Spoken Language Translation through Confusion Network decoding

Nicola Bertoldi FBK-irst,Trento, Italy

Edinburgh, 20 April 2007

Outline

- Spoken Language Translation
 - task
 - specific issues
 - formal definition
 - common approaches
- SLT by Confusion Network decoding
 - definition of Confusion Network
 - CN decoding algorithm
 - efficiency
 - advanced features of Moses and CN
 - evaluation
- Other applications of CN decoding

Credits: R. Zens (RWTH, Aachen), M. Federico (FBK-irst, Trento)

Spoken Language Translation

- Translation from speech input
 - recent and challenging task of Machine Translation
- Combination of ASR and MT:
 - *cascade* of ASR and MT systems
 - different *interfaces*, different approaches
- Harder than text translation
 - input genre is more *spontaneous*
 - ASR is far from being a solved problem
 - transcription errors are generated
 - *punctuation* is missing (or post-added)
 - *case information* is (often) missing

SLT issues

Speech Signal:

"and ... then ... here we have seen success"

\/\/\/////// $\backslash \bigwedge$

Correct Transcription: and **@ehm then @mh here** we have seen success Best ASR Transcription: and **me @mh there** we have seen a success

- transcription errors: substitution, insertion, deletion
- spontaneous speech phenomena: hesitation, repetition

SLT issues

- spontaneous speech phenomena can cause
 - transcription errors:
 - and **Oehm** then here we have seen \longrightarrow and me there we have seen
 - **Quh I** see \longrightarrow you see
 - *bad-formed* sentence
 mister mister @ehm mister maaten
- transcription errors modify both *meaning* and *syntax*:
 - semantic errors:
 - mister maaten has the floor \longrightarrow mister martin has the floor
 - market \longrightarrow mark at ate \longrightarrow eight you \longrightarrow e.u.
 - *syntactic errors*:

I move on to the committee \longrightarrow I'll move onto the committee Quh I see \longrightarrow you see

SLT issues

- transcription and translation quality strongly correlate
 the better transcription, the better translation
- ASR quality increases in a set of transcription hypotheses
- but unfortunately the *oracle* is unknown

 \implies translation of as many alternative transcriptions as possible

- In principle:
 - all transcriptions in the *Word Graph* generated by the ASR system

Word Graph

- large amount of transcription hyps produced by the ASR system
- arcs are labelled with words and ASR scores
- nodes are labelled with starting and ending times of words
- *redundancy* is high (from the point of view of MT):
 - many paths represent the same hyp differing just in timestamps
- topology is *complex* (from the point of view of MT):
 - word-coverage and word-reordering are hard to handle

Approaches to SLT

- different *approximations* of a WG
- different *interfaces*:
 - 1-best, N-best, confusion network
 - full word graph
- *dedicated* MT decoder
- Finite State Transducer:
 - ASR and MT models merged into one finite-state network
 - a transducer decodes the input speech in one shot
 - difficult scaling up to very large domains
- [Casacuberta et al., CSL, 2004]

Statistical Spoken Language Translation

Given a *speech input* o in the source language,

find the *best translation* through the following approximate criterion:

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} \Pr(\mathbf{e} \mid \mathbf{o}) = \arg \max_{\mathbf{e}} \sum_{\mathbf{f} \in \mathcal{F}(\mathbf{o})} \Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$$
$$\approx \arg \max_{\mathbf{e}} \max_{\mathbf{f} \in \mathcal{F}(\mathbf{o})} \Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$$

- *F*(o) is any set of possible transcriptions of o
 interface between ASR and MT
- $Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$ is any phrase-based speech translation model
- \bullet the actual transcription ${\bf f}$ is regarded as a hidden variable
- approximation simplifies the search algorithm

1-best Decoder

- translation of the *first best* transcription only
- use of a *standard MT system* of text

- no multiple transcriptions
- impossible recover from ASR errors

10

N-best Decoder

- translation of N-best transcription hypotheses
- *rerank* with additional ASR scores
 acoustic likelihood and source LM

- possible recover from ASR errors
- $\bullet\,$ no exploitation of overlaps among N-best

Confusion Network Decoder

 translation of a confusion network, a compact structure approximating a WG

- exploitation of multiple transcription hypotheses
- exploitation of overlaps among hypotheses
- extension of a standard text decoder

