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Outline this talk

 What is morphology and why does it matter 
to MT?

 Prior work
 Modeling morphology as observational 

ambiguity
 Decoding word lattices
 Experimental results
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What is morphology?
A crash course in words
 An important observation: words have 

complex internal structure.

cat
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Morphology
 Conventional division:

 Derivational morphology
 “Derive” new forms from a root
 Adjective → Verb (wide → widen)
 Verb → Noun (destroy → destruction) 

 Inflectional morphology
 “Add meaning” to a base category
 +PLURAL (cat → cats)
 +DATIVE (der Student → dem Studenten)
 +FUTURE (ser → será)
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Morphology
 Clitics

 Some words attach to other words.
 But, orthographic conventions differ:

 the boy
 alwalad (the boy)

 She hit him.
 darabathu. (She hit him.)
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A field guide to morphology

Analytic/Isolating Synthetic

Chinese Navaho
Inuktitut
Mohawk

Turkish
Finnish
Hungarian
Basque

Maltese
Arabic
Hebrew

Czech
Polish
Russian
Welsh
Irish
German
Danish

English Spanish
Italian
French
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Analytic languages
 No inflectional (category-preserving) 

morphology
 Some derivational (esp. compounding) 

morphology

cakebirthdayto makeIforfriend(s)‘sItomorrow
dàngāoshēngrìzuòwǒwéipéngyoudewǒmíngtīan

蛋糕生日做我为朋友的我明天

“My friends will make me a birthday cake tomorrow.”
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Fusional languages
 Fusional

 Most Indo-European languages.
 Many functional morphological elements (eg. 

tense, number, gender) combined into a single 
morpheme.
 She sings.  +s = singular, present tense, indicative
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Agglutinative languages
 Agglutinative

 Hungarian, Finnish, Turkish
 Concatenate chains of (mostly functional) 

morphemes

Civilized-VERB-CAUS-ABLE-NEG-NOM-PLU-POS1P-ABL-INT-2PL.AGR 

Uygar-laş-tır-a-ma-dık-lar-ımız-dan-mı-sınız?

“Are you from the ones we could not civilize?”
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Polysynthetic languages

 One word, many morphemes
    aliiku-sersu-i-llammas-sua-a-nerar-ta-ssa-galuar-paal-li 

“However, they will say that he is a great entertainer.”

 A single word may include several open- and 
closed- class morphemes
     aliiku = entertainment a = say
     sersu = provide llamas = good at
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Morphology & MT
 So why, as MT researchers, do we care 

about morphology?

1. Inflectional richness → free word order

2. Data sparseness
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Prior work
 Goldwater & McClosky (2005)

 Czech → English
 Preprocess the corpus to throw away some 

morphemes:
 Word truncation (ask F.J. Och)
 Lemmatize everything
 Only lemmatize infrequent words
 Keep inflectional morphemes that “mean something” 

in English
 Experimentation necessary to determine best 

process!
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Prior work
 Goldwater & McClosky (2005) results:

*BLEU scores with 5 reference translations, 
word-based SMT system.
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Prior work
 However, with a phrase-based translation 

model and more data, things look a bit 
different:

22.81Surface 
22.07Truncated (l=6) 
22.14Lemmas

BLEU*Input

* 1 reference translation, WMT07 dev-test

p<.05
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Prior work
 What happened?

 The morphemes that were thrown away had 
useful information

 Must avoid two pitfalls

Data Sparseness Information Loss

 A Better Translation
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Prior work
 Talbot and Osborne (2006)

 Learn “redundancies” automatically from a 
parallel corpus

 Only collapse distinctions that are meaningless 
w.r.t. a particular target language

 Experiments
 Smooth surface translation table with revised 

probabilities
 Use “compressed” lexicon just to improve word 

alignments
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Prior work
 Yang & Kirchhoff (2006)

 Backoff models for machine translation
 If you don’t know how to translate a word, perform 

morphological simplification
 Experiments on Finnish & German

 German
 fusional morphology
 productive compounding 

 Finnish
 agglutinative morphology
 Limited noun-noun compounding
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Prior work: Yang & Kirchhoff 
(2006)

Donaudampfschifffahrtsgesellschaften

Seen?
yes, translate

no, stem:

Donaudampfschifffahrtsgesellschaft

Seen?
yes, translate

no, split compound into 2 pieces

Donau Dampfschifffahrtgesellschaft
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Yang & Kirchhoff (2006)

backoffbaselineTraining data
14.012.95k
16.415.650k

25.124.8751k
FINNISH

GERMAN

22.322.0751k

20.720.350k
16.315.35k
backoffbaselineTraining data



April 20, 2007 Chris Dyer - Decoder Guided Backoff 22

Prior work: Yang & Kirchhoff 
(2006)
 Potential Problems

 Everything is done as preprocessing
 Only back off if C(f) = 0
 No improved word alignment
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Prior work: take-away
 Morphological simplification can help.
 Morphological simplification can hurt.

