Integrating Morphology in Probabilistic Translation Models

Chris Dyer

joint work with Jon Clark, Alon Lavie, and Noah Smith

January 24, 2011

11

So far so good,

but....

I. Source language inflectional richness.

I. Source language inflectional richness.

2. Target language inflectional richness.

Rückenschmerzen

Tuesday, January 25, 2011

Tuesday, January 25, 2011

I. Source language inflectional richness.

2. Target language inflectional richness.

3. Source language sublexical semantic compositionality.

General Solution

MORPHOLOGY

Al# Abama (looks like Al + OOV)

Tuesday, January 25, 2011

But...Ambiguity!

- Morphology is an inherently ambiguous problem
 - Competing linguistic theories
 - Lexicalization
- Morphological analyzers (tools) make mistakes
- Are minimal linguistic morphemes the optimal morphemes for MT?

I. Source language inflectional richness.

2. Target language inflectional richness.

3. Source language sublexical semantic compositionality.

4. Ambiguity everywhere!
General Solution

MORPHOLOGY + PROBABILITY

Why probability?

- Probabilistic models formalize uncertainty
- e.g., words can be formed via a morphological derivation according to a joint distribution:

p(word, derivation)

• The probability of a word is naturally defined as the marginal probability:

$$p(word) = \sum_{derivation} p(word, derivation)$$

 Such a model can even be trained observing just words (EM!) p(derived) =
p(derived, de+rive+d) +
p(derived, derived+Ø) +
p(derived, derive+d) +
p(derived, deriv+ed) + ...

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
 - Embracing uncertainty: multi-segmentations for decoding and learning
 - Rich morphology via sparse lexical features
 - Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
 - Embracing uncertainty: multi-segmentations for decoding and learning
 - Rich morphology via sparse lexical features
 - Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

AlAbAmA

Two problems

- We need to decode lots of similar source candidates efficiently
 - Lattice / confusion network decoding

Kumar & Byrne (EMNLP, 2005), Bertoldi, Zens, Federico (ICAASP, 2007), Dyer et al. (ACL, 2008), *inter alia*

Two problems

- We need to decode lots of similar source candidates efficiently
 - Lattice / confusion network decoding

Kumar & Byrne (EMNLP, 2005), Bertoldi, Zens, Federico (ICAASP, 2007), Dyer et al. (ACL, 2008), *inter alia*

- We need a model to generate a set of candidate sources
 - What are the right candidates?

Requirement: a probabilistic model $p(\mathbf{f}'|\mathbf{f})$ that transforms $\mathbf{f} \rightarrow \mathbf{f}'$

Possible solution: a discriminatively trained model, e.g., a CRF

Required data: example (f,f') pairs from a linguistic expert or other source

What is the best/right analysis ... for MT? AlAntxAbAt

(DEF+election+PL)

What is the best/right analysis ... for MT? AlAntxAbAt (DEF+election+PL)

Some possibilities: Sadat & Habash (NAACL, 2007) AlAntxAb +At Al+ AntxAb +At Al+ AntxAbAt AlAntxAbAt

What is the best/right analysis ... for MT? AlAntxAbAt (DEF+election+PL)

Some possibilities: Sadat & Habash (NAACL, 2007) AlAntxAb +At Al+ AntxAb +At Al+ AntxAbAt AlAntxAbAt Let's use them all!

Wait...multiple references?!?

- Train with EM variant
- Lattices can encode very large sets of references and support efficient inference

Dyer (NAACL, 2009), Dyer (thesis, 2010)

Wait...multiple references?!?

- Train with EM variant
- Lattices can encode very large sets of references and support efficient inference

Dyer (NAACL, 2009), Dyer (thesis, 2010)

- Bonus: annotation task is **much** simpler
 - Don't know whether to label an example with A or B?
 - Label it with **both**!

Reference Segmentations

Just 20 features

- Phonotactic probability
- Lexical features (in vocab, OOV)
- Lexical frequencies
- Is high frequency?
- Segment length

https://github.com/redpony/cdec/tree/master/compound-split 48

Input: tonbandaufnahme

Input: tonbandaufnahme

Input: tonbandaufnahme

Recall

Translation Evaluation

Input	BLEU	TER
Unsegmented	20.8	61.0
I-best segmentation	20.3	60.2
Lattice (a=0.2)	21.5	59.8

in police raids found illegal guns , ammunition **stahlkern** , **laserzielfernrohr** and a machine gun .

in police raids found with illegal guns and ammunition **steel core**, a **laser objective telescope** and a machine gun.

REF:

police raids found illegal guns , **steel core** ammunition , a **laser scope** and a machine gun .

