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MT System Development Cycle
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Difficulties of MT Evaluation

Machine Translation is an open NLP task

→ the correct translation is not unique
→ the set of valid translations is not small
→ the quality of a translation is a fuzzy concept

Quality aspects are heterogeneous

→ Adequacy (or Fidelity)
→ Fluency (or Intelligibility)
→ Post-editing effort (time, key strokes, ...)
→ ...

Manual vs. automatic evaluation
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MT Automatic Evaluation

Setting:

→ Compute similarity between system’s output and one
or several reference translations

→ The similarity measure should be able to discriminate whether
the two sentences convey the same meaning (semantic
equivalence)
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MT Automatic Evaluation

First Approaches:

→ Lexical similarity as a measure of quality
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MT Automatic Evaluation

First Approaches:

→ Lexical similarity as a measure of quality

Edit Distance
WER, PER, TER

Precision
BLEU, NIST, WNM

Recall
ROUGE, CDER

Precision/Recall
GTM, METEOR, BLANC, SIA
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MT Automatic Evaluation

First Approaches:

→ Lexical similarity as a measure of quality

Edit Distance
WER, PER, TER

Precision
BLEU, NIST, WNM

Recall
ROUGE, CDER

Precision/Recall
GTM, METEOR, BLANC, SIA

BLEU has been
widely accepted as a
‘de facto’ standard
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IBM BLEU metric

BLEU: a Method for Automatic Evaluation of Machine Translation

Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu

IBM Research Division

“The main idea is to use a weighted average of variable length

phrase matches against the reference translations. This view gives

rise to a family of metrics using various weighting schemes. We have

selected a promising baseline metric from this family.”
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IBM BLEU metric

Conclusions of the paper (Papineni et al., 2001)

BLEU correlates with human judgements

It can distinguish among similar systems

Need for multiple references or a big test with heterogeneous
references

More parametrisation in the future
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Benefits of Automatic Evaluation

Compared to manual evaluation, automatic measures are:

1 Cheap (vs. costly)
2 Objective (vs. subjective)
3 Reusable (vs. not-reusable)

Automatic evaluation metrics have notably accelerated the
development cycle of MT systems

1 Error analysis
2 System optimization
3 System comparison
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Risks of Automatic Evaluation (compared to manual evaluation)

1 System overtuning → when system parameters are adjusted
towards a given metric

2 Blind system development → when metrics are unable to
capture system improvements

3 Unfair system comparisons → when metrics are unable to
reflect difference in quality between MT systems
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Problems of Lexical Similarity Measures

The reliability of lexical metrics depends very strongly on the
heterogeneity/representativity of reference translations.

Culy and Riehemann [CR03]

Coughlin [Cou03]

Callison-Burch et al. [CBOK06]

Underlying Cause

Lexical similarity is nor a sufficient neither a necessary condition so
that two sentences convey the same meaning
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Problems of Lexical Similarity Measures

NIST 2005 Arabic-to-English Exercise [CBOK06, KM06]
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Problems of Lexical Similarity Measures

NIST 2005 Arabic-to-English Exercise [CBOK06, KM06]

−→ N-gram based metrics favor MT systems which closely
replicate the lexical realization of the references

−→ Test sets tend to be similar (domain, register, sublanguage) to
training materials

−→ Statistical MT systems heavily rely on the training data

−→ Statistical MT systems tend to share the reference
sublanguage and be favored by N-gram based measures
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Can we do better?

Extending Lexical Similarity Measures to increase robustness
(avoid sparsity):

Lexical variants

→ Morphological information (i.e., stemming)
ROUGE and METEOR

→ Synonymy lookup: METEOR (based on WordNet)

Paraphrasing support:

→ Zhou et al. [ZLH06], Kauchak and Barzilay [KB06],
Owczarzak et al. [OGGW06]

→ New versions of METEOR, TER
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Similarity Measures Based on Linguistic Features

More linguistically-motivated measures:

Features capturing syntactic and semantic information

Shallow parsing, constituency and dependency parsing,
named entities, semantic roles, textual entailment, discourse
representation

Extense bibliography in the last years:
[PN07], [LG05], [AGGM06], [MB07] [OvGW07a, OvGW07b],
[KSO09], [CN08], [RMDW01], [GM07, GM09], [GMGM10],
[PCGJM09], etc.



