Winter School

Day 3: Decoding / Phrase-based models

MT Marathon
28 January 2009

1

Statistical Machine Translation

- Components: Translation model, language model, decoder

Phrase-Based Translation

- Foreign input is segmented in phrases
- any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Table

- Phrase Translations for "den Vorschlag":

English	$\phi(\mathbf{e} \mid \mathbf{f})$	English	$\phi(\mathbf{e} \mid \mathbf{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159	\ldots	\ldots

Decoding Process

Maria	no	dio	una	bofetada	a	la	bruja

- Build translation left to right
- select foreign words to be translated

Decoding Process

- Build translation left to right
- select foreign words to be translated
- find English phrase translation
- add English phrase to end of partial translation

Decoding Process

Maria

no	dio	una	bofetada	a	la	bruja	verde

Mary

- Build translation left to right
- select foreign words to be translated
- find English phrase translation
- add English phrase to end of partial translation
- mark foreign words as translated

Decoding Process

- One to many translation

Decoding Process

- Many to one translation

Decoding Process

- Many to one translation

Decoding Process

- Reordering

Decoding Process

- Translation finished

Translation Options

- Look up possible phrase translations
- many different ways to segment words into phrases
- many different ways to translate each phrase

Hypothesis Expansion

- Start with empty hypothesis
- e: no English words
- f: no foreign words covered
- p: probability 1

Hypothesis Expansion

- Pick translation option
- Create hypothesis
- e: add English phrase Mary
- f: first foreign word covered
- p: probability 0.534

A Quick Word on Probabilities

- Not going into detail here, but...
- Translation Model
- phrase translation probability p (Mary|Maria)
- reordering costs
- phrase/word count costs
- ...
- Language Model
- uses trigrams:
$-p($ Mary did not $)=$
$p($ Mary \mid START $) \times p($ did \mid Mary, START $) \times \mathrm{p}($ not \mid Mary did $)$

Hypothesis Expansion

- Add another hypothesis

Hypothesis Expansion

- Further hypothesis expansion

Hypothesis Expansion

- ... until all foreign words covered
- find best hypothesis that covers all foreign words
- backtrack to read off translation

Hypothesis Expansion

- Adding more hypothesis
\Rightarrow Explosion of search space

Explosion of Search Space

- Number of hypotheses is exponential with respect to sentence length
\Rightarrow Decoding is NP-complete [Knight, 1999]
\Rightarrow Need to reduce search space
- risk free: hypothesis recombination
- risky: histogram/threshold pruning

Hypothesis Recombination

- Different paths to the same partial translation

Hypothesis Recombination

- Different paths to the same partial translation
\Rightarrow Combine paths
- drop weaker path
- keep pointer from weaker path (for lattice generation)

Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
- last two English words match (matters for language model)
- foreign word coverage vectors match (effects future path)

Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
- last two English words match (matters for language model)
- foreign word coverage vectors match (effects future path)
\Rightarrow Combine paths

Pruning

- Hypothesis recombination is not sufficient
\Rightarrow Heuristically discard weak hypotheses early
- Organize Hypothesis in stacks, e.g. by
- same foreign words covered
- same number of foreign words covered
- Compare hypotheses in stacks, discard bad ones
- histogram pruning: keep top n hypotheses in each stack (e.g., $n=100$)
- threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha=0.001$)

Hypothesis Stacks

- Organization of hypothesis into stacks
- here: based on number of foreign words translated
- during translation all hypotheses from one stack are expanded
- expanded Hypotheses are placed into stacks

Comparing Hypotheses

- Comparing hypotheses with same number of foreign words covered

- Hypothesis that covers easy part of sentence is preferred
\Rightarrow Need to consider future cost of uncovered parts

Future Cost Estimation

- Estimate cost to translate remaining part of input
- Step 1: estimate future cost for each translation option
- look up translation model cost
- estimate language model cost (no prior context)
- ignore reordering model cost
$\rightarrow \mathrm{LM} * \mathrm{TM}=\mathrm{p}($ to $) * \mathrm{p}($ the \mid to $) * \mathrm{p}($ to the a la)

