A tutorial on the IRSTLM library

Nicola Bertoldi FBK-irst,Trento, Italy

Berlin, May 17th 2008

Outline

- introduction to LM
- introduction to IRSTLM library
- space optimization
- distributed LM training
- support for chunk-based translation

Credits: M. Cettolo and M. Federico (FBK-irst, Trento)

1

N-gram LMs

The purpose of LMs is to compute the probability $Pr(w_1^T)$ of any sequence of words $w_1^T = w_1 \dots, w_t, \dots, w_T$. The probability $Pr(w_1^T)$ can be expressed as:

$$\Pr(w_1^T) = \Pr(w_1) \prod_{t=2}^T \Pr(w_t \mid h_t)$$

where $h_t = w_1, \ldots, w_{t-1}$ indicates the *history of word* w_t .

- $Pr(w_t \mid h_t)$ become difficult to estimate as the sequence of words h_t grows.
- we approximate by defining equivalence classes on histories h_t .
- *n*-gram approximation let each word depend on the most recent n-1 words:

$$h_t \approx w_{t-n+1} \dots w_{t-1}.$$

Data sparseness

Even estimating n-gram probabilities is not a trivial task:

- high number of parameters: e.g. a 3-gram LM with a vocabulary of 1,000 words requires, in principle, to estimate 10^9 probabilities!
- data sparseness of real texts: i.e. most of correct *n*-grams are *rare events*
- **smoothing** or **discounting**: frequency are not reliable

Discount relative frequency to assign some positive prob to every possible *n*-gram

$$0 \le f^*(w \mid x \ y) \le f(w \mid x \ y) \qquad \forall x \ y \ w \in V^3$$

Redistribution of the *zero-frequency probability* $\lambda(x \ y)$ over the set of words never observed after history $x \ y$ proportional to $p(w \mid y)$

$$\lambda(x \ y) = 1.0 \ - \ \sum_{w \in V} f^*(w \mid x \ y),$$

Smoothing Schemes

Discounted frequency $f^*(w \mid x \mid y)$ and redistribution of the *zero-frequency* probability $\lambda(x \mid y)$ can be combined by:

• Interpolation, i.e. sum up the two approximations:

$$p(w \mid x \ y) = f^*(w \mid x \ y) + \lambda(x \ y)p(w \mid y).$$

• **Back-off**, i.e. select the most significant approximation available:

$$p(w \mid x \mid y) = \begin{cases} f^*(w \mid x \mid y) & \text{if } f^*(w \mid x \mid y) > 0\\ \alpha_{xy}\lambda(x \mid y)p(w \mid y) & \text{otherwise} \end{cases}$$

where α_{xy} is an appropriate *normalization term*

Smoothing Methods

• Witten-Bell estimate [Witten & Bell, 1991] $\lambda(xy) \propto n(xy)$ i.e. # different words observed after xy in the training data:

$$\lambda(xy) =_{def} \frac{n(xy)}{c(xy) + n(xy)} \quad \text{which gives:} \quad f^*(w \mid xy) = \frac{c(xyw)}{c(xy) + n(xy)}$$

• Absolute discounting [Ney & Essen, 1991] subtract constant β ($0 < \beta \le 1$) from all observed *n*-gram counts

$$f^*(w \mid xy) =_{def} \max\left\{\frac{c(xyw) - \beta}{c(xy)}, 0\right\} \text{ which gives } \quad \lambda(xy) = \beta \; \frac{n(xy)}{c(xy)}$$

- Kneser-Ney smoothing [Kneser & Ney, 1995] Absolute discounting with *corrected counts* c'(yw) for lower order *n*-grams
- Improved Kneser-Ney [Chen & Goodman, 1998] Use *specific discounting coefficients* $\beta = \beta(c(xyw))$ for rare *n*-grams

Large Scale Language Models

- Availability of large scale corpora has pushed research toward using huge LMs
- At 2006 NIST WS best systems used LMs trained on at least 1.6G words
- Google presented results using a 5-gram LM trained on 1.3T words
- Handling of such huge LMs with available tools (e.g. SRILM) is prohibitive if you use standard computer equipment (4 up to 8Gb of RAM)
- Trend of technology is towards distributed processing using PC farms

We developed IRSTLM, a LM library addressing these needs

IRSTLM library

- **open-source** LGPL library under sourceforge.net
- full integration into the Moses SMT Toolkit and FBK-irst's speech decoder
- different smoothing criteria in an interpolation scheme
- training of huge LMs
- support for chunk-based translation
- space optimization
- distributed training on single machine or SGE queue
- caching of LM calls

7

Space optimization

- *n*-gram collection uses dynamic storage to encode counters
- probs and back-off weights are quantized
- LM data structure is loaded on demand

[Federico & Cettolo, ACL-SMT '07]

Data Structure to Collect N-grams

- Dynamic prefix-tree data structure
- Successor lists are allocated on demand through memory pools
- Storage of counts from 1 to 6 bytes, according to max value
- Permits to manage few huge counts, such as in the google *n*-grams

Data Structure to Compute LM Probs

- First used in CMU-Cambridge LM Toolkit (Clarkson and Rosenfeld, 1997]
- Slower access but less memory than structure used by SRILM Toolkit
- *IRSTLM* can compress probs and back-off weights into 1 byte (instead of 4)!