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
 - Embracing uncertainty: multi-segmentations for decoding and learning
 - Rich morphology via sparse lexical features
 - Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

What do we see when we look inside the IBM models?

(or any multinomial-based generative model...like parsing models!)

What do we see when we look inside the IBM models?

(or any multinomial-based generative model...like parsing models!)

bid	altes alte alt alter gammelig	0.3 0.1 0.2 0.1 0.1	car	Wagen Auto PKW	0.2 0.6 0.2
	gammelige	s 0.1			

What do we see when we look inside the IBM models?

(or any multinomial-based generative model...like parsing models!)

bid	altes alte alt alter alter σammeliσ	0.3 0.1 0.2 0.1 0.1	car	Wagen Auto PKW	0.2 0.6 0.2
	gammelig gammelig <mark>e</mark>	0.1 s 0.1			

DLVM for Translation

Addresses problems:

- I. Source language inflectional richness.
- 2. Target language inflectional richness.

How?

I. Replace the locally normalized multinomial parameterization in a translation model $p(\mathbf{e} \mid \mathbf{f})$ with a globally normalized log-linear model.

2.Add lexical association features sensitive to sublexical units.

C. Dyer, J. Clark, A. Lavie, and N. Smith (in review)

Fully directed model (Brown et al., 1993; Vogel et al., 1996; Berg-Kirkpatrick et al., 2010)

Fully directed model (Brown et al., 1993; Vogel et al., 1996; Berg-Kirkpatrick et al., 2010)

Our model

bld	altes	0.3	car	Wagen	0.2
	alte	0.1		Auto	0.6
	alt	0.2		PKW	0.2
	alter	0.1			
	gammelig	0.1			
	gammelige	s 0. I			

old	altes	0.3	car	Wagen	0.2
	alte	0.1		Auto	0.6
	alt	0.2		PKW	0.2
	alter	0.1			
	gammelig	0.1			
	gammelige	s 0. I			
	gammelig gammelige	0.1 s 0.1			

New model:

score(**e**,**f**) =
$$0.2h_1(\mathbf{e},\mathbf{f}) + 0.9h_2(\mathbf{e},\mathbf{f})$$
 old alt+ $\Omega^{[0,2]}$
+ $1.3h_1(\mathbf{e},\mathbf{f}) + ...$ gammelig+ $\Omega^{[0,2]}$

old	altes	0.3	car	Wagen	0.2
	alte	0.1		Auto	0.6
	alt	0.2		PKW	0.2
	alter	0.1			
	gammelig	0.1			
	gammelige	s 0.1			

New model:

$$score(\mathbf{e},\mathbf{f}) = 0.2h_1(\mathbf{e},\mathbf{f}) + 0.9h_2(\mathbf{e},\mathbf{f}) \quad \text{old} \quad alt + \Omega^{[0,2]} \\ + 1.3h_1(\mathbf{e},\mathbf{f}) + \dots \quad alt + \Omega^{[0,2]}$$

(~ Incremental vs. realizational)

Sublexical Features

každoroční → annual

IDkaždoroční_annual

PREFIXkaž_ann PREFIXkažd_annu PREFIXkažd_annua

SUFFIX₁ SUFFIX<u>n1</u>
Sublexical Features

každoroční → annually

IDkaždoroční_annually

PREFIXkaž_ann PREFIXkažd_annu PREFIXkažd_annua

SUFFIX_{í_y} SUFFIX_{ní_ly}

Sublexical Features

každoročního → annually

IDkaždoročního_annually

PREFIXkaž_ann PREFIXkažd_annu PREFIXkažd_annua

SUFFIX_{o_y} SUFFIX_{ho_ly}

Sublexical Features

každoročního → annually

IDkaždoročního_annually

PREFIXkaž_ann PREFIXkažd_annu PREFIXkažd_annua

Abstract away from inflectional variation!

SUFFIXo_y SUFFIXho_ly

Evaluation

- Given a parallel corpus (no supervised alignments!), we can infer
 - The weights in the log-linear translation model
 - The MAP alignment
 - The model is a translation model, but we evaluate it as applied to **alignment**

Alignment Evaluation

		AER
Model 4	e f	24.8
	f e	33.6
	sym.	23.4
DLVM	e f	21.9
	f e	29.3
	sym.	20.5

Czech-English, 3.1M words training, 525 sentences gold alignments.

