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The birth of SMT: generative models
• The definition of translation probability follows a mathematical derivation

argmaxep(e|f) = argmaxep(f |e) p(e) (1)

• Occasionally, some independence assumptions are thrown in
for instance IBM Model 1: word translations are independent of each other

p(e|f , a) =
1
Z

∏

i

p(ei|fa(i))

• Generative model leads to straight-forward estimation
– maximum likelihood estimation of component probability distribution
– EM algorithm for discovering hidden variables (alignment)
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Log-linear models

• Alternative to Equation 1 : Model posterior probability directly :

p(e|f) =
exp[

∑M
m=1 λmhm(e, f)]

∑
e′ exp[

∑M
m=1 λmhm(e′, f)]

(2)

• Decision rule is now :

ê = argmaxep(e|f)

= argmaxe[
M∑

m=1

λmhm(e, f)]
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Discriminative training

• Modeling problem:

– Come up with sensible features.

• Training problem:

– Come up with suitable lambdas.

• Most estimation procedures in NLP maximize likelihood of training data.

• However at test time model is evaluated wrt to some loss function

• Idea:

– Minimize loss on training data
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Discriminative training
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Och’s minimum error rate training (MERT)

• Line search for best feature weights!

"

#

$

given: sentences with n-best list of
translations
iterate n times

randomize starting feature weights
iterate until convergences

for each feature
find best feature weight
update if different from current

return best feature weights found in any
iteration
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BLEU error surface
• Varying one parameter: a ragged line with many local optima
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Unstable outcomes: scores vary

• Even different scores with different runs (varying 0.40 on dev, 0.89 on test)

run iterations dev score test score
1 8 50.16 51.99
2 9 50.26 51.78
3 8 50.13 51.59
4 12 50.10 51.20
5 10 50.16 51.43
6 11 50.02 51.66
7 10 50.25 51.10
8 11 50.21 51.32
9 10 50.42 51.79
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More features: more components

• We would like to add more components to our model

– multiple language models
– domain adaptation features
– various special handling features
– using linguistic information

→ MERT becomes even less reliable

– runs many more iterations
– fails more frequently
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More features: factored models

lemma lemma

part-of-speech

OutputInput

morphology

part-of-speech

word word

• Factored translation models break up phrase mapping into smaller steps

– multiple translation tables
– multiple generation tables
– multiple language models and sequence models on factors

→ Many more features
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Millions of features

• Why mix of discriminative training and generative models?

• Discriminative training of all components

– phrase table [Liang et al., 2006]
– language model [Roark et al, 2004]
– additional features

• Large-scale discriminative training

– millions of features
– training of full training set, not just a small development corpus
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Model

SMT as a structured prediction task.

• Local score :
s(fi, ei) = w · Φ(fi, ei)

• Translation score :

s(f , e) =
∑

(fi,ei)∈e

s(fi, ei)

=
∑

(fi,ei)∈e

w · Φ(fi, ei)

• Decoding :
ê = argmaxes(f , e)
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Featured representation

s(fi, ei) = w · Φ(fi, ei)
• Φ: multidimensional feature vector representation

• Can throw in arbitrary features in the model

– Model can learn from negative evidence e.g downweight “the the”
– Complex interactions between features
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Example

Φ100(f , e) =

{
1 if fi = “les expressions de” ∧ ei = “expressions of”
0 otherwise

Φ241(f , e) =

{
1 if distortion = 0 ∧ fi−1 = “START” ∧ fi = “les expressions de”
0 otherwise
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Example

Φ729(f , e) =

{
1 if last2TgtWords = “of equality”
0 otherwise

Φ730(f , e) =





1 if last3TgtWords = “expressions of equality”
0 otherwise
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Example

Φ317(f , e) =






1 if orientation = “MONO” ∧ fi−1 = “les expressions de”
∧ fi = “parite” ∧ ei−1 = “expressions of”
∧ ei = “equality”

0 otherwise
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Training regimes

s(f , e) =
∑

(fi,ei)∈e

w · Φ(fi, ei)