Future Cost Estimation: Step 2

- Step 2: find cheapest cost among translation options

Future Cost Estimation: Step 3

- Step 3: find cheapest future cost path for each span
- can be done efficiently by dynamic programming
- future cost for every span can be pre-computed

Future Cost Estimation: Application

- Use future cost estimates when pruning hypotheses
- For each uncovered contiguous span:
- look up future costs for each maximal contiguous uncovered span
- add to actually accumulated cost for translation option for pruning

A* search

- Pruning might drop hypothesis that lead to the best path (search error)
- A* search: safe pruning
- future cost estimates have to be accurate or underestimates
- lower bound for probability is established early by depth first search: compute cost for one complete translation
- if cost-so-far and future cost are worse than lower bound, hypothesis can be safely discarded
- Not commonly done, since not aggressive enough

Limits on Reordering

- Reordering may be limited
- Monotone Translation: No reordering at all
- Only phrase movements of at most n words
- Reordering limits speed up search (polynomial instead of exponential)
- Current reordering models are weak, so limits improve translation quality

Word Lattice Generation

- Search graph can be easily converted into a word lattice
- can be further mined for \mathbf{n}-best lists
\rightarrow enables reranking approaches
\rightarrow enables discriminative training

Sample N-Best List

- Simple \mathbf{N}-best list:

```
Translation ||| Reordering LM TM WordPenalty ||| Score
this is a small house ||| 0 -27.0908 -1.83258 -5 ||| -28.9234
this is a little house ||| 0 -28.1791-1.83258 -5 ||| -30.0117
it is a small house ||| 0 -27.108 -3.21888 -5 ||| -30.3268
it is a little house ||| 0 -28.1963-3.21888-5 ||| -31.4152
this is an small house ||| 0 -31.7294 -1.83258 -5 ||| -33.562
it is an small house ||| 0 -32.3094 -3.21888 -5 ||| -35.5283
this is an little house ||| 0 -33.7639 -1.83258-5 ||| -35.5965
this is a house small ||| -3 -31.4851 -1.83258 -5 ||| -36.3176
this is a house little ||| -3 -31.5689 -1.83258-5 ||| -36.4015
it is an little house ||| 0 -34.3439 -3.21888-5 ||| -37.5628
it is a house small ||| -3 -31.5022 -3.21888 -5 ||| -37.7211
this is an house small ||| -3 -32.8999 -1.83258-5 ||| -37.7325
it is a house little ||| -3 -31.586 -3.21888 -5 ||| -37.8049
this is an house little ||| -3 -32.9837-1.83258-5 ||| -37.8163
the house is a little ||| -7 -28.5107 -2.52573 -5 ||| -38.0364
the is a small house ||| 0 -35.6899 -2.52573 -5 ||| -38.2156
is it a little house ||| -4 -30.3603-3.91202 -5 ||| -38.2723
the house is a small ||| -7 -28.7683-2.52573 -5 ||| -38.294
it 's a small house ||| 0 -34.8557-3.91202 -5 ||| -38.7677
this house is a little ||| -7 -28.0443-3.91202-5 ||| -38.9563
it 's a little house ||| 0 -35.1446 -3.91202 -5 ||| -39.0566
this house is a small ||| -7 -28.3018-3.91202 -5 ||| -39.2139
```


Moses: Open Source Toolkit

- Open source statistical machine translation system (developed from scratch 2006)
- state-of-the-art phrase-based approach
- novel methods: factored translation models, confusion network decoding
- support for very large models through memoryefficient data structures
- Documentation, source code, binaries available at http://www.statmt.org/moses/
- Development also supported by
- EC-funded TC-STAR project
- US funding agencies DARPA, NSF
- universities (Edinburgh, Maryland, MIT, ITC-irst, RWTH Aachen, ...)

