
A tutorial on the IRSTLM library

Nicola Bertoldi
FBK-irst,Trento, Italy

Berlin, May 17th 2008

1

Outline

• introduction to LM

• introduction to IRSTLM library

• space optimization

• distributed LM training

• support for chunk-based translation

Credits: M. Cettolo and M. Federico (FBK-irst, Trento)

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

2

N-gram LMs

The purpose of LMs is to compute the probability Pr(wT1) of any sequence of
words wT1 = w1 . . . , wt, . . . , wT . The probability Pr(wT1) can be expressed as:

Pr(wT1) = Pr(w1)
T∏
t=2

Pr(wt | ht)

where ht = w1, . . . , wt−1 indicates the history of word wt.

• Pr(wt | ht) become difficult to estimate as the sequence of words ht grows.

• we approximate by defining equivalence classes on histories ht.

• n-gram approximation let each word depend on the most recent n− 1 words:

ht ≈ wt−n+1 . . . wt−1.

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

3

Data sparseness

Even estimating n-gram probabilities is not a trivial task:

• high number of parameters: e.g. a 3-gram LM with a vocabulary of 1,000
words requires, in principle, to estimate 109 probabilities!

• data sparseness of real texts: i.e. most of correct n-grams are rare events

• smoothing or discounting: frequency are not reliable

Discount relative frequency to assign some positive prob to every possible n-gram

0 ≤ f∗(w | x y) ≤ f(w | x y) ∀x y w ∈ V 3

Redistribution of the zero-frequency probability λ(x y) over the set of words never
observed after history x y proportional to p(w | y)

λ(x y) = 1.0 −
∑
w∈V

f∗(w | x y),

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

4

Smoothing Schemes

Discounted frequency f∗(w | x y) and redistribution of the zero-frequency
probability λ(x y) can be combined by:

• Interpolation, i.e. sum up the two approximations:

p(w | x y) = f∗(w | x y) + λ(x y)p(w | y).

• Back-off, i.e. select the most significant approximation available:

p(w | x y) =
{
f∗(w | x y) if f∗(w | x y) > 0
αxyλ(x y)p(w | y) otherwise

where αxy is an appropriate normalization term

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

5

Smoothing Methods

• Witten-Bell estimate [Witten & Bell, 1991]
λ(xy) ∝ n(xy) i.e. # different words observed after xy in the training data:

λ(xy) =def

n(xy)

c(xy) + n(xy)
which gives: f

∗
(w | xy) =

c(xyw)

c(xy) + n(xy)

• Absolute discounting [Ney & Essen, 1991]
subtract constant β (0 < β ≤ 1) from all observed n-gram counts

f
∗
(w | xy) =def max

c(xyw)− β
c(xy)

, 0

ff
which gives λ(xy) = β

n(xy)

c(xy)

• Kneser-Ney smoothing [Kneser & Ney, 1995]
Absolute discounting with corrected counts c′(yw) for lower order n-grams

• Improved Kneser-Ney [Chen & Goodman, 1998]
Use specific discounting coefficients β = β(c(xyw)) for rare n-grams

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

6

Large Scale Language Models

• Availability of large scale corpora has pushed research toward using huge LMs

• At 2006 NIST WS best systems used LMs trained on at least 1.6G words

• Google presented results using a 5-gram LM trained on 1.3T words

• Handling of such huge LMs with available tools (e.g. SRILM) is prohibitive
if you use standard computer equipment (4 up to 8Gb of RAM)

• Trend of technology is towards distributed processing using PC farms

We developed IRSTLM, a LM library addressing these needs

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

7

IRSTLM library

• open-source LGPL library under sourceforge.net

• full integration into the Moses SMT Toolkit and FBK-irst’s speech decoder

• different smoothing criteria in an interpolation scheme

• training of huge LMs

• support for chunk-based translation

• space optimization

• distributed training on single machine or SGE queue

• caching of LM calls

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

8

Space optimization

• n-gram collection uses dynamic storage to encode counters

• probs and back-off weights are quantized

• LM data structure is loaded on demand

[Federico & Cettolo, ACL-SMT ’07]

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

9

Data Structure to Collect N-grams

3
w | fr | succ | ptr | flags

6 3 8 1

3
w | fr

1

1-gr 2-gr 3-gr

• Dynamic prefix-tree data structure

• Successor lists are allocated on demand through memory pools

• Storage of counts from 1 to 6 bytes, according to max value

• Permits to manage few huge counts, such as in the google n-grams

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

10

Data Structure to Compute LM Probs

1-gr 2-gr 3-gr

3
w | bo | pr | idx

1 1 4

w | pr
3 1

• First used in CMU-Cambridge LM Toolkit (Clarkson and Rosenfeld, 1997]

• Slower access but less memory than structure used by SRILM Toolkit

• IRSTLM can compress probs and back-off weights into 1 byte (instead of 4)!