• Supervised training : given training set T = {(ft, et)}T
t=1, estimate w

– Likelihood based models:
∗ Expectations of features across the structure

– Margin-based methods:
∗ n-best or marginal distribution across graphical structure
∗ Perceptron [Collins, 2002]: only need argmax computation
∗ Approximate large margin: MIRA [Crammer and Singer, 2003]
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Perceptron

Requirements:

• Training data: T = {(ft, et)}T
t=1

• ê = argmaxes(f , e)
– Exact computation intractable → beam search

• Φ(ft, ê)
• Φ(ft, et)
Update rule: w(i+1) = wi + Φ(ft, et)−Φ(ft, ê)

Intuition:

• Boost features in correct output and penalise features in incorrect prediction
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MIRA

Requirements:

• T, ê, Φ(ft, ê), Φ(ft, et)
• Loss function, L(et, ê) → measures goodness of prediction wrt to gold standard

Updates weighted by loss :

min ||wi+1 −wi||
s.t s(ft, et)− s(ft, ê) ≥ L(et, ê)

∀ê ∈ bestk(ft;w(i))
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Problem: overfitting

• Fundamental problem in machine learning

– what works best for training data, may not work well in general
– rare, unrepresentative features may get too much weight

• Especially severe problem in phrase-based models

– long phrase pairs explain well individual sentences
– ... but are less general, suspect to noise
– EM training of phrase models [Marcu and Wong, 2002] has same problem
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Solutions

• Restrict to short phrases, e.g., maximum 3 words (current approach)

– limits the power of phrase-based models
– ... but not very much [Koehn et al, 2003]

• Restrict to short features : window of 3 words

• Jackknife

– collect phrase pairs from one part of corpus
– optimize their feature weights on another part

• IBM direct model: only one-to-many phrases [Ittycheriah and Salim Roukos,
2007]

Abhishek Arun Discriminative Training 19 April 2007



22

Problem: reference translation

• Supervised training assumes knowledge of gold standard, but...

• Reference translation may not be produceable by model

covered by search

produceable by model

all English sentences
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Problem: reference translation

• If produceable by model → we can compute feature scores

• If not → we can not

• Matching reference string not enough, we want to learn from good phrasal
alignments too.

• Multiple ways of going from source to target (if reachable). Is there a reference
phrasal alignment ?

• Let’s just ignore alignments for now...
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Update strategies

• Skip sentences, for which reference can not be produced

– invalidates large amounts of training data, biases model to shorter sentences

• Declare candidate translations closest to reference as surrogate

– closeness measured for instance by smoothed BLEU score
– may be not a very good translation: odd feature values, training is severely

distorted
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Update strategies

• Local update:

– When including all sentences: surrogate reference picked from 1000-best list
using maximum smoothed BLEU score with respect to reference translation.

– Dynamic reranking.

• Min Loss update:

– Modify regular decoder to use smoothed BLEU as scoring function.
– Store min loss candidate for each training instance.
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Experiments

Czech-English task - Prague Dependecy treebank, 21K training sentences. Only
binary features

• phrase table features

• lexicalized reordering features

• distortion features

• source and target phrase ngram
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Results

Training scheme BLEU Length ratio
Pharaoh - MERT 34.53 0.978

Perceptron - local 28.09 0.906
1-best MIRA - local 27.64 0.911
Perceptron - min loss 24.04 0.881

1-best MIRA - min loss 25.24 0.881
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Discussion
• Min Loss performing much worse than local updates - why ?

• Local updates more conservative than min loss update

• Loss function ignores alignments

• Can produce “good” translations using “dodgy” alignments.

• Loss function insensitive to paraphrasing

• Short output - model bias ?
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Summary

• Discriminative models allow us to incorporate lots of features

• Proposed model = millions of features ( phrase pair, ngram, lexicalised
reordering)

• Train on whole corpus

• Margin based learning algorithms

• Problems:

– Discriminative training: Requires featured representation of gold standard
– Featured representation of gold standard not always available
– Model biased towards short output
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Future work

• What is a good reference? Paraphrasing to extend reference set.

• Loss functions - sensitive to alignments, lexical choices etc

• mix of binary and real-valued features

• scaling up

More and more features are unavoidable, let’s deal with them

Abhishek Arun Discriminative Training 19 April 2007