 Only collapse meaningless distinctions!
 Use a backoff strategy!

 All approaches presented involve making 
decisions about the translation forms in 
advance of decoding.
 Question: Is this the best strategy?
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Spoken Language Translation
 Recognize speech in the source language

 ASR is not perfect!
 Translate into English

 Translation is not perfect!

 Can we minimize error compounding?
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What SLT research tells us
 Joint models better perform better than 

translating the 1-best hypothesis
 Ney (1999), Bertoldi et al. (2005a, 2007), Shen et 

al. (2006)
 Enumerating all hypotheses is not necessary

 Confusion networks in phrase-based decoders 
(Moses), Bertoldi (2005a), Bertoldi et al. (2007)

 Confusion networks in hierarchical (SCFG) 
decoders, Dyer & Resnik (2007)
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Idea

Model the backoff problem to 
make it look like speech 

translation.
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The noisy channel

Source’s mind 
(English) 

Source’s output 
(French)

Noise

)()|(maxarg)|(maxarg ePefPfeP ee =

Decoding:
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A noisier channel

English Observed
French

Noise

French 
“meaning”

Morphology

)|,(maxmaxarg
)(

ffeP
fSfe

′
∈′

Decoding:

e fF

Approximation:
FfS ≈)(
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Constructing a translation 
system
 What is S(f)?

 Set of sentences
 All morphological “alternatives” to f that the system 

might know how to translate
 Cost function from a sentence to some value

 ~How much information did we throw away?
 Constructing S(f)

 Use existing morphological analyzers
 Truncation
 Compound splitting



April 20, 2007 Chris Dyer - Decoder Guided Backoff 30

Example
 Given the observed Spanish sentence: la 

mujer vieja, S(f) might contain:

SENTENCE PENALTY
  la mujer vieja        ?
  EL mujer vieja        ?
  la mujer VIEJ        ?
  EL mujer VIEJ        ?
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Example
 What to do with the penalty?

 Posterior probability of the sentence under some 
model (e.g. ASR/OCR word lattices)

 Amount of morphological information thrown away
 Count
 Quantified under some model (e.g. Talbot & Osborne 

2006)
 Function of #(f) vs. #(g(f)) in the training corpus
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Representing S(f)
 S(f) is a huge list with scores!  We’d like a 

compact representation of a huge list.
 Start simple: inflectional morphology

 Single stem affected
 Confusion networks

 Good at representing alternatives at a given 
position

 Plus, we know how to decode them!
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Czech-English translation
 Czech is a highly inflected fusional language.
 Not much compounding.

39222758851.4MGerman
15264382411.2MFrench
20740478521.4MSpansh
10508312211.4MEnglish
1303937263“cz-truncated
1312934227“cz-lemmas*
42341880371.2MCzech

SingletonsTypesTokensLanguage

* J. Hajič and B. Hladká. 1998. Tagging Inflective Languages.
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Confusion networks
 CN representation of S(f)

 Surface and lemma at each position
 Simple penalty model: surface=0, lemma=1

jevittakovýsatlantikbřehamerický

.bizarnínaprostojakojevíodůvodněnítakováveskeráseatlantikubřehuamerickéhoz

atlantiku

atlantik
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Estimating a translation model
 S(f) contains sentences that are a mixture of 

lemmas and surface forms
 Need translation model that contains both
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Estimating a translation model
 Simple solution:

 Train independent models in parallel
 Surface → Surface
 Lemma → Surface

 Then merge or have two phrase tables available
 Decoder to chooses the path/translation it likes 

best
 Pros: easy to estimate
 Cons: except within limits,mixed phrases do not 

exist!
 A variety of other model possibilities exist!
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Czech-English results

 Improvements are significant at p<.05; CN > surface at p<.01.