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

11

Compression Through Quantization

How does quantization work?

1. Partition observed probabilities into regions (clusters)

2. Assign a code and probability value to each region (codebook)

3. Encode the probabilities of all observations (quantization)

We investigate two quantization methods:

• Lloyd’s K-Means Algorithm
– first applied to LM for ASR by [Whittaker & Raj, 2000]
– computes clusters minimizing average distance between data and centroids

• Binning Algorithm
– first applied to term-frequencies for IR by [Franz & McCarley, 2002]
– computes clusters that partition data into uniformly populated intervals

Notice: a codebook of n centers means a quantization level of log2 n bits.

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

12

LM Quantization

• Codebooks
– One codebook for each word and back-off probability level
– For instance, a 5-gram LM needs in total 9 codebooks
– Use codebook of at least 256 entries for 1-gram distributions

• Motivation
– Distributions of these probabilities can be quite different
– 1-gram distributions contain relatively few probabilities
– Memory cost of a few codebooks is irrelevant.

• Composition of codebooks
– LM probs are computed by multiplying entries of different codebooks

[Federico & Bertoldi, ACL-SMT ’06]

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

13

LM Quantization

 51

 51.5

 52

 52.5

 53

 53.5

 54

 54.5

 55

32865432

B
L
E
U

S
C
O
R
E

BITS

BINNING
LLOYD

 10.3

 10.4

 10.5

 10.6

 10.7

 10.8

32865432

N
I
S
T

S
C
O
R
E

BITS

BINNING
LLOYD

• Spanish-English translation on EPPS

• Lloyd and binning algorithms perform similarly

• No loss in performance with 8 bit quantization

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

14

LM Accesses by SMT Search Algorithm

Moses calls to a 3-gram LM while decoding from German to English the text:

ich bin kein christdemokrat und glaube daher nicht an wunder . doch ich möchte

dem europäischen parlament , so wie es gegenwürtig beschaffen ist , für seinen

grossen beitrag zu diesen arbeiten danken.

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

15

LM Accesses by SMT Search Algorithm

• 1.7M calls only involving 120K different 3-grams

• Decoder tends to access LM n-grams in non-uniform, highly localized patterns

• First call of an n-gram is easily followed by other calls of the same n-gram

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

16

Memory Mapping of LM on Disk

Memory

1-gr 2-gr 3-gr
Disk file

• our LM structure permits to exploit so-called memory mapped file access

• memory mapping permits to include a file in the address space of a process,
whose access is managed as virtual memory

• only memory pages (grey blocks) that are accessed by decoding are loaded

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

17

Performance

• Chinese-English task of NIST MT Evaluation Workshop 2006

• large parallel corpus (85 Mw), 6.1M 5-grams

• English giga monolingual corpus (1.8 Gw), 289M 5-grams

• Moses decoder

LM format quant file size

lrg textual n 855Mb

y 685Mb

binary n 296Mb

y 178Mb

LM format quant file size

giga textual n 28.0Gb

y 21.0Gb

binary n 8.5Gb

y 5.1Gb

• binarization: 65-75% reduction

• quantization: 20% reduction for textual, 40% for binary

• overall: -80%

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

18

Performance

LM BLEU score

05 06 06 06

nw ng bn

lrg SRILM 27.3 29.4 23.7 27.2

lrg 27.3 29.1 23.6 27.1

q-lrg 27.3 29.0 23.2 27.0

lrg+giga 29.2 29.7 24.8 28.6

q-lrg+q-giga 29.0 29.8 24.8 28.2

LM NIST score

05 06 06 06

nw ng bn

lrg SRILM 8.60 9.00 7.88 8.57

lrg 8.60 9.03 7.85 8.55

q-lrg 8.56 8.99 7.77 8.51

lrg+giga 8.84 8.92 7.92 8.70

q-lrg+q-giga 8.75 9.08 8.06 8.65

• SRILM and IRSTLM compares well (different prob to OOV words)