Combined Linguistically-motivated Measures 28

Some Examples of Linguistically Motivated Measures

Expected Dependency Pair Match (Kahn, Snover and Ostendorf;
2009)

−→ dependency parsing (PCFG + head-finding rules)
−→ precision and recall scores of various tree decompositions
−→ +synonymy +paraphrasing

MaxSim(Chen and Ng; 2008)

−→ a general framework for arbitrary similarity functions
−→ dependency relations, lemma, parts of speech, synonymy
−→ bipartite graph to obtain an optimal matching between items

RTE (Padó, Galley, Jurafsky and Manning, 2009)

−→ semantic equivalence based on textual entailment features
−→ alignment, semantic compatibility, insertion/deletion,

preservation of reference and structural alignment
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RTE (Padó, Galley, Jurafsky and Manning, 2009)

−→ semantic equivalence based on textual entailment features
−→ alignment, semantic compatibility, insertion/deletion,

preservation of reference and structural alignment



Combined Linguistically-motivated Measures 31

Our Approach (Giménez & Màrquez, 2010)

Work at UPC with Jesús Giménez

Rather than comparing sentences at lexical level:

Compare the linguistic structures and the words within them
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Our Approach (Giménez & Màrquez, 2010)

Automatic On Tuesday several missiles and mortar
Translation shells fell in south Kabul , but there were

no casualties .

Reference Several rockets and mortar shells fell today ,
Translation Tuesday , in south Kabul without causing any

casualties .
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Our Approach (Giménez & Màrquez, 2010)

S

PP TMP1 S .

On NP NP A11 VP , but S

Tuesday several

missiles and

mortar shells

<fell>1 PP LOC1 NP VP

in NP there were NP

south Kabul no casualties
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Our Approach (Giménez & Màrquez, 2010)
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Measuring Structural Similarity

OVERLAP: generic similarity measure among Linguistic
Elements. Inspired by the Jaccard similarity coefficient

Linguistic element (LE) = abstract reference to any possible
type of linguistic unit, structure, or relationship among them

→ For instance: POS tags, word lemmas, NPs, syntactic phrases

→ A sentence can be seen as a bag (or a sequence) of LEs of a
certain type

→ LEs may embed
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Overlap among Linguistic Elements

O(t) =

∑

i∈(itemst(hyp) ∩ itemst(ref))

counthyp(i , t)

∑

i∈(itemst(hyp) ∪ itemst(ref))

max(counthyp(i , t), countref(i , t))

t is the LE type
‘hyp’: hypothesized translation
‘ref’: reference translation
itemst(s): set of items occurring inside LEs of type t
counts(i , t): occurrences of item i in s inside a LE of type t
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Overlap among Linguistic Elements

Coarser variant: micro-averaged overlap over all types

O(⋆) =

∑

t∈T

∑

i∈(itemst(hyp) ∩ itemst(ref))

counthyp(i , t)

∑

t∈T

∑

i∈(itemst(hyp) ∪ itemst(ref))

max(counthyp(i , t), countref(i , t))

T : set of all LE types associated to the given LE class
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Overlap/Matching among Linguistic Elements

Matching is a similar but more strict variant

→ All items inside an element are considered the same unit
→ Computes the proportion of fully translated LEs, according to

their types

Other possible extensions:

→ n-gram matching within LEs
→ Synonymy lookup
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Overlap/Matching among Linguistic Elements

Overlap and Matching have been instantiated over different
linguistic level elements (for English)

→ Words, lemmas, POS

→ Shallow, dependency and constituency parsing

→ Named entities and semantic roles

→ Discourse representation (logical forms)

Open source software: Asiya, Open Toolkit for Automatic
MT (Meta-)Evaluation (formerly IQMT)
http://www.lsi.upc.es/∼nlp/Asiya/
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Evaluating Heterogeneous Features

NIST 2005 Arabic-to-English Exercise [CBOK06, KM06]
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Evaluating Heterogeneous Features

NIST 2005 Arabic-to-English Exercise

Level Metric ρall ρSMT

Lexical BLEU 0.06 0.83
METEOR 0.05 0.90

Parts-of-speech 0.42 0.89
Syntactic Dependencies (HWC) 0.88 0.86

Constituents (STM) 0.74 0.95

Semantic Roles 0.72 0.96
Semantic Discourse Repr. 0.92 0.92

Discourse Repr. (PoS) 0.97 0.90
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Towards Heterogeneous Automatic MT Evaluation
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Towards Heterogeneous Automatic MT Evaluation
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Recent Works on Metric Combination

