems:

2. Target language inflectional richness.

How?

I. Replace multinomials in a lexical translation model with a process that generates target language lexical items by combining stems and suffixes.
2. Fully inflected forms can be generated, but a hierarchical prior backs off to a component-wise generation.

Chinese Restaurant Process

Chinese Restaurant Process

. $_$New customer

Chinese Restaurant Process

$\frac{1}{7+\alpha}$
$\frac{3}{7+\alpha}$

$\frac{2}{7+\alpha}$
$\frac{\alpha P_{0}(x)}{7+\alpha}$

Chinese Restaurant Process

New model:

Modeling assumptions

- Observed words are formed by an unobserved process that concatenates a stem $\boldsymbol{\alpha}$ and a suffix $\boldsymbol{\beta}$, yielding $\boldsymbol{\alpha} \boldsymbol{\beta}$
- A source word should have only a few translations $\boldsymbol{\alpha} \boldsymbol{\beta}$
- translate into only a few stems $\boldsymbol{\alpha}$
- The suffix $\boldsymbol{\beta}$ occurs many times, with many different stems
- $\boldsymbol{\beta}$ may be null
- $\boldsymbol{\beta}$ will have a maximum length of r
- Once a word has been translated into some inflected form, that inflected form, its stem, and its suffix should be more likely ("rich get richer")

Observed during training
(z Latent variable

Observed during training
(Z) Latent variable

Task:

Translate the word old

Task:

Translate the word old

Task:

Translate the word old alt

Task:

Translate the word old alt +

alt +

inflected|old
stem|old

alt + en

inflected|old

Evaluation

- Given a parallel corpus, we can infer
- The MAP alignment
- The MAP segmentation of each target word into <stem+suffix>

Alignment Evaluation

		AER
Model I - EM	$\mathbf{f} \mid \mathbf{e}$	43.3
Model I - HPYP	$\mathbf{f} \mid \mathbf{e}$	$\mathbf{3 7 . 5}$
Model I - EM	$\mathbf{e \| f}$	38.4
Model I - HPYP	$\mathbf{e} \mid \mathbf{f}$	$\mathbf{3 6 . 6}$

English-French, I I5k words, 447 sentences gold alignments.

Frequent suffixes

Suffix	Count
$\mathbf{+} \varnothing$	$\mathbf{2 0 , 8 3 7}$
$\mathbf{+ s}$	$\mathbf{3 3 4}$
+d	217
+e	156
+n	156
+y	130
+ed	$\mathbf{1 2 1}$
+ing	$\mathbf{1 1 9}$

Assessment

- Breaking the "lexical independence assumption" is computationally costly
- The search space is much, much larger!
- Dealing only with inflectional morphology simplifies the problems
- Sparse priors are crucial for avoiding degenerate solutions

In conclusion ...

Why don't we have

 integrated morphology?
Why don't we have integrated morphology?

Because we spend all our time working on English, which doesn't have much morphology!

Why don't we have integrated morphology?

- Translation with words is already hard: an n-word sentence has n ! permutations
- But, if you're looking at a sentence with m letters there are m ! permutations
- Search is ... considerably harder
- $m>n \longrightarrow m$! >>> n !
- Modeling is harder too
- must also support all these permutations!

Take away messages

- Morphology matters for MT
- Probabilistic models are a great fit for the uncertainty involved
- Breaking the lexical independence assumption is hard

Thank you! Toda! \$krAF!

https://github.com/redpony/cdec/

$$
\begin{aligned}
n & \sim \operatorname{Poisson}(\lambda) \\
a_{i} & \sim \operatorname{Uniform}(1 /|\mathbf{f}|) \\
e_{i} \mid f_{a_{i}} & \sim T_{f_{a_{i}}} \\
T_{f_{a_{i}}} \mid a, b, \mathrm{M} & \sim \operatorname{PYP}\left(a, b, \mathrm{M}\left(\cdot \mid f_{a_{i}}\right)\right) \\
\mathrm{M}(e=\alpha+\beta \mid f) & =G_{f}(\alpha) \times H_{f}(\beta) \\
G_{f} \mid a, b, f, \mathrm{P}_{0} & \sim \operatorname{PYP}\left(a, b, \mathrm{P}_{0}(\cdot)\right) \\
H_{f} \mid a, b, f, \mathrm{H}_{0} & \sim \operatorname{PYP}\left(a, b, \mathrm{H}_{0}(\cdot)\right) \\
H_{0} \mid a, b, \mathrm{Q}_{0} & \sim \operatorname{PYP}\left(a, b, \mathrm{Q}_{0}(\cdot)\right) \\
\mathrm{P}_{0}(\alpha ; p) & =\frac{p^{|\beta|}}{|V|^{|\beta|}} \times(1-p) \\
\mathrm{Q}_{0}(\beta ; r) & =\frac{1}{(|V| \times r)^{|\beta|}}
\end{aligned}
$$