Compression Through Quantization

How does quantization work?

- 1. Partition observed probabilities into regions (*clusters*)
- 2. Assign a code and probability value to each region (*codebook*)
- 3. Encode the probabilities of all observations (*quantization*)

We investigate two quantization methods:

- Lloyd's K-Means Algorithm
 - first applied to LM for ASR by [Whittaker & Raj, 2000]
 - computes clusters minimizing average distance between data and centroids
- Binning Algorithm
 - first applied to term-frequencies for IR by [Franz & McCarley, 2002]
 - computes clusters that partition data into uniformly populated intervals

Notice: a codebook of n centers means a *quantization level* of $\log_2 n$ bits.

LM Quantization

- Codebooks
 - One codebook for each word and back-off probability level
 - For instance, a 5-gram LM needs in total 9 codebooks
 - Use codebook of at least 256 entries for 1-gram distributions

• Motivation

- Distributions of these probabilities can be quite different
- 1-gram distributions contain relatively few probabilities
- Memory cost of a few codebooks is irrelevant.

• Composition of codebooks

- LM probs are computed by multiplying entries of different codebooks

[Federico & Bertoldi, ACL-SMT '06]

- Spanish-English translation on EPPS
- Lloyd and **binning** algorithms perform similarly
- No loss in performance with 8 bit quantization

LM Accesses by SMT Search Algorithm

Moses calls to a 3-gram LM while decoding from German to English the text:

ich bin kein christdemokrat und glaube daher nicht an wunder . doch ich möchte dem europäischen parlament , so wie es gegenwürtig beschaffen ist , für seinen grossen beitrag zu diesen arbeiten danken.

LM Accesses by SMT Search Algorithm

- 1.7M calls only involving 120K different 3-grams
- Decoder tends to access LM n-grams in non-uniform, *highly localized patterns*
- First call of an n-gram is easily followed by other calls of the same n-gram

Memory Mapping of LM on Disk

- our LM structure permits to exploit so-called *memory mapped* file access
- memory mapping permits to include a file in the address space of a process, whose access is managed as virtual memory
- only memory pages (grey blocks) that are accessed by decoding are loaded

16

Performance

- Chinese-English task of NIST MT Evaluation Workshop 2006
- large parallel corpus (85 Mw), 6.1M 5-grams
- English giga monolingual corpus (1.8 Gw), 289M 5-grams
- Moses decoder

LM	format	quant	file size
lrg	textual	n	855Mb
		У	685Mb
	binary	n	296Mb
		У	178Mb

LM	format	quant	file size
giga	textual	n	28.0Gb
		У	21.0Gb
	binary	n	8.5Gb
		У	5.1Gb

- binarization: 65-75% reduction
- quantization: 20% reduction for textual, 40% for binary
- overall: -80%

Performance

LM	BLEU score			LM	NIST score				
	05	06	06	06		05	06	06	06
		nw	ng	bn			nw	ng	bn
Irg SRILM	27.3	29.4	23.7	27.2	Irg SRILM	8.60	9.00	7.88	8.57
lrg	27.3	29.1	23.6	27.1	lrg	8.60	9.03	7.85	8.55
q-Irg	27.3	29.0	23.2	27.0	q-lrg	8.56	8.99	7.77	8.51
lrg+giga	29.2	29.7	24.8	28.6	lrg+giga	8.84	8.92	7.92	8.70
$q\operatorname{-}lrg\operatorname{+}q\operatorname{-}giga$	29.0	29.8	24.8	28.2	q-lrg $+q$ -giga	8.75	9.08	8.06	8.65

- SRILM and IRSTLM compares well (different prob to OOV words)
- quantization does not affect performance significantly
- use of giga increases performance significantly

Performance

LM	process size		caching	dec. speed
	virtual	resident		(src w/s)
Irg SRILM	1.2Gb	1.1Gb	-	13.33
lrg	619Mb	558Mb	n	6.80
			У	7.42
q-lrg	507Mb	445Mb	n	6.99
			У	7.52
lrg+giga	9.9Gb	2.1Gb	n	3.52
			У	4.28
q-lrg+q-giga	6.8Gb	2.1Gb	n	3.64
			у	4.35