Different metrics capture different aspects of similarity
Suitable for combination

Corston-Oliver et al. [COGB01]

Kulesza and Shieber [KS04]

Gamon et al. [GAS05]

Akiba et al. [AIS01]

Quirk [Qui04]

Liu and Gildea [LG07]

Albrecht and Hwa [AH07a]

Paul et al. [PFS07]

Ye et al. [YZL07]

Giménez and Màrquez [GM08]
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The Most Simple Approach: ULC

Uniformly averaged linear combination of measures (ULC):

ULCM(hyp, ref ) =
1

|M|

∑

m∈M

m(hyp, ref )

Simple hill climbing approach to find the best subset of
measures M on a development corpus

M = { ‘ROUGEW ’, ‘METEOR’, ‘DP-HWCr ’, ‘DP-Oc(⋆)’,
‘DP-Ol(⋆)’, ‘DP-Or (⋆)’, ‘CP-STM4’, ‘SR-Or (⋆)’, ‘SR-Orv ’,
‘DR-Orp(⋆)’ }
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Evaluation of ULC

WMT 2008 meta-evaluation results (into-English)

Measure ρsys consistencysnt

ULC 0.83 0.56
DP-Or(⋆) 0.83 0.51
DR-Or(⋆) 0.80 0.50
meteorranking 0.78 0.51
SR-Or(⋆) 0.77 0.50
meteorbaseline 0.75 0.51
PoS-bleu 0.75 0.44
PoS-4gram-F 0.74 0.50
bleu 0.52 —
bleustem+wnsyn 0.50 0.51
...
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Evaluation of ULC

WMT 2009 meta-evaluation results (into-English)

Measure ρsys consistencysnt

ULC 0.83 0.54
maxsim 0.80 0.52
rte(absolute) 0.79 0.53
meteor-rank 0.75 0.49
rte(pairwise) 0.75 0.51
terp -0.72 0.50
meteor-0.6 0.72 0.49
meteor-0.7 0.66 0.49
bleu-ter/2 0.58 —
nist 0.56 —
wpF 0.56 0.52
ter -0.54 0.45
...
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Portability Across Corpora

NIST 2004/2005 MT Evaluation Campaigns

AE2004 CE2004 AE2005 CE2005

#references 5 5 5 4
#outputsass. 5/5 10/10 6/7 5/10
#sentencesass. 347/1,353 447/1,788 266/1,056 272/1,082
Avg. Adequacy 2.81/5 2.60/5 3.00/5 2.58/5
Avg. Fluency 2.56/5 2.41/5 2.70/5 2.47/5
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Portability Across Corpora

Meta-evaluation of ULC across test beds
(Pearson Correlation)

AE04 CE04 AE05 CE05

ULC (AE04) 0.6392 0.6294 0.5327 0.5695

ULC (CE04) 0.6306 0.6333 0.5115 0.5692

ULC (AE05) 0.6175 0.6029 0.5450 0.5706

ULC (CE05) 0.6218 0.6208 0.5270 0.6047

Max Indiv. 0.5877 0.5955 0.4960 0.5348
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Linguistic Measures at International Campaigns

NIST 2004/2005

→ Arabic-to-English / Chinese-to-English
→ Broadcast news / weblogs / dialogues

WMT 2007-2010

→ Translation between several European languages
→ European Parliament Proceedings / Out-of-domain News

IWSLT 2005-2008

→ Spoken language translation
→ Chinese-to-English



Combined Linguistically-motivated Measures 59

Linguistic Measures at International Campaigns

NIST 2004/2005

→ Arabic-to-English / Chinese-to-English
→ Broadcast news / weblogs / dialogues

WMT 2007-2010

→ Translation between several European languages
→ European Parliament Proceedings / Out-of-domain News

IWSLT 2005-2008

→ Spoken language translation
→ Chinese-to-English

Controversial results at NIST Metrics MATR08/09 Challenges!
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Ongoing and Future Work