Translation Evaluation

Alignment	BLEU 个	METEOR \uparrow	TER \downarrow
Model 4	$16.3_{\sigma=0.2}$	$46.1_{\sigma=0.1}$	67.4 $_{\sigma=0.3}$
Our model	$16.5_{\sigma=0.1}$	$46.8_{\sigma=0.1}$	67.0 $_{\sigma=0.2}$
Both	17.4 $_{\sigma=0.1}$	47.7 $_{\sigma=0.1}$	66.3 _{$\sigma=0.5$}

Czech-English, WMT 2010 test set, 1 reference

Outline

- Introduction: 4 problems
- Three probabilistic modeling solutions
 - Embracing uncertainty: multi-segmentations for decoding and learning
 - Rich morphology via sparse lexical features
 - Hierarchical Bayesian translation: infinite translation lexicons
- Conclusion

Bayesian Translation

Addresses problems:

2. Target language inflectional richness.

How?

I. Replace multinomials in a lexical translation model with a process that generates target language lexical items by combining stems and suffixes.

2. Fully inflected forms can be generated, but a hierarchical prior backs off to a component-wise generation.

...

 α "Concentration" parameter $P_0(x)$ Base distribution

bld	altes	0.3	car	Wagen	0.2
	alte	0.1		Auto	0.6
	alt	0.2		PKW	0.2
	alter	0.1			
	gammelig	0.1			
	gammelige	s 0. I			

old	altes	0.3	car	Wagen	0.2	
	alte	0.1		Auto	0.6	
	alt	0.2		PKW	0.2	
	alter	0.1				
	gammelig	0.1				
	gammelige	s 0. I				
	gammelige	0.1 s 0.1				

New model:

Modeling assumptions

- Observed words are formed by an *unobserved* process that concatenates a stem α and a suffix β , yielding $\alpha\beta$
- A source word should have only a few translations $\alpha\beta$
- translate into only a few stems $\boldsymbol{\alpha}$
- The suffix β occurs many times, with many different stems
- β may be null
- β will have a maximum length of r
- Once a word has been translated into some inflected form, that *inflected form*, its *stem*, and its *suffix* should be more likely ("rich get richer")

Latent variable

Ζ

Tuesday, January 25, 2011

alt

alt +

alt +

alt + en

Evaluation

- Given a parallel corpus, we can infer
 - The MAP alignment
 - The MAP segmentation of each target word into <stem+suffix>

Alignment Evaluation

		AER
Model I - EM	f e	43.3
Model I - HPYP	f e	37.5
Model I - EM	e f	38.4
Model I - HPYP	e f	36.6

English-French, 115k words, 447 sentences gold alignments.

Frequent suffixes

Suffix	Count
+Ø	20,837
+s	334
+d	217
+e	156
+n	156
+у	130
+ed	121
+ing	119

Assessment

- Breaking the "lexical independence assumption" is computationally costly
 - The search space is much, much larger!
 - Dealing only with inflectional morphology simplifies the problems
- Sparse priors are crucial for avoiding degenerate solutions

In conclusion ...

Why don't we have integrated morphology?

Why don't we have integrated morphology?

Because we spend all our time working on English, which doesn't have much morphology!

Why don't we have integrated morphology?

- Translation with words is already hard: an *n*-word sentence has *n*! permutations
- But, if you're looking at a sentence with *m* letters there are *m*! permutations
 - Search is ... considerably harder

• m > n \longrightarrow $m! \implies n!$

- Modeling is harder too
 - must also support all these permutations!

Take away messages

- Morphology matters for MT
- Probabilistic models are a great fit for the uncertainty involved
- Breaking the lexical independence assumption is hard

Thank you! Toda! \$krAF!

https://github.com/redpony/cdec/

$$\begin{split} n \sim \operatorname{Poisson}(\lambda) \\ a_i \sim \operatorname{Uniform}(1/|\mathbf{f}|) \\ e_i \mid f_{a_i} \sim T_{f_{a_i}} \\ T_{f_{a_i}} \mid a, b, \mathbf{M} \sim \operatorname{PYP}(a, b, \mathbf{M}(\cdot \mid f_{a_i})) \\ \mathbf{M}(e = \alpha + \beta \mid f) = G_f(\alpha) \times H_f(\beta) \\ G_f \mid a, b, f, \mathbf{P}_0 \sim \operatorname{PYP}(a, b, \mathbf{P}_0(\cdot)) \\ H_f \mid a, b, f, \mathbf{H}_0 \sim \operatorname{PYP}(a, b, \mathbf{H}_0(\cdot)) \\ H_0 \mid a, b, \mathbf{Q}_0 \sim \operatorname{PYP}(a, b, \mathbf{Q}_0(\cdot)) \\ \mathbf{P}_0(\alpha; p) = \frac{p^{|\beta|}}{|V|^{|\beta|}} \times (1 - p) \\ \mathbf{Q}_0(\beta; r) = \frac{1}{(|V| \times r)^{|\beta|}} \end{split}$$

Tuesday, January 25, 2011