 WMT07 training data (2.6M words), trigram LM

22.74Surface forms only
23.94Backoff (~Y&K ‘06)

25.01Surface+Lemma (CN)
22.50Lemmas only

BLEU*Input

* 1 reference translation
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Czech-English results
  Surface only:

From the US side of the Atlantic all such odůvodnění 
appears to be a totally bizarre.

Lemma only:
From the [US] side of the Atlantic with any such

justification seem completely bizarre.

Confusion Net (Surface+Lemma):
From the US side of the Atlantic all such justification 

appears to be a totally bizarre.
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Representing other forms of 
ambiguitiy
 CNs are fine for inflection, but what about a 

language with compound/clitic splitting?

gesamthaushaltsplans

gesamthaushaltsplan

gesamt haus halt plan

gesamt haus halt plans
Different lengths!
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Confusion nets: the problem
 Every path must pass through every node

  
             

plangesamt

planshalthausgesamthaushaltsplan

εεεgesamthaushaltsplans
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Word lattices
 Any set of strings can be represented
 Algorithms exist for minimizing their size
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Decoding word lattices I: 
Create a chart from the lattice*
 Number nodes by distance from start-node
 For each edge leaving node i and labeled with word 
w, place word w into column i

 Augment cell with span length (difference between 
number of next node and current node)

gesamt                            1

plan    1gesamthaushaltsplan      4

plans  1halt  1haus  1gesamthaushaltsplans    4

* Based on a CKY parser for lattices by Cheppalier (1999)
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Decoding word lattices II
 Create translations options for column spans 

(rather than word spans)
 Column coverage replaces word coverage
 Search for a hypothesis that covers all 

columns.
A word may span more than one column!
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Decoding word lattices III

gesamt                            1
plan     1gesamthaushaltsplan      4
plans   1halt  1haus  1gesamthaushaltsplans    4

----

p=0.0  fc=-100

-**-

p=-10  fc=-40

budget

---*

p=-15  fc=-75

plan for the

****

p=-15  fc=-75

total budget

****

p=-15  fc=-75
strategy for the
   general budget
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Word lattice decoding: 
Problems
 The standard exponential decay distortion 

model is very poorly defined for word lattices!
 Lexicalized reordering models fare better.

 Span limits are also poorly defined.
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Efficiency of word lattice 
decoding
 “Morphology” lattices are compact

 Many nodes that all paths pass through (quasi-
linear networks)

 ASR word lattices do not necessarily have this 
property!

 Running time proportional to the length of the 
longest path
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Efficiency of word lattice 
decoding

  WMT06 German→English Test-Set Stats

31.4

31.4

27.8

Length

-1(31.4)Split

52 sec/sent1.7x10940.7Lattice

43 sec/sent1(27.8)Surface

Decoding timePathsNodes
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German-English
 German

 Fusional inflection (handful of forms)
 Considerable productive compounding

29k67k“-stem+split

24k65k15.3MEnglish

33k83k16.3M-split*

82k155k“ -stem

95k190k14.6MGerman
SingletonsTypesTokensLanguage

* P. Koehn and K. Knight. (2003) Empirical Methods for Compound 
Splitting
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German-English
 What to do about the penalty function when you can 

split compounds and stem?

Er gab uns Übungsblätter (surface)
Er gab uns Übungsblatt (stem)
Er gab uns Übung Blätter (split)
Er gab uns Übung Blatt (stem+split)

 Ideally, two features (weighted or binary): one for 
splitting and the other for stemming
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Results for Word Lattices
 Europarl German→English

    (WMT06 Shared Task, same as Y&K)

25.69Lattice (combined models)
25.70Lattice (surface-only training)
25.55Surface-only
BLEU*

* 1 reference translation
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Arabic-English
 Arabic segmentation / tokenization / 

normalization is commonly reported to help 
(but this is not uncontroversial)

alra’iis → al  ra’iis
sayusaafaru → sawfa  yusaafaru

 Does segmentation help? Does it lose some 
important information?
 Use word lattices to find out!
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Results for Word lattices
 GALE MT03 Arabic → English

48.12Unsegmented

49.70Seg+Noseg (Lattice)
49.20Segmented

BLEU*Input

* 4 reference translations
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Conclusion
 Word lattices and CNs have applications 

aside from speech recognition.
 Preprocessing decisions, such as backoff, 

can sometimes be better made by the 
decoder (cf. Czech-English results)

 How much of a problem is morphological 
sparseness?
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Thank You!
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