1 Metaevaluation of measures

→ Better understand differences between lexical and higher level
measures

2 Work on the combination of measures

→ Learning combined similarity measures

3 Porting measures to languages other than English

→ Need of linguistic analyzers

4 Use measures for semi–automatic error analysis

→ (Web) Graphical interface
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Confidence Estimation

New setting:

→ Quality evaluation without reference translations

Motivation:

→ Ranking of several candidate translations when translating
new examples

Information available:

→ Source sentence, candidate translation(s), and (possibly)
system information
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Confidence Estimation

New setting:

→ Quality evaluation without reference translations

Motivation:

→ Ranking of several candidate translations when translating
new examples

Information available:

→ Source sentence, candidate translation(s), and (possibly)
system information

Johns Hopkins University Summer Workshop, 2003
“Confidence Estimation for Machine Translation” [BFF+03]
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Confidence Estimation

→ Classification according to the target function

Human likeness
→ discern between human and automatic translations

– Classification

Human acceptability
→ emulate the behavior of human assessors

– Classification [GAS05]

– Linear Regression [Qui04, AH07b, SG10]

– Ranking [SE10]
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Confidence Estimation

Features to train the quality measures:

System-dependent

System-independent
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Confidence Estimation

Features to train the quality measures:

System-dependent

→ internal system probabilities/scores
→ features over n-best translation hypotheses

– language modeling
– hypothesis rank
– score ratio
– average hypothesis length
– length ratio
– center hypothesis

System-independent
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Confidence Estimation

Features to train the quality measures:

System-dependent

System-independent
→ source (translation difficulty)

– sentence length
– ambiguity → dictionary/alignment/WordNet-based

(number of candidate translations per word or phrase)

→ target (fluency)

– sentence length
– language modeling

→ source-target (adequacy)

– length ratio
– punctuation issues
– candidate matching → dictionary-/alignment-based
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Confidence Estimation

Features to train the quality measures:

System-dependent

System-independent

Remark: most valuable features

System-dependent

Based on n-best lists

Capturing target text properties
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The FAUST Project (2010-2013)

Feedback Analysis for User Adaptive Statistical Translation

Theme FP7-ICT-2009-4

Objective 2.2: Language-based interaction

Coordinator: University of Cambridge (Bill Byrne)

http://divf.eng.cam.ac.uk/faust

Goal Develop interactive machine translation systems which adapt
rapidly and intelligently to user feedback
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FAUST: On-line Confidence Estimation

CE-related challenge

−→ Create novel automatic metrics of translation quality which
reflect preferences learned from user feedback

– State of the art: MT relies on metrics which do not reflect
user interest

– FAUST: MT metrics as models of user feedback

−→ Keywords: on-line, adaptive
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FAUST: On-line Confidence Estimation
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FAUST: On-line Confidence Estimation
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FAUST: On-line Confidence Estimation

Ongoing work:

Preliminary set of 14 CE measures (= features)

Learn to rank pairwise comparisons

Ranking perceptron (with linear and polynomial kernels)

Promising results on an initial batch setting
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Metricwise System Development
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Summary

1 Empirical MT is a very active research field

2 Evaluation methods play a crucial role

3 Measuring overall translation quality is hard

→ Quality aspects are heterogeneous and diverse

4 What can we do?

→ Advance towards heterogeneous evaluation methods

→ Metricwise system development

Always meta-evaluate
(make sure your metric fits your purpose)

→ Resort to manual evaluation

Always conduct manual evaluations
(contrast your automatic evaluations)
Always do error analysis (semi-automatic)
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On-line Confidence Estimation
Preliminary set of features

Metric Description
CE-BiDictO bilingual dictionary based overlap
CE-Nc source/candidate phrase chunk ratio
CE-Ne source/candidate named entity ratio
CE-Oc source/candidate phrase chunk overlap
CE-Oe source/candidate named entity overlap
CE-Op source/candidate part-of-speech overlap
CE-ippl candidate language model inverse perplexity
CE-ipplC candidate chunk language model inverse perplexity
CE-ipplP candidate PoS language model inverse perplexity
CE-length source/candidate length ratio
CE-long source/candidate length ratio (penalize short candidates)
CE-oov candidate language model out-of-vocabulary tokens ratio
CE-short source/candidate length ratio (penalize long candidates)
CE-symbols symbol overlap (punctuation, etc.)



Conclusions 92
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