Phrase-based models

Phrase-based translation

- Foreign input is segmented in phrases
- any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Phrase-based translation model

- Major components of phrase-based model
- phrase translation model $\phi(\mathbf{f} \mid \mathbf{e})$
- reordering model $\omega^{d\left(\text { start }_{i}-\text { end }_{i-1}-1\right)}$
- language model $p_{\text {LM }}(\mathbf{e})$
- Bayes rule

$$
\begin{aligned}
\operatorname{argmax}_{\mathrm{e}} p(\mathbf{e} \mid \mathbf{f}) & =\operatorname{argmax}_{\mathrm{e}} p(\mathbf{f} \mid \mathbf{e}) p(\mathbf{e}) \\
& =\operatorname{argmax}_{\mathbf{e}} \phi(\mathbf{f} \mid \mathbf{e}) p_{\mathrm{LM}}(\mathbf{e}) \omega^{d\left(\operatorname{start}_{i}-\text { end }_{i-1}-1\right)}
\end{aligned}
$$

- Sentence \mathbf{f} is decomposed into I phrases $\bar{f}_{1}^{I}=\bar{f}_{1}, \ldots, \bar{f}_{I}$
- Decomposition of $\phi(\mathbf{f} \mid \mathbf{e})$

$$
\left.\phi\left(\bar{f}_{1}^{I} \mid \bar{e}_{1}^{I}\right)=\prod_{i=1}^{I} \phi\left(\bar{f}_{i} \mid \bar{e}_{i}\right) \omega^{d\left(\operatorname{start}_{i}-\operatorname{end}_{i-1}-1\right)}\right)
$$

Advantages of phrase-based translation

- Many-to-many translation can handle non-compositional phrases
- Use of local context in translation
- The more data, the longer phrases can be learned

Phrase translation table

- Phrase translations for den Vorschlag

English	$\phi(\mathbf{e} \mid \mathbf{f})$	English	$\phi(\mathbf{e} \mid \mathbf{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159	\ldots	\ldots

How to learn the phrase translation table?

- Start with the word alignment:

- Collect all phrase pairs that are consistent with the word alignment

Consistent with word alignment

inconsistent

- Consistent with the word alignment := phrase alignment has to contain all alignment points for all covered words

$$
\begin{aligned}
(\bar{e}, \bar{f}) \in B P \Leftrightarrow \quad & \forall e_{i} \in \bar{e}:\left(e_{i}, f_{j}\right) \in A \rightarrow f_{j} \in \bar{f} \\
\text { AND } & \forall f_{j} \in \bar{f}:\left(e_{i}, f_{j}\right) \in A \rightarrow e_{i} \in \bar{e}
\end{aligned}
$$

Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green)

Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)

Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),
(Maria no daba una bofetada a la, Mary did not slap the),
(daba una bofetada a la bruja verde, slap the green witch)

Word alignment induced phrases (5)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),
(Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch), (no daba una bofetada a la bruja verde, did not slap the green witch),
(Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)

Probability distribution of phrase pairs

- We need a probability distribution $\phi(\bar{f} \mid \bar{e})$ over the collected phrase pairs
\Rightarrow Possible choices
- relative frequency of collected phrases: $\phi(\bar{f} \mid \bar{e})=\frac{\operatorname{count}(\bar{f}, \bar{e})}{\sum_{\bar{f}} \operatorname{count}(\bar{f}, \bar{e})}$
- or, conversely $\phi(\bar{e} \mid \bar{f})$
- use lexical translation probabilities

Reordering

- Monotone translation
- do not allow any reordering
\rightarrow worse translations
- Limiting reordering (to movement over max. number of words) helps
- Distance-based reordering cost
- moving a foreign phrase over n words: cost ω^{n}
- Lexicalized reordering model

Lexicalized reordering models

[from Koehn et al., 2005, IWSLT]

- Three orientation types: monotone, swap, discontinuous
- Probability $p(s w a p \mid e, f)$ depends on foreign (and English) phrase involved

Learning lexicalized reordering models

- Orientation type is learned during phrase extractions
- Alignment point to the top left (monotone) or top right (swap)?
- For more, see [Tillmann, 2003] or [Koehn et al., 2005]

