Bloom Filter Language Models

Experiments

Summary

Smoothed Bloom Filter Language Models Saving Space by Flipping Coins

David Talbot and Miles Osborne

School of Informatics University of Edinburgh

First Machine Translation Marathon (16th April 2007)

Bloom Filter Language Models

Experiments

Summary

Outline

1 Motivation

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations

Bloom Filter Language Models

- The Bloom Filter
- Extending the BF for Language Modelling

Bloom Filter Language Models

Experiments

Summary

Outline

1 Motivation

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations

Bloom Filter Language Models

- The Bloom Filter
- Extending the BF for Language Modelling

Bloom Filter Language Models

Experiments

Summary

Outline

1 Motivation

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations

Bloom Filter Language Models

- The Bloom Filter
- Extending the BF for Language Modelling

•000 00 00 Bloom Filter Language Models

Experiments

Summary

Outline

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations
- Bloom Filter Language Models
 - The Bloom Filter
 - Extending the BF for Language Modelling

Good modelling

N-grams (n = 8?)

Good estimation

- Millions / billions / trillions of words
- Good estimators (e.g., Witten-Bell, Kneser-Ney)
- Small memory footprint
- Low computational complexity

- Good modelling
 - N-grams (n = 8?)
- Good estimation
 - Millions / billions / trillions of words
 - Good estimators (e.g., Witten-Bell, Kneser-Ney)
- Small memory footprint
- Low computational complexity

- Good modelling
 - N-grams (n = 8?)
- Good estimation
 - Millions / billions / trillions of words
 - Good estimators (e.g., Witten-Bell, Kneser-Ney)
- Small memory footprint
- Low computational complexity

- Good modelling
 - N-grams (n = 8?)
- Good estimation
 - Millions / billions / trillions of words
 - Good estimators (e.g., Witten-Bell, Kneser-Ney)
- Small memory footprint
- Low computational complexity

A Curse of Dimensionality - and Large Corpora

• Size of N-gram event space increases exponentially

 $|\mathcal{U}_N| = |vocab|^N$

Set of observed N-grams n increases more slowly

 $n \ll |vocab| \times 50^{N-1}$

• These are very different quantities

0000 00 00 Experiments

Summary

Some Corpus Statistics

Corpus	Gigaword	Europarl	GW Apriori	EP Apriori
1-gms	281K	61K	281K	61K
2-gms	5,441K	127K	78,961,000K	3,721,000K
3-gms	274,844K	467K	etc.	
4-gms	599,383K	815K		
5-gms	842,297K	1,028K		

0000 00 00 Bloom Filter Language Models

Experiments

Summary

Outline

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations
- Bloom Filter Language Models
 - The Bloom Filter
 - Extending the BF for Language Modelling

Information-based Space Lower Bound

Statement

 $log_2\binom{|\mathcal{U}|}{n}$ bits are needed to represent *n* items from a Universe \mathcal{U}

Why

- There are $\binom{|\mathcal{U}|}{n}$ distinct sets of size *n* in \mathcal{U}
- A distinct code must be assigned to each such set
- log₂(x) bits are needed to represent x distinct codes

Problem

Any lossless representation scales with $|\mathcal{U}|$ (this is not good)

0000

Bloom Filter Language Models

Experiments

Summary

Outline

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations
- Bloom Filter Language Models
 - The Bloom Filter
 - Extending the BF for Language Modelling

All Language Models are Approximate

- Model assumptions are approximate
- Not using all available data is approximate
- Model reduction pruning, clustering etc. is approximate
- Parameter estimates are approximate

Bloom filters

Are also approximate but may reduce the above approximations

All Language Models are Approximate

- Model assumptions are approximate
- Not using all available data is approximate
- Model reduction pruning, clustering etc. is approximate
- Parameter estimates are approximate

Bloom filters

Are also approximate but may reduce the above approximations

00

Bloom Filter Language Models

Experiments

Summary

Outline

1 Motivation

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations

Bloom Filter Language Models

- The Bloom Filter
- Extending the BF for Language Modelling

Representing a Set via Hashing

Problem

Represent a set S of size *n* drawn from U where $n \ll |U|$

Solution

Bloom Filter uses a bitarray of size m and k hash functions To Train:

• Hash each item k times setting corresponding bits in m

To Test:

• Hash a candidate *k* times, if all bits set report *member* else *non-member*

Bloom Filter Language Models

Summary

Representing a Set via Hashing

Bloom filter (cont.)

- False positives occur with quantifiable probability
- Size and false positive rate *independent* of $|\mathcal{U}|$ (in theory)
- No false negative i.e., one-sided error
- E.g. 7.2 bits per item \rightarrow false positive rate ≈ 0.03

Bloom Filter Language Models

Experiments

Summary

Using a Bloom Filter

0 0 0 0 0 0 0 0 0 0 0 0 0 0

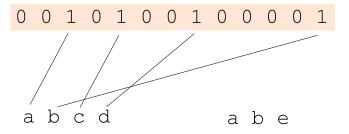
abcd abe Corpus Hypotheses

Bloom Filter Language Models

Experiments

Summary

Using a Bloom Filter



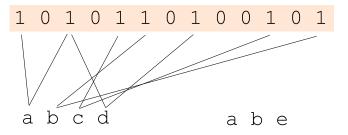
Corpus

Bloom Filter Language Models

Experiments

Summary

Using a Bloom Filter



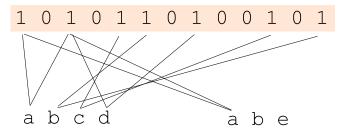
Corpus

Bloom Filter Language Models

Experiments

Summary

Using a Bloom Filter



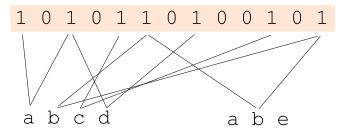
Corpus

Bloom Filter Language Models

Experiments

Summary

Using a Bloom Filter



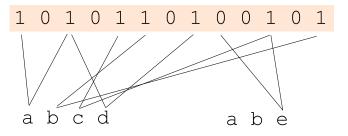
Corpus

Bloom Filter Language Models

Experiments

Summary

Using a Bloom Filter



Corpus

Bloom Filter Language Models

Experiments

Summary

Optimising a Bloom Filter

How many hash functions?

False positive probability: $f = (1 - p)^k$ where $p = (1 - \frac{1}{m})^{kn}$ is the probability that a bit is still zero *f* is minimized for: $k^* = \frac{m}{n} \ln(2)$

Previous Example: m = 13, n = 4

With k = 1 the false positive rate was $\frac{4}{13} \approx 0.30$ With k = 2 the false positive rate was $(\frac{7}{13})^2 \approx 0.28$

Asymptotically setting half the bits is optimal

0000

Experiments

Outline

1 Motivation

- Scaling Language Modelling
- Problems with Lossless Representations
- Lossy Representations

Bloom Filter Language Models

- The Bloom Filter
- Extending the BF for Language Modelling

Bloom Filter Language Models

Experiments

Summary

Storing Corpus Statistics

Problem

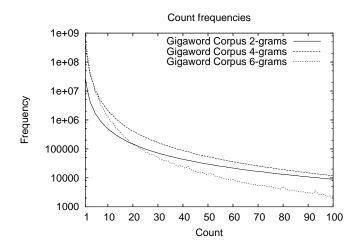
Bloom filters are *not* an associative data structure

Possible Solutions

Append each N-gram in set by its count

- False positive rate will increase by factor |MAXCOUNT|
- Error will no longer be one-sided
- Replace each bit by a counter
 - Space increased by factor log (|MAXCOUNT|)
 - Most counters will be set to 1 or 2

Storing Corpus Statistics



Bloom Filter Language Models

Summary

Storing Corpus Statistics

Our Solution

Store each *N*-gram $1 + \lfloor log(count) \rfloor$ times

Log Frequency Bloom filter

• Store each N-gram appended by an integer j

 $1 \ge j \ge 1 + \lfloor log(count) \rfloor$

 Query an *N*-gram's frequency by appending an integer *j* = 1 and incrementing until hitting a 0

Estimation errors decay exponentially: $f(d) = f^d$ for d > 0

Converting Corpus Frequencies to a Set

Raw Counts Quant Counts the cat 15 4 3 2 the hat the mat 1 1 1 1 the eggs 1 the bacon 1

Transformed Set

{the cat_1, the cat_2, the cat_3, the cat_4, the hat_1, the hat_2, the mat_1, the eggs_1, the bacon_1}

Storing Related Events

Language Model Statistics

- Witten-Bell: N-gram and suffix counts
- Kneser-Ney: N-gram, prefix, suffix and infix counts

Proxy Events

 Use existence of one event to *infer* a related event e.g. presence of N − 1-gram implies suffix count ≥ 1

Savings for Witten-Bell

- No need to store singleton suffix counts
- Reduced set $\approx \frac{2}{3}$ size of complete set

Reducing Effective Error Rate

Actual Error Rate

Errors only occur for non-members (i.e. one-sided error)

 $\mathit{err} = \mathit{Pr}(x \notin \mathit{Corpus} | x \in \mathit{Hypothesis}) \times \mathit{f}$

Can we increase the a priori membership probability?

Using Monotonicity of N-gram Event Space

- If a unigram x tests false, then a bigram xy cannot be a member
- More generally, $freq(xy) \le \min\{freq(x), freq(y)\}$

Bloom Filter Language Models

Experiments

Summary

An Example

Interpolated Witten-Bell BF-LM

$$P_{wb}(w_i|w_{i-n+1}^{i-1}) = \lambda_{w_{i-n+1}^{i-1}} P_{ml}(w_i|w_{i-n+1}^{i-1}) \\ + (1 - \lambda_{w_{i-n+1}^{i-1}}) P_{wb}(w_i|w_{i-n+2}^{i-1})$$

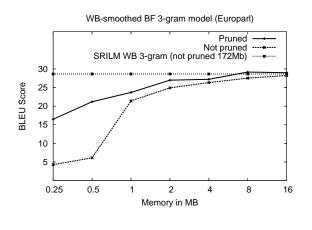
where λ_x is defined via,

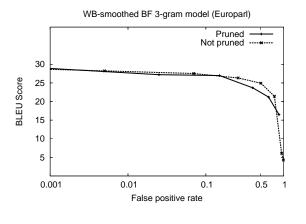
$$1 - \lambda_x = \frac{count(x)}{suffix(x) + count(x)}$$

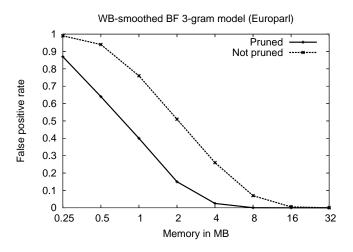
- Start from lowest order event (i.e. unigram)
- Bound numerator in ml term by count of denominator
- Bound suffix count by its token frequency
- Truncate computation if ml denominator is zero

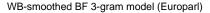
Baseline Models Europarl Witten-Bell

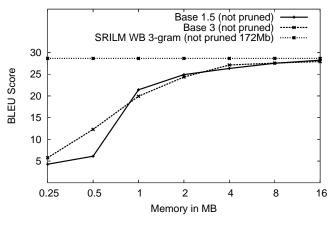
n	Pruned	Types	Mem.	Gzip'd	BLEU
3	No	5.9M	172Mb	51Mb	28.95
3	Yes	2.4M	64Mb	21Mb	28.96
4	No	14.1M	477Mb	129Mb	28.99
4	Yes	3.5M	102Mb	33Mb	29.41
5	No	24.2M	924Mb	238Mb	29.38
5	Yes	4.2M	131Mb	38Mb	29.60



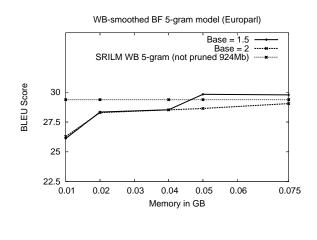






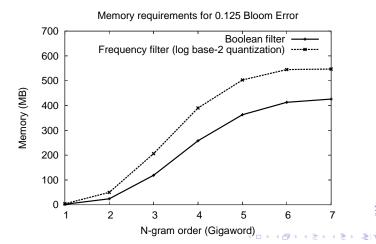


Summary

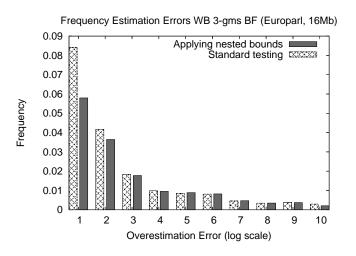


Log Frequency Scheme for Corpus Statistics

• Set increases by less than 2 when storing frequencies



Applying Nested Bounds



3

(日)

Bloom Filter Language Models

Experiments

Summary

Summary

- Bloom filters can be used effectively for language modelling below information-theoretic lower bounds
- 11 15 bits per N-gram seems like enough

- Future Work
 - Reducing computation in the log frequency BF scheme
 - Hybrid models e.g. explicit 1,2-grams + BF 3,4,5-grams
 - Other NLP applications of log frequency BF framework

Some References

📎 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

B. Bloom.

Space/time tradeoffs in hash coding with allowable errors. Communications of the ACM, 13:422–426, 1970.

A. Broder and M. Mitzenmacher. Network Applications of Bloom filters: A Survey. Internet Mathematics, 1(4):485–509, 2005.

Thanks

- Thanks for listening!
- Thanks to all the Moses Team!