• [ASRU,2005], [ICASSP, 2007], Moses' doc

Confusion Network

A Confusion Network approximates a WG by a linear network, s.t.:

- arcs are labeled with words or with the *empty word* (ϵ -word)
- arcs are weighted with word *posterior probabilities*
- paths are a superset of those in the word graph
- paths can have different lengths

Extraction of CN from WG

- *cluster nodes* with close timestamps
- possibly *introduce special arcs* for empty-words
- compute word posterior probabilities exploiting ASR scores

Statistical model for CN decoding

- Translation Model is a *log-linear* combination of features
- Features are defined in terms of *phrases*
- Standard feature functions for text decoder:
 - Language Models
 - Distortion Model
 - Lexicon Model (LexM)
 - Phrase and Word Penalties
- Specific feature functions for Confusion Network (CM)
 - likelihood of the path into the source CN: product of word posterior probs
 - number of words in the path (optional)
- *LexM* and *CM* depend on the source phrase:
 - different paths in a span give different scores

Translation from text

- **cover** a not yet covered *span*
 - one source phrase
- retrieve all translation options
 looking up into the phrase table

- **compute** feature scores
- recombine hypotheses
- ...

Translation from Confusion Network

Extension of the translation from text

- cover a not yet covered span
 many source phrases
- retrieve all translation options
 - for all source phrases in the span
 - looking up into the phrase table

- compute scores
- **recombine** hypotheses
- ...

Issues of CN Decoding

- Number of paths grows exponentially with span length
- Look-up of translations for a huge number of source phrases
- *Enumeration* of all alternatives is *unfeasible*
- and *dummy*!

Indeed:

• Paths can correspond to phrases without translations

```
\begin{array}{cccc} {\rm those}_{0.92} & \epsilon_{0.99} & {\rm were}_{0.99} \\ \epsilon_{0.07} & {\rm was}_{6e-5} & {\rm well}_{7e-5} \\ {\rm as}_{6e-4} & {\rm is}_{1e-5} & \epsilon_{1e-5} \\ {\rm there}_{5e-5} & {\rm who}_{2e-6} & {\rm who}_{1e-5} \\ {\rm who}_{1-5} & {\rm was}_{8e-6} \\ {\rm who's}_{5e-6} \end{array}
```


Issues of CN Decoding

different paths into a span can correspond to the same phrase (who was)
 different CM score

$those_{0.92}$	$\epsilon_{0.99}$	$were_{0.99}$	those	ϵ	were	those	ϵ	were
$\epsilon_{0.07}$	was_{6e-5}	$well_{7e-5}$	ϵ	was	well	ϵ	was	well
as_{6e-4}	is_{1e-5}	ϵ_{1e-5}	as	is	ϵ	as	is	ϵ
$there_{5e-5}$	who_{2e-6}	who_{1e-5}	there	who	who	there	who	who
who_{1e-5}		was_{8e-6}	who		was	who		was
who's $_{5e-6}$			who's			who's		

- different phrases into the same span can have equal translation
 - who's who and who is who translates into quién es quién
 - different CM and LexM scores

those	ϵ	were	those	ϵ were	
ϵ	was	well	ϵ w	/as well	
as	is	ϵ	as	is ϵ	
there	who	who	there w	vho who	
who		was	who	was	
who's			who's		

Solution for an efficient CN decoding

- Optimization of the retrieval of the translation options by:
 - representing source entries of the phrase-table as *prefix-trees*
 - *incrementally pre-fetching* translation options
 - *early recombining* translation options
- Once translation options are generated, usual decoding applies.

Prefix-tree representation of phrase table

Incremental pre-fetching of translation options

- collect translation options *incrementally over the span length*
 - exploit knowledge about shorter span
- once and before decoding

• *worst case* (all phrases are present) is still exponential, but *never happens*

Early recombination

- *Different phrases* into the same span can have the *same translation*
- *Different LexM* and *CM* scores, the other are equal
- *Undistinguishable* from the decoder
- Take the *best path* only (and its scores)
- Use LexM(span, e) and CM(span), instead of LexM(f, e) and CM(f)

$$\begin{split} LexM(span,e) &= LexM(\hat{f},e) \\ CM(span,e) &= CM(\hat{f},e) \\ \hat{f} &= \arg \max_{f \in span} \lambda_{LexM} LexM(f,e) + \lambda_{CM} CM(f) \end{split}$$