- IRSTLM requires less memory than SRILM (558Mb vs. 1.1Gb) (10 vs. 20Gb???)
- IRSTLM is slower than SRILM (7.42 vs. 13.33)
- quantization slightly speeds up decoding
- caching speeds up decoding (8-9% on lrg, 20-21% on lrg+giga)

Distributed LM training

- goal: reduce time and fit n-gram statistics into memory
- idea: partition n-grams into k parts, train k LMs, recombine into one LM
- problem: probabilities of the *n*-gram xyw depends on xy (and yw) $p(w \mid x \mid y) = f^*(w \mid x \mid y) + \lambda(x \mid y)p(w \mid y)$
- solution:
 - split *n*-grams into self-consistent subsets: containing all information needed to compute $f^*(w \mid x \mid y)$ and $\lambda(x \mid y)$
 - use an intermediate data structure to store all f^* and λ
 - compute probabilities on the fly, $P(w \mid x \; y) = f^*(w \mid x \; y) + \lambda(x \; y) * P(w \mid y)$
- self-consistency depends on the smoothing method

Available smoothing for distributed LM training

- Witten Bell: each subset should contain all successors of an *n*-gram $f^*(w \mid xy) = \frac{c(xyw)}{c(xy)+n(xy)}$ and $\lambda(xy) = \frac{n(xy)}{c(xy)+n(xy)}$
- Absolute discounting: the same as Witten Bell $f^*(w \mid xy) = \max\left\{\frac{c(xyw) \beta}{c(xy)}, 0\right\}$ and $\lambda(xy) = \beta \frac{\sum_{w:c(xyw) > 1} 1}{c(xy)}$
- Improved Kneser-Ney: possible (without corrected counts) $f^*(w \mid x \ y) = \frac{c(xyw) - \beta(c(xyw))}{c(xy)}$ $\beta(0) = 0, \ \beta(1) = D_1, \ \beta(2) = D_2, \ \beta(c) = D_{3+}$

get a training corpus

TRAIN
this should also be there is looking further . this we shall be there is looking further . so we shall be there is looking further . this should also be there would be a little . this should also be there is looking further ahead it should also be there is looking further . so we shall be there is looking further . this should also be there would be little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there is looking further . so we shall be there is looking further ahead . so we shall be there is looking further ahead . this we shall be there is looking further ahead . this we shall be there would be a little . this may be , there would be a little . this should also be there is to further . so we shall be there would be a little . this should also be there is to further . so we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little . this we shall be there would be a little .
this we shall be there would be a little . this should also be there is going further . so we shall be there would be a little . this we shall be there is looking further ahead . so we shall be there is looking further ahead . this we shall be there would be little . this may be , there would be a little . this should also be there is to further . so we shall be there would be little . this we shall be there would be little . this we shall be there is going further . so we shall be there is going further . so we shall be there is going further . it should also be there would be a little .

extract the dictionary

dict -InputFile=TRAIN -OutputFile=DICT -Freq=yes -sort=no

split dictionary into balanced n-gram prefix lists

split-dict.pl --input DICT --output DICT. --parts 3

collect n-grams **DICT.000 DICT.001** for each prefix list **DICTIONARY 0 5** DICTIONARY 0 5 this 12 is 12 should 8 looking 8 also 8 further 12 this should also be there is looking further . be 28 20 this we shall be there is looking further . there 20 we 11 so we shall be there is looking further . this should also be there would be a little . this should also be there is looking further ahead . it should also be there is looking further . WWW 000 WWW.001 so we shall be there is looking further . this should also be there would be little. this should also 6 is looking further 8 this we shall be there would be a little . this we shall 5 is going further 3 this should also be there is going further. is to further 1 this may be 1 so we shall be there would be a little . looking further. 5 should also be 8 this we shall be there is looking further ahead. looking further ahead 3 also be there 8 so we shall be there is looking further ahead . further this 3 be there is 12 this we shall be there would be little . further . so 5 be there would 7 this may be, there would be a little. further . it 1 be a little 5 this should also be there is to further . further ahead . 3 be little . 3 so we shall be there would be little. this should 5 be there 1 this we shall be there is going further . this we 5 there is looking 8 so we shall be there is going further . this may 1 there is going 3 it should also be there would be a little . so we 6 there is to 1 . it should 2 there would be 8 we shall be 11

ngt -InputFile=TRAIN -FilterDict=DICT.000 -NgramSize=3
 -OutputFile=WWW.000 -OutputGoogleFormat=yes

build-sublm.pl --size 3 --ngrams WWW.000 --sublm LM.000
 [--prune-singletons] [--kneser-ney|--witten-bell]