• quantization does not affect performance significantly

• use of giga increases performance significantly

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

19

Performance

LM process size caching dec. speed

virtual resident (src w/s)

lrg SRILM 1.2Gb 1.1Gb - 13.33

lrg 619Mb 558Mb n 6.80

y 7.42

q-lrg 507Mb 445Mb n 6.99

y 7.52

lrg+giga 9.9Gb 2.1Gb n 3.52

y 4.28

q-lrg+q-giga 6.8Gb 2.1Gb n 3.64

y 4.35

• IRSTLM requires less memory than SRILM (558Mb vs. 1.1Gb) (10 vs. 20Gb???)

• IRSTLM is slower than SRILM (7.42 vs. 13.33)

• quantization slightly speeds up decoding

• caching speeds up decoding (8-9% on lrg, 20-21% on lrg+giga)

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

20

Distributed LM training

• goal: reduce time and fit n-gram statistics into memory

• idea: partition n-grams into k parts, train k LMs, recombine into one LM

• problem: probabilities of the n-gram xyw depends on xy (and yw)
p(w | x y) = f∗(w | x y) + λ(x y)p(w | y)

• solution:

– split n-grams into self-consistent subsets:
containing all information needed to compute f∗(w | x y) and λ(x y)

– use an intermediate data structure to store all f∗ and λ
– compute probabilities on the fly, P (w | x y) = f∗(w | x y)+λ(x y)∗P (w | y)

• self-consistency depends on the smoothing method

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

21

Available smoothing for distributed LM training

• Witten Bell: each subset should contain all successors of an n-gram
f∗(w | xy) = c(xyw)

c(xy)+n(xy) and λ(xy) = n(xy)
c(xy)+n(xy)

• Absolute discounting: the same as Witten Bell

f∗(w | xy) = max
{
c(xyw)−β
c(xy) , 0

}
and λ(xy) = β

P
w:c(xyw)>1 1

c(xy)

• Improved Kneser-Ney: possible (without corrected counts)

f∗(w | x y) = c(xyw)−β(c(xyw))
c(xy)

β(0) = 0, β(1) = D1, β(2) = D2 , β(c) = D3+

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

22

How to to distributed LM training: step 0

 this should also be there is looking further .
 this we shall be there is looking further .
 so we shall be there is looking further .
 this should also be there would be a little .
 this should also be there is looking further ahead .
 it should also be there is looking further .
 so we shall be there is looking further .
 this should also be there would be little .
 this we shall be there would be a little .
 this should also be there is going further .
 so we shall be there would be a little .
 this we shall be there is looking further ahead .
 so we shall be there is looking further ahead .
 this we shall be there would be little .
 this may be , there would be a little .
 this should also be there is to further .
 so we shall be there would be little .
 this we shall be there is going further .
 so we shall be there is going further .
 it should also be there would be a little .

get a training corpus

 TRAIN

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

23

How to to distributed LM training: step 1

DICTIONARY 0 21
this 12
should 8
also 8
be 28
there 20
is 12
looking 8
further 12
. 20
we 11
shall 11
so 6
would 8
a 5
little 8
ahead 3
it 2
going 3
may 1
, 1
to 1

extract the dictionary

 this should also be there is looking further .
 this we shall be there is looking further .
 so we shall be there is looking further .
 this should also be there would be a little .
 this should also be there is looking further ahead .
 it should also be there is looking further .
 so we shall be there is looking further .
 this should also be there would be little .
 this we shall be there would be a little .
 this should also be there is going further .
 so we shall be there would be a little .
 this we shall be there is looking further ahead .
 so we shall be there is looking further ahead .
 this we shall be there would be little .
 this may be , there would be a little .
 this should also be there is to further .
 so we shall be there would be little .
 this we shall be there is going further .
 so we shall be there is going further .
 it should also be there would be a little .

 TRAIN
 DICT

dict -InputFile=TRAIN -OutputFile=DICT -Freq=yes -sort=no

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

24

How to to distributed LM training: step 2

DICTIONARY 0 21
this 12
should 8
also 8
be 28
there 20
is 12
looking 8
further 12
. 20
we 11
shall 11
so 6
would 8
a 5
little 8
ahead 3
it 2
going 3
may 1
, 1
to 1

split dictionary into
balanced n-gram prefix lists

 DICT
DICTIONARY 0 5
this 12
should 8
also 8
be 28
there 20

 DICT.000

DICTIONARY 0 5
is 12
looking 8
further 12
. 20
we 11

 DICT.001

DICTIONARY 0 11
shall 11
so 6
would 8
a 5
little 8
ahead 3
it 2
going 3
may 1
, 1
to 1

 DICT.002

split-dict.pl --input DICT --output DICT. --parts 3

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

25

How to to distributed LM training: step 3

collect n-grams
for each prefix list

DICTIONARY 0 5
this 12
should 8
also 8
be 28
there 20

 DICT.000
DICTIONARY 0 5
is 12
looking 8
further 12
. 20
we 11

 DICT.001

 this should also be there is looking further .
 this we shall be there is looking further .
 so we shall be there is looking further .
 this should also be there would be a little .
 this should also be there is looking further ahead .
 it should also be there is looking further .
 so we shall be there is looking further .
 this should also be there would be little .
 this we shall be there would be a little .
 this should also be there is going further .
 so we shall be there would be a little .
 this we shall be there is looking further ahead .
 so we shall be there is looking further ahead .
 this we shall be there would be little .
 this may be , there would be a little .
 this should also be there is to further .
 so we shall be there would be little .
 this we shall be there is going further .
 so we shall be there is going further .
 it should also be there would be a little .

is looking further 8
is going further 3
is to further 1
looking further . 5
looking further ahead 3
further . this 3
further . so 5
further . it 1
further ahead . 3
. this should 5
. this we 5
. this may 1
. so we 6
. it should 2
we shall be 11

 WWW.001
this should also 6
this we shall 5
this may be 1
should also be 8
also be there 8
be there is 12
be there would 7
be a little 5
be little . 3
be , there 1
there is looking 8
there is going 3
there is to 1
there would be 8

 WWW.000

ngt -InputFile=TRAIN -FilterDict=DICT.000 -NgramSize=3
-OutputFile=WWW.000 -OutputGoogleFormat=yes

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

26

How to to distributed LM training: step 4

estimate single LMs (f* and λ)
for each prefix list

this should also 6
this we shall 5
this may be 1
should also be 8
also be there 8
be there is 12
be there would 7
be a little 5
be little . 3
be , there 1

 WWW.000

12 this -0.698970
8 should -0.954243
8 also -0.954243
28 be -0.903090
20 there -1.041393

 LM.000.1gr

-0.066947 this should also
-0.079181 this we shall
-0.051153 should also be
-0.051153 also be there
-0.243038 be there is
-0.477121 be there would
-0.079181 be a little
-0.124939 be little .
-0.273001 there is looking
-0.698970 there is going
-0.051153 there would be

 LM.000.3gr
-0.397940 this should -0.845098
-0.477121 this we -0.778151
-1.176091 this may 0.000000
-0.051153 should also -0.954243
-0.051153 also be -0.954243
-0.226396 be there -1.021189
-0.806180 be a -0.778151
-1.028029 be little -0.602060
-1.505150 be , 0.000000
-0.263241 there is -0.574031
-0.439333 there would -0.954243

 LM.000.2gr

build-sublm.pl --size 3 --ngrams WWW.000 --sublm LM.000
[--prune-singletons] [--kneser-ney|--witten-bell]

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

27

How to to distributed LM training: step 5

merge single LMs

12 this -0.698970
8 should -0.954243
8 also -0.954243
28 be -0.903090
20 there -1.041393

 LM.000.1gr
-0.066947 this should also
-0.079181 this we shall
-0.051153 should also be
-0.051153 also be there
-0.243038 be there is
-0.477121 be there would
-0.079181 be a little
-0.124939 be little .
-0.273001 there is looking
-0.698970 there is going
-0.051153 there would be

 LM.000.3gr
-0.397940 this should -0.845098
-0.477121 this we -0.778151
-1.176091 this may 0.000000
-0.051153 should also -0.954243
-0.051153 also be -0.954243
-0.226396 be there -1.021189
-0.806180 be a -0.778151
-1.028029 be little -0.602060
-1.505150 be , 0.000000
-0.263241 there is -0.574031
-0.439333 there would -0.954243

 LM.000.2gr

.......

 LM.001.1gr

.......

 LM.001.1gr

 LM.001.2gr

.......

 LM.002.2gr

.......

 LM.001.3gr

.......

 LM.002.3gr

iARPA
\data\
ngram 1= 22
ngram 2= 32
ngram 3= 31
\1-grams:
-1.249669 this -0.698970
-1.409369 should -0.954243
-1.409369 also -0.954243
-0.901214 be -0.903090
-1.041393 there -1.041393
.........
\2-grams:
-0.397940 this should -0.845098
-0.477121 this we -0.778151
-1.176091 this may 0.000000
-0.051153 should also -0.954243
-0.051153 also be -0.954243
.........
\3-grams:
-0.066947 this should also
-0.079181 this we shall
-0.051153 should also be
-0.051153 also be there
-0.243038 be there is
.........
\end\

iArpa_LM

merge-sublm.pl --size 3 --sublm LM -lm iARPA_LM.gz

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

28

Further steps for LM training

• optional steps:

– transform into ARPA format

compile-lm iARPA_LM.gz ARPA_LM --text yes
compile-lm iARPA_LM.gz /dev/stdout --text yes | gzip-c > ARPA_LM.gz

– quantize

quantize-lm LM QLM

– binarize

compile-lm iARPA_LM.gz ARPA_LM

• perform steps 1-5 at once with

build-lm.sh -i TRAIN -n 3 -o iARPA_LM.gz -k 3 [-p]

• if SGE queue is available, run a parallel version

build-lm-qsub.sh -i TRAIN -n 3 -o iARPA_LM.gz -k 3 [-p]

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

29

Distributed Training on English Gigaword
list dictionary number of 5-grams:

index size observed distinct non-singletons

0 4 217M 44.9M 16.2M

1 11 164M 65.4M 20.7M

2 8 208M 85.1M 27.0M

3 44 191M 83.0M 26.0M

4 64 143M 56.6M 17.8M

5 137 142M 62.3M 19.1M

6 190 142M 64.0M 19.5M

7 548 142M 66.0M 20.1M

8 783 142M 63.3M 19.2M

9 1.3K 141M 67.4M 20.2M

10 2.5K 141M 69.7M 20.5M

11 6.1K 141M 71.8M 20.8M

12 25.4K 141M 74.5M 20.9M

13 4.51M 141M 77.4M 20.6M

total 4.55M 2.2G 951M 289M

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

30

Chunk-based translation

• improve syntactic coherence of output

• use shallow syntax (chunks) on the target side (NC, VC, ...)

SRC: Mein Freund wäscht sein neues Auto .

TRG: (My friend|NC) (is washing|VC) (his new car|NC) (.|PNC)

• enlarge context: 3 chunks cover the full output

• Moses can not manage asynchronous factors (yet)

• split chunks into micro-chunks, X(, X+, X), X

TRG: My|NP(friend|NP) is|VP(washing|VP) his|NP(new|NP+ car|NP) .|PNC

• train TM model with micro-chunks, LM model with chunks

• Moses generates translation options with micro-chunks

• how to get chunk-based LM prob from micro-chunks strings?

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

31

Chunk-based LM

• shrink sequence of micro-chunks into sequence of chunks

• use simple rules:

X← X

X(X)← X

X(X+ ... X)← X

• P (My friend is washing his new car .) = P (”My”) ... P (”.” | ”new car”)

P (NP(NP) VP(VP) NP(NP+ NP) PNC)

P (NP VP NP PNC) = P (NP) P (VP | NP) P (NP | NP VP) P (PNC | VP NC)

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

32

Thank you!

and use IRSTLM!

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

33

References

Federico, Bertoldi. ”How Many Bits Are Needed To Store Probabilities for Phrase-Based

Translation?”. ACL Workshop on SMT. New York City, NY, US, 2006.

Federico, Marcello, Mauro Cettolo, ”Efficient Handling of N-gram Language Models for Statistical

Machine Translation”. ACL 2007 Workshop on SMT. Prague, Czech Republic, 2007

N. Bertoldi IRSTLM Library Berlin, May 17th 2008