Efficiency of Search Algorithm

CN decoding in Moses

- Moses implements CN decoding
- Factored models
 - alternative over the full factor space

Haus N	der ART	Zeitung N
aus PREP	des ART	$\epsilon \epsilon$
aus ADV	$\epsilon \epsilon$	Zeitungs N
$\epsilon \epsilon$	drei N	Zeitungen N

- Lexicalized Distortion Models
 - conditioned on the best path inside a span

CN decoding: results

• Spanish-English EPPS 2006 Evaluation

Input			Out	put	
type	WER	BLEU	NIST	PER	WER
verbatim	0.0	48.00	9.864	31.19	40.96
cn-oracle	8.45	44.12	9.356	34.37	44.95
cons-dec	23.30	36.98	8.550	39.17	49.98
cn	8.45	39.17	8.716	38.64	49.52
1-best	22.41	37.57	8.590	39.24	50.01
5-best	18.61	38.68	8.694	38.55	49.33
10-best	17.12	38.61	8.694	38.69	49.46

- Relative Improvement in BLEU: 30% (wrt to oracle)
- CN decoding speed is 2 times slower

CN decoding: results

• Moses vs. Irst-05 vs. Irst-06

Input	:		Output				
type	WER	BLEU					
		Irst-05	Irst-06	Moses			
verbatim	0.0	40.84	44.64	48.00			
1-best	14.61	36.64	39.67	42.84			
cons-dec	14.46	36.54	39.65	42.92			
cn	11.61	37.21	40.00	43.51			

- Irst-06 was top system
- Irst-05 and Irst-06 translate pruned confusion networks
- Irst-05 translates CN 18 times slower than text

Other applications of CN decoder

- CN represents ambiguity
 - variations, alternatives, errors
- CN decoder *disambiguates* and *translates* in one shot:
 insertion of punctuation and case restoring in translation
- CN decoder is also a *tagger*:
 - POS tagging, case restoring
 - Word Sense Disambiguation, NE Recognition, OCR, etc.
 - using monotone translation
 - using ad-hoc lexicon models and LMs

10P	read@VP	a@R	hook@N		1 · · · ·		1
		uon	haak@\/D	thank	you	mr.	bond
	readever		DOOK	Thank	You	Mr	Bond
	read@VI		book@VI	- Horix	104		Bona

Punctuating Confusion Networks

Confusion network without punctuation

i.9	$cannot_{.8}$	$\epsilon_{.7}$	say.6	$\epsilon_{.7}$	$anything_{.8}$	$at_{.9}$	this _{.8}	point _{.7}	are_1	there.8	$\epsilon_{.8}$	any _{.7}	comments _{.7}
$^{\rm hi}.1$	can.1	$^{not.3}$	$said_{.2}$	$any_{.3}$	$thing_{.1}$	$\epsilon_{.1}$	these _{.1}	$points_{.1}$		the _{.1}	a.1	new.1	$comment_{.2}$
	$\epsilon_{.1}$		$^{say}.1$		$things_{.1}$		those.1	$\epsilon_{.1}$		their.1	$air_{.1}$	a.1	commit _{.1}
			$\epsilon_{.1}$					pint _{.1}				$\epsilon_{.1}$	

Consensus decoding

i cannot say anything at this point are there any comments

Punctuating confusion network

Punctuated confusion network

Punctuating Confusion Networks: Results

- ASR 1-best output vs. confusion network
- 1-best punctuation vs. punctuating CN (from 1K-best)

Spanish-English EPPS Eval06										
ASR type	punctuation	BLEU	NIST	WER	PER					
1-best	1-best	35.62	8.37	57.15	44.56					
	CN	36.01	8.41	56.78	44.39					
CN	1-best	36.22	8.46	56.39	44.37					
	CN	36.45	8.49	56.17	44.19					

Conclusion

- Spoken Language Translation
- SLT system:
 - combination of ASR and MT through Confusion Network
 - effective representation of a huge number of transcription hypotheses
- Efficient search algorithm for CN-based SMT:
 - prefix-tree representation and pre-fetching of lexicon models
 - early recombination of translation options
- Moses system:
 - CN decoding
 - state-of-the-art for SLT (translation performance and decoding speed)
 - slight improvement of CN decoder vs. 1-best decoder
- Moses for enriched translation
- Moses for tagging

Cross-Language Information Processing

Thank you!