merge single LMs

			iArpa_LM
LM.000.1gr 12 this -0.698970 8 should -0.954243 8 also -0.954243 28 be -0.903090 20 there -1.041393	LM.000.2gr -0.397940 this should -0.845098 -0.477121 this we -0.778151 -1.176091 this may 0.000000 -0.051153 should also -0.954243 -0.051153 also be -0.954243 -0.226396 be there -1.021189 -0.806180 be a -0.778151 -1.028029 be little -0.602060 -1.505150 be , 0.000000 -0.263241 there is -0.574031 -0.439333 there would -0.954243	LM.000.3gr -0.066947 this should also -0.079181 this we shall -0.051153 should also be -0.051153 also be there -0.243038 be there is -0.477121 be there would -0.079181 be a little 0.124020 be little	iARPA \data\ ngram 1= 22 ngram 2= 32 ngram 3= 31 \1-grams: -1.249669 this -0.698970 -1.409369 should -0.954243 -1.409369 also -0.954243 -0.901214 be -0.903090 -1.041393 there -1.041393
LM.001.1gr		-0.124939 be little . -0.273001 there is looking -0.698970 there is going -0.051153 there would be	
LM.001.1gr	LM.001.2gr	LM.001.3gr	-0.051153 should also -0.954243 -0.051153 also be -0.954243
	LM.002.2gr	LM.002.3gr	-0.051153 should also be -0.051153 also be there -0.243038 be there is

merge-sublm.pl --size 3 --sublm LM -lm iARPA_LM.gz

27

Further steps for LM training

- optional steps:
 - transform into ARPA format compile-lm iARPA_LM.gz ARPA_LM --text yes compile-lm iARPA_LM.gz /dev/stdout --text yes | gzip-c > ARPA_LM.gz
 - quantize quantize-lm LM QLM
 - binarize
 compile-lm iARPA_LM.gz ARPA_LM
- perform steps 1-5 at once with

build-lm.sh -i TRAIN -n 3 -o iARPA_LM.gz -k 3 [-p]

• if SGE queue is available, run a parallel version

build-lm-qsub.sh -i TRAIN -n 3 -o iARPA_LM.gz -k 3 [-p]

Distributed Training on English Gigaword

list	dictionary	number of 5-grams:			
index	size	observed	distinct	non-singletons	
0	4	217M	44.9M	16.2M	
1	11	164M	65.4M	20.7M	
2	8	208M	85.1M	27.0M	
3	44	191M	83.0M	26.0M	
4	64	143M	56.6M	17.8M	
5	137	142M	62.3M	19.1M	
6	190	142M	64.0M	19.5M	
7	548	142M	66.0M	20.1M	
8	783	142M	63.3M	19.2M	
9	1.3K	141M	67.4M	20.2M	
10	2.5K	141M	69.7M	20.5M	
11	6.1K	141M	71.8M	20.8M	
12	25.4K	141M	74.5M	20.9M	
13	4.51M	141M	77.4M	20.6M	
total	4.55M	2.2G	951M	289M	

N. Bertoldi

Chunk-based translation

- improve syntactic coherence of output
- use shallow syntax (chunks) on the target side (NC, VC, ...) SRC: Mein Freund wäscht sein neues Auto.
 TRG: (My friend|NC) (is washing|VC) (his new car|NC) (.|PNC)
- enlarge context: 3 chunks cover the full output
- Moses can not manage asynchronous factors (yet)
- split chunks into micro-chunks, X(, X+, X), X
 TRG: My|NP(friend|NP) is|VP(washing|VP) his|NP(new|NP+ car|NP) .|PNC
- train TM model with micro-chunks, LM model with chunks
- Moses generates translation options with micro-chunks
- how to get chunk-based LM prob from micro-chunks strings?

Chunk-based LM

- shrink sequence of micro-chunks into sequence of chunks
- use simple rules:

 $\begin{array}{l} X \ \leftarrow \ X \\ X(\ X) \ \leftarrow \ X \\ X(\ X+ \ \ldots \ X) \ \leftarrow \ X \end{array}$

 P(My friend is washing his new car .) = P("My") ... P("." | "new car") P(NP(NP) VP(VP) NP(NP+NP) PNC) P(NP VP NP PNC) = P(NP) P(VP | NP) P(NP | NP VP) P(PNC | VP NC)

Thank you!

and use IRSTLM!

Federico, Bertoldi. "How Many Bits Are Needed To Store Probabilities for Phrase-Based Translation?". ACL Workshop on SMT. New York City, NY, US, 2006.

Federico, Marcello, Mauro Cettolo, "Efficient Handling of N-gram Language Models for Statistical Machine Translation". ACL 2007 Workshop on SMT. Prague, Czech Republic